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ABSTRACT

In Variational Auto-Encoder (VAE), the default choice of reconstruction loss func-
tion between the decoded sample and the input is the squared L2. We propose to
replace it with the log hyperbolic cosine (log-cosh) loss, which behaves as L2

at small values and as L1 at large values, and differentiable everywhere. Com-
pared with L2, the log-cosh loss improves the reconstruction without damaging
the latent space optimization, thus automatically keeping a balance between the
reconstruction and the generation. Extensive experiments on MNIST and CelebA
datasets show that the log-cosh reconstruction loss significantly improves the per-
formance of VAE and its variants in output quality, measured by sharpness and
FID score. In addition, the gradient of the log-cosh is a simple tanh function,
which makes the implementation of gradient descent as simple as adding one sen-
tence in coding.

1 INTRODUCTION

Unsupervised generative modeling aims to represent probability distributions over input data. The
explicit approach usually employs certain parametric model to estimate and approximate the un-
known data distribution pdata, but the effect is sensitive to the model selection, for which expert
knowledge is often needed. In a different vein, implicit generative models aim to generate samples
from the data distribution without estimating the distribution itself. This greatly weaken the depen-
dency on the model selection, and finds numerous applications such as simulating possible futures in
reinforcement learning Finn & Levine (2017), predicting the next frame of a video sequence Lotter
et al. (2015) and image super-resolution Ledig et al. (2017). Prominent examples of implicit gener-
ative models include Boltzmann machines Aarts & Korst (1988), Generative Adversarial Network
(GAN) Goodfellow et al. (2014) and Variational Auto-Encoder (VAE) Kingma & Welling (2013).
Among these methods, VAE enjoys an efficient and stable training process, and the encoder compo-
nent of VAE gives dimension reduction and feature learning as a by-product. Meanwhile, it is also
observed that images generated by VAE are often blurry. One potential reason is that the model fails
to represent high-dimensional probability distributions accurately, which is the target issue we aim
to address in this paper.

1.1 VARIATION AUTO-ENCODERS

We now give a very brief account of VAE. In VAE, there is an encoder that converts the real input
data x to a latent code z ∼ qφ(z|x), and a decoder that reconstructs an image x̂ ∼ pθ(x|z) from the
latent code z, where q and p are encoder and decoder, with parameter φ and θ respectively. VAE has
two objectives: one is to match the decoded samples x̂ to the input x, and the other is to maintain
the posterior qφ(z|x) of the hidden code vector z to a given prior distribution p(z). Combining these
two, VAE uses the following loss function for datapoint x.

L(θ, φ;x) = −Eqφ(z|x) log pθ(x|z) +DKL(qφ(z|x) ‖ p(z)). (1)

Here the first term is the reconstruction loss, which reduces to the squared L2 loss ‖x− x̂‖22 if we
assume that the decoder predicts a Gaussian distribution at each pixel i.e. pθ(x|z) = N (x̂, σ2I).
The second term of the objective matches the distribution of latent code to a prior p(z), which by
default is a standard normal distribution.
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1.2 RECONSTRUCTION LOSS

To improve accuracy of representing probability distributions, many variants of VAE have been
proposed. Much attention has been paid to improving the design of the second term, for example,
changing the prior on the latent code (e.g. S-VAE Davidson et al. (2018), VAE with householder
flow Tomczak & Welling (2016)), and changing the loss between the latent distribution and the prior
(e.g. AAE Makhzani et al. (2016), WAE Tolstikhin et al. (2018)).

An alternative approach for improvement is through the reconstruction loss, i.e. the first term in
Eq. (1), which measures the error between the decoded sample and the input data points. Although
the squared L2 loss is widely used as reconstruction loss in VAE setting, it has long been observed
that this loss function results in problems such as blurry images Mathieu et al. (2015). Several new
metrics are proposed. Ridgeway et al. (2015) applied the structural-similarity (SSIM) index Wang
et al. (2004) as a reconstruction metric of an auto-encoder. Larsen et al. (2016) employs a GAN
discriminator to compute the reconstruction loss in VAE. Dosovitskiy & Brox (2016) combined
a GAN discriminator with the perceptual loss which computes distances between image features
extracted by deep neural networks. These experiments demonstrate the potential of improving VAE
by re-designing the reconstruction loss. However, disadvantages are also evident: The first one
Ridgeway et al. (2015) only demonstrated results on gray-scale images, which are very blurry. The
last two Larsen et al. (2016); Dosovitskiy & Brox (2016) reported that their produce images suffer
from severe high-frequency artifacts, possibly due to feature loss as discussed in Mahendran &
Vedaldi (2015). In addition, as other GAN-based methods, introducing a discriminator makes the
training harder and instable.

In this paper, we propose an element-wise reconstruction loss based on a simple log-cosh function

f(t; a) =
1

a
log(cosh(at)) =

1

a
log

eat + e−at

2
, (2)

where a ∈ R+ is a parameter and log is the natural logarithm. The plots of f(t; a) in interval [−1, 1]
for different a are shown in Fig. 1. The function is close to L1 for large |t| and close to L2 for
small |t|, thereby combining the smoothness advantage of L2, and robustness and image sharpness
advantage of L1. In addition, the derivative of the function is simply the sigmoid function, rendering
a very efficient training and very simple implementation.

In Sec. 4 we show empirically that even if the model trained with the log-cosh reconstruction loss
achieved a larger error measured by L2 loss, it significantly outperforms the model trained with
squared L2 loss. The result also indicates that squared L2 loss can be ineffective in evaluating
high-dimensional data like images, which will be discussed in more details later.
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Figure 1: Plots of f(t; a) =
1

a
log(cosh(at)) with a = 1, 10 and 100.

2 LIMITATIONS OF TRADITIONAL LOSS

Given two vectors x and x̂, the squared L2 loss and the L1 loss are defined as

LSquared L2
(x, x̂) = ‖x− x̂‖22 =

∑
i

|xi − x̂i|2 , (3)

LL1
(x, x̂) = ‖x− x̂‖1 =

∑
i

|xi − x̂i| , (4)
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respectively, where xi stands for the i-th entry of x. The loss functions also extend to matrices
by treating them as long vectors obtained from concatenating the rows. When applied in the VAE
setting, x and x̂ are the input of encoder and output of decoder, respectively.

As mentioned in the last section, the squared L2 loss widely used in VAE comes naturally from
multivariate Gaussian distribution pθ(x|z) ∝ exp(−‖x− x̂‖22). Other than the aforementioned
issue of causing blurry images, the squared L2 loss is also well known to be sensitive to large noise,
and it has long been argued that in image space, it is ineffective in evaluating visual quality Wang &
Bovik (2009) and makes the training to easily get stuck in local minima Zhao et al. (2017).

If we choose a decoder with zero-mean Laplace distribution pθ(x|z) ∝ exp(−‖x− x̂‖1), we will
obtain a loss function in terms of the L1 norm. The L1 loss is used as image to image loss in some
variants of VAE and GAN, such as AEGAN Rosca et al. (2017) and cycle GAN Zhu et al. (2017).
The gradient of L1 loss is ±1 at differential points. The L1 loss is generally robust to noise and,
when used as a regularizer, encourages sparsity in solution. It is found to be quite useful in computer
vision tasks such as deblurring Cai et al. (2009); Freeman et al. (2009); Xu & Jia (2010), since it
appears to enable the solver to escape from local minima, although the exact reason for this is still
elusive. In addition, Zhao et al. (2017) shows that L1 can outperform L2 when directly used as a
loss function for neural networks in image restoration applications such as denoising Jain & Seung
(2009), deblurring Xu et al. (2014), demosaicking Wang (2014), and super-resolution Dong et al.
(2014). However, an obvious disadvantage of the L1 loss is that it is not differentiable if any entry
xi − x̂i = 0, causing oscillation between ±1 during the training process.

In this paper, we will show that our proposed log-cosh loss takes the advantage of L1 while over-
coming the problem of non-differentiability. Experiments show that the log-cosh loss outperforms
both L1 and L2 loss.

3 LOG-COSH LOSS

3.1 PROPERTIES OF LOG-COSH LOSS

Based on the log-cosh function shown in Eq. (2), we propose to use the log-cosh loss as the re-
construction error, taking advantages of both squared L2 loss and L1 loss while overcome their
limitations. The log-cosh loss is defined as

Llog - cosh(x, x̂) =
∑
i

f(xi − x̂i, a) =
1

a

∑
i

log(cosh(a(xi − x̂i))), (5)

where a ∈ R+ is a hyper-parameter. We will first show that the log-cosh function behaves like L2

around origin and like L1 at other points.

Proposition 1. The log-cosh function f(t; a) for a > 0 approximates |t| − 1
a log 2 when t → ∞,

and approximates 0.5at2 when t→ 0. More precisely,

f(t; a) =
1

a
log(cosh(at)) =

1

a
log

eat + e−at

2
→


|t| − 1

a
log 2, when |t| → ∞

0.5at2, when |t| → 0

(6)

Proof. When |t| → ∞, we have f(t; a) = 1
a log((e

a|t|+e−a|t|)/2)→ 1
a log(e

a|t|/2) = |t|− 1
a log 2.

When |t| → 0, the Taylor expansion gives f(t; a) = 0.5at2 +O(t4). For general t, one has bounds
|t| − 1

a log 2 ≤ f(t; a) ≤ |t| −
1
a log 2 +

1
a . �

The log-cosh loss can be viewed as a smoothed version of L1 loss differentiable everywhere. The
gradient of f(t; a) is

df(t; a)

dt
= tanh(at) =

eat − e−at

eat + e−at
= 2σ(2at)− 1, (7)

where tanh(t) = (et − e−t)/(et + e−t) is the hyperbolic tangent function and σ(t) = 1/(1 + e−t)
is the sigmoid function, a commonly used activation function in deep networks.
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3.2 MOTIVATION OF APPLYING LOG-COSH LOSS TO VAE

The log-cosh loss applied to VAE can be understood in the following way, which was also how we
obtained the method. In general we hope to balance the reconstruction accuracy and latent space
optimization in VAE. If the squared L2 loss is used for the reconstruction, then the reconstruction
accuracy deteriorates in the region of small reconstruction error, as L2 penalizes these small errors
too lightly, making the objection function Eq.(1) to be dominated by the second term (the KL diver-
gence term). To solve this problem, simply increasing the relative weight of the reconstruction loss
does not work well, since it harms the optimization in the latent space when the reconstruction error
is large. Putting both large-error and small-error regions into consideration, a feasible solution is to
increase the weight of reconstruction loss when it is small, but at the same time to clip the gradient
of the loss with an upper bound so that the reconstruction penalty does not always increase linearly
with the error. A smooth approximation of this is the tanh function, whose integral turns out to be
the log-cosh function. The resulting log-cosh loss becomes more sensitive to small errors because it
behaves as a 0.5a-scaled squared L2 loss around the origin. At the same time, it avoids penalizing
too much when error is large when it behaves likes the L1 loss. Therefore, we are motivated to
implement the log-cosh loss to improve the reconstruction accuracy of VAE without damaging its
latent space optimization.

The implementation of the log-cosh loss in VAE is quite simple, as the gradient is explicitly available
as shown in Eq. (7). In tensorflow the implementation is as simple as replacing the reconstruction
loss in the back-propagation with

x̂ ∗ tf .stop gradient(2 ∗ tf .sigmoid(2a ∗ (x̂− x))− 1),

where x and x̂ are the input of encoder and output of decoder, respectively. This form also avoids
overflow or underflow during the computation, as it directly combines the gradient of the log-cosh
loss (w.r.t decoder samples) and the gradient of the samples (w.r.t parameters).

4 EXPERIMENTS

We empirically compare the log-cosh loss to the squared L2 loss in this section, leaving the compar-
ison to L1 to Appendix B. All the objective functions studied are explicitly given in Appendix A.1.
The experiments are run on two datasets: (1) MNIST LeCun et al. (1998), which consists of 70k
images of handwritten digits with size 28 × 28, and (2) CelebA Liu et al. (2015), which contains
roughly 203k celebrity images cropped and resized to 64×64 as many previous works. We quantify
the performance of VAE using two measures. The first one is sharpness, for which every image is
convolved with the Laplace filter

(
0 1 0
1 −4 1
0 1 0

)
, and then the variance of the activations is computed

as the sharpness score. The second one is Fréchet Inception Distance (FID) Heusel et al. (2017),
for which the coding layer of a classification model trained by us is used to extract features and the
Fréchet distance Fréchet (1957) is computed between distributions of the layer obtained from two
groups of samples. FID captures the similarity of generated images to real ones in terms of vision-
relevant features. We demonstrate that the log-cosh loss performs well on different architectures,
including VAE Kingma & Welling (2013) and Wasserstein Auto-Encoders (WAE) Tolstikhin et al.
(2018), with multi-layered perceptrons (MLP) networks and convolutional (Conv) networks.

4.1 EXPERIMENTAL SETUP

In all the experiments we use an Euclidian latent spaces Z = Rd and Gaussian prior distributions
pθ(z) = N (Z; 0, Id). Following Tolstikhin et al. (2018), we use d = 8 for MNIST and d = 64 for
CelebA. For MNIST, we report results for MLP architecture and Conv architecture. For CelebA, we
only use convolutional networks, considering that VAE implemented with MLP always performs
badly on complex images like human faces. In all models, we use the sigmoid function at the output
layer of the decoder.

We test the quality of reconstructed samples and generated samples. The reconstructed samples
are the outputs of the decoder given vectors z encoded from input image samples. The generated
samples are obtained by decoding random noise vectors z sampled from standard Gaussian. The
sharpness we obtain is averaged across 103 randomly selected images, and the FID is computed
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Table 1: Sharpness (larger is better) and FID (smaller is better) on MNIST dataset.

Algorithm Sharpness FIDReconstructed Samples Genarated Samples

VAE (MLP) Squared L2 0.052 0.040 200
Log-cosh 0.168 (+223%) 0.138 (+245%) 65 (-68%)

VAE (Conv) Squared L2 0.068 0.063 114
Log-cosh 0.156 (+129%) 0.146 (+132%) 25 (-78%)

WAE (MLP) Squared L2 0.082 0.078 101
Log-cosh 0.158 (+93%) 0.149 (+91%) 35 (-65%)

WAE (Conv) Squared L2 0.111 0.100 56
Log-cosh 0.166 (+50%) 0.159 (+59%) 24 (-57%)
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Figure 2: Random generated samples of VAEs trained on MNIST dataset.

based on 104 randomly generated samples. For further details on experiment setup, please refer to
Appendix A.

4.2 RESULTS

Numerical results on MNIST dataset are summarized in Table. 1, from which we can see that the log-
cosh loss improves the sharpness up to 245% and the FID up to 78%. In all models, the log-cosh loss
consistently outperforms the squared L2 loss. Larger sharpness stands for images of higher quality
while smaller FID means that the distribution of generated samples is closer to the distribution of real
dataset in terms of visual-relevant features. One can also observe that WAE improves sample quality
compared with plain VAE, but the log-cosh loss can further improve WAE. We show generated
samples in Fig. 2. As can be seen, many samples generated by traditional methods are quite blurry;
some blurry examples are highlighted using colored boxes. After replacing the squared L2 loss with
our log-cosh function, we get sharper examples with a clearer background.

The reconstructed samples are shown in Fig. 3, which further confirms the benefit of the log-cosh
loss. Our method is able to reconstruct sharp samples accurately. We use boxes to highlight some
corresponding samples that are either wrongly reconstructed or extremely blurry when the squared
L2 loss function is used. We also conduct interpolation experiments, i.e., linearly interpolate be-
tween latent vectors and decode samples from these vectors. The interpolation results are reported
in Appendix C, and suggest that our method enforces well-behaved manifolds in the latent space.

Results on CelebA dataset are summarized in Table. 2. In VAE, the log-cosh loss outperforms the
squared L2 loss by a factor of ≈ 30% in both sharpness and FID. In WAE, the sharpness does not
improve much, while the FID score is significantly improved by 30%. This indicates that our method
better approximates the real dataset distribution. Generated samples shown in Fig. 4 further confirms
this: Some samples of traditional methods are very dark and blurry, and some suffer from serious
artifacts as marked by boxes. In comparison, our method generates many fewer such examples.
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Figure 3: Reconstructed samples of VAEs trained on MNIST dataset. For comparision, some corre-
sponding samples are marked by boxes with the same color.

Table 2: Sharpness (larger is better) and FID (smaller is better) on CelebA dataset.

Algorithm Sharpness FIDReconstructed Samples Genarated Samples

VAE (Conv) Squared L2 3.1× 10−3 2.3× 10−3 46
Log-cosh 4.1× 10−3 (+32%) 3.0× 10−3 (30%) 31 (-33%)

WAE (Conv) Squared L2 6.7× 10−3 5.8× 10−3 30
Log-cosh 7.0× 10−3 (+4%) 5.7× 10−3 (-2%) 21 (-30%)
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Figure 4: Random generated samples of VAEs trained on CelebA dataset. Samples that are very
dark and blurry or suffer from serious artifacts are highlighted.

In Fig. 5 we show the reconstruction results, and we find our method to reconstruct input images
more accurately. For example, the images reconstructed by traditional method and marked by boxes
have either a wrong facial expression or a wrong gender, while our method reconstructs these fea-
tures accurately.
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Figure 5: Reconstructed samples of VAEs trained on CelebA dataset. For comparision, some corre-
sponding samples are marked by boxes with the same color.

4.3 DISCUSSION

In this section, we present a more in-depth analysis of the results shown in Sec. 4.2.

4.3.1 IS L2 A GOOD DISTANCE MEASURE FOR SIMILAR PICTURES?

We study the titled question in the context of VAE by examining the L2 and log-cosh loss functions.
Take VAE (MLP) as an example, and use the squared L2 and the log-cosh as loss functions. We
keep track of the quality of the parametrized networks N i

L2
and N i

log-cosh after each mini-batch i
during the training. Here the quality is measured by the squared L2 loss when running the networks
on the testing set, and this quality comparison is recorded in Fig. 6(a). We can see that both training
processes converge, and the L2 loss of the N i

L2
networks is consistently smaller than that of the

N i
log-cosh networks. However, as we have seen from both the sharpness/FID scores and visual com-

parison in Sec. 4.2, the N i
log-cosh networks actually generate better figures than the N i

L2
networks.

We also showcase one specific example in the figure, where two pictures of digit 3 are reconstructed.
The upper one is clearly better, but it has a larger L2 error. This suggests that the L2 loss function is
not a good measure for similar pictures in the context of VAE.

4.3.2 BALANCE BETWEEN RECONSTRUCTION AND LATENT SPACE

In this section we explain that the log-cosh loss contributes to finding a better balance between the
reconstruction and the latent space optimization, thus improving the performance of VAE. Recall
that VAE simultaneously minimizes two losses: the reconstruction loss which measures the error
between input of encoder and output of decoder, and the latent space loss which matches the distri-
bution of latent vectors to a given prior distribution. The two losses are conflicting each other, and
decreasing one often causes the other to increase. The trade-off between reconstruction and latent
space is crucial because the goal is to accurately reconstruct the data points and at the same time to
obtain a compact manifold on latent space for generation.

We show in Sec. 3 that the log-cosh loss behaves like a 0.5a-scaled squared L2 loss at small errors,
and like a L1 loss at large errors. When the reconstruction error is small, a large a makes it visible
in the objective function and in turn further decreases the reconstruction error. When the error is
large, the gradient of log-cosh loss is bounded by L1, which avoids harming latent space much. We
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Reconstructed digit 3Reconstructed digit 3

Reconstructed digit 3Reconstructed digit 3

Reconstructed digit 3

Reconstructed digit 3

Figure 6: (a) Reconstruction error during training. For comparison, we use squared L2 to measure
the error of both models. We show two corresponding reconstructed sample here: While the upper
one is clearly better, it has a larger L2 error. (b) Latent space error measured by DKL(qφ(z|x) ‖
pθ(z)). (c) Generation quality measured by FID (smaller is better) of models trained with log-cosh
and λ-scaled squared L2 loss. We show reconstructed digit 3 of models trained with L2 on the top
and log-cosh on the bottom. The curvature at 0 is a for log-cosh with parameter a and 2λ for λ-
scaled squared L2. Since the log-cosh loss behaves like a 0.5a-scaled squared L2 loss only when the
error is small and is not sensitive to large outliers, it does not harm optimization of latent space much
and increasing a improves reconstruction and generation simultaneously. In contrast, without our
loss, simply scaling the L2 does improve reconstruction but severely harm generation. Moreover,
the reconstructed samples are still worse than our method.

show in Fig. 6(b) that the latent space error of model trained with the log-cosh loss (a = 100) does
not increase much compared with the one trained with L2. To further investigate the relationship
between reconstruction and latent space, we train models with increasing parameter a and draw
the reconstructed digits and FID of generation in Fig. 6(c), which shows that our method improves
reconstruction and generation simultaneously. This confirms that the log-cosh loss improves re-
construction without breaking its balance with latent space optimization. In contrast, without our
log-cosh loss, the λ-scaled squared L2 does improve the reconstruction sometimes with increasing
λ. However, the scaled L2 is quite sensitive to outliers, which harms optimization of latent space es-
pecially when the reconstruction error is large, thus severely decreasing generation quality as shown
in Fig. 6(c).

4.3.3 MORE APPLICATIONS AND FUTURE WORK

The advantages of the log-cosh loss should make it useful in more applications. We provide an
example of text removal in Appendix D, where the log-cosh loss consistently outperforms the L2

and L1 loss. It is worth trying to apply the log-cosh loss to various image restoration tasks where
L1 can outperform L2, as demonstrated by Zhao et al. (2017). More tasks worth exploring include
denoising Jain & Seung (2009), deblurring Xu et al. (2014), demosaicking Wang (2014), super-
resolution Dong et al. (2014), etc.

5 CONCLUSION

In this paper, we propose to use the log-cosh loss as the reconstruction error of VAE.1 We provide
theoretical justifications, and conduct extensive experiments. Empirical results demonstrate that
compared with traditional L2 loss, the log-cosh loss improves the reconstruction without damaging
the latent space optimization, thus automatically keeping a balance between the reconstruction and
the generation. As a result, our method significantly improves the performance of VAE on image
data in terms of sharpness and FID score. We also show the usefulness of the log-cosh loss for text
removal, and call for more systematic studies of the loss function on other tasks in vision and general
machine learning problems.

1We also propose to use the L1 loss for special image cases in which most pixels of input images are very
close to 0 or 1; see Appendix B for detailed discussions on this.
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A FURTHER DETAILS ON EXPERIMENTS

A.1 OBJECTIVE FUNCTIONS

In all implementations, we just change the reconstruction loss term while keep the loss term of latent
space unchanged. We list all objective functions here, including VAE and WAE with the squared
L2, L1 and log-cosh loss as the reconstruction loss.

LVAE-L2
(θ, φ;x) = λ · E z∼qφ(z|x)

x̂∼pθ(x|z)

[
‖x− x̂‖22

]
+DKL(qφ(z|x) ‖ p(z))

LVAE-L1(θ, φ;x) = λ · E z∼qφ(z|x)
x̂∼pθ(x|z)

[
‖x− x̂‖1

]
+DKL(qφ(z|x) ‖ p(z))

LVAE- log - cosh(θ, φ;x) = λ · E z∼qφ(z|x)
x̂∼pθ(x|z)

[
Llog - cosh(x, x̂)

]
+DKL(qφ(z|x) ‖ p(z))

LWAE-L2(θ, φ;x) = λ · E z∼qφ(z|x)
x̂∼pθ(x|z)

[
‖x− x̂‖22

]
+DMMD(qφ(z|x) ‖ p(z))

LWAE-L1
(θ, φ;x) = λ · E z∼qφ(z|x)

x̂∼pθ(x|z)

[
‖x− x̂‖1

]
+DMMD(qφ(z|x) ‖ p(z))

LWAE- log - cosh(θ, φ;x) = λ · E z∼qφ(z|x)
x̂∼pθ(x|z)

[
Llog - cosh(x, x̂)

]
+DMMD(qφ(z|x) ‖ p(z))

(8)

where λ > 0 is a hyperparameter which by default equals to 1 in the context of VAE, the Llog - cosh
is the log-cosh loss defined in Eq. (5), DKL is the KL-divergence and DMMD is a divergence called
the maximum mean discrepancy Tolstikhin et al. (2018). To be accurately, the loss function of WAE
should be given w.r.t batches of x and now the second term is DMMD(

∫
x
qφ(z|x)p(x)dx ‖ p(z)).

A.2 MNIST

In all experiments on MNIST, we use mini-batches of size 100 and train the model for 40 epochs.
The activation function is Rectified Linear Unit (ReLU). All models are trained by Adam with the
learning rate η = 10−3. The log-cosh reconstruction loss Eq.(2) is implemented with parameter
a = 100.

VAE (MLP) and WAE (MLP) use the relatively simple neural networks of multi-layered perceptrons
(MLP). The encoder architecture is: x ∈ R28×28 → FC500 → FC500 → FC8, and the decoder
architecture is: z ∈ R8 → FC500 → FC500 → FC28×28.

In the VAE (Conv) and WAE (Conv), we use convolutional architectures with 4 × 4 convolutional
filters and batch normalization Ioffe & Szegedy (2015). The encoder architecture is: x ∈ R28×28 →
Conv128 → Conv256 → Conv512 → Conv1024 → FC8, and the decoder architecture is: z ∈
R8 → FC7×7×1024 → Deconv512 → Deconv256 → Deconv1.

Here the Convk stands for convolution with k filters, the Deconvk stands for deconvolution with k
filters, and the FCk stands for fully connected layer with k neurons.

A.3 CELEBA

In all experiments on CelebA, we use mini-batch size 100, ReLU activation, and Adam training
algorithm as the MINST experiment. For the learning rate, we follow WAE Tolstikhin et al. (2018)
by initializing it to η = 10−3 and decreasing it by factor of 2 after 30 epochs, and further by factor
of 5 after first 50 epochs. The reported VAE (Conv) was trained for 68 epochs and WAE (Conv) for
55 epochs. We use a = 100 in VAE (Conv) and a = 2.5 in WAE (Conv).

We use convolutional architectures with 4 × 4 convolutional filters and batch normalization Ioffe
& Szegedy (2015). The encoder architecture is: x ∈ R64×64×3 → Conv128 → Conv256 →
Conv512 → Conv1024 → FC64, and the decoder architecture is: z ∈ R64 → FC8×8×1024 →
Deconv512 → Deconv256 → Deconv128 → Deconv3.

B EXPERIMENTAL RESULTS OF L1 LOSS

In this section, we test the L1 loss on MNIST and CelebA dataset, and compare the numerical
results with the L2 loss and the log-cosh loss reported in Sec. 4. Samples of model trained with
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Table 3: Sharpness (larger is better) and FID (smaller is better) on MNIST dataset. All the percent-
ages are computed w.r.t squared L2 loss.

Algorithm Sharpness FIDReconstructed Samples Genarated Samples

VAE (MLP)
Squared L2 0.052 0.040 200
Log-cosh 0.168 (+223%) 0.138 (+245%) 65 (-68%)

L1 0.175 (+237%) 0.149 (+273%) 61 (-70%)

VAE (Conv)
Squared L2 0.068 0.063 114
Log-cosh 0.156 (+129%) 0.146 (+132%) 25 (-78%)

L1 0.162 (+138%) 0.154 (+144%) 22 (-81%)

WAE (MLP)
Squared L2 0.082 0.078 101
Log-cosh 0.158 (+93%) 0.149 (+91%) 35 (-65%)

L1 0.162 (+98%) 0.155 (+99%) 37 (-63%)

WAE (Conv)
Squared L2 0.111 0.100 56
Log-cosh 0.166 (+50%) 0.159 (+59%) 24 (-57%)

L1 0.161 (+45%) 0.152 (+52%) 31 (-45%)

Table 4: Sharpness (larger is better) and FID (smaller is better) on CelebA dataset. All the percent-
ages are computed w.r.t squared L2 loss.

Algorithm Sharpness FIDReconstructed Samples Genarated Samples

VAE (Conv)
Squared L2 3.1× 10−3 2.3× 10−3 46
Log-cosh 4.1× 10−3 (+32%) 3.0× 10−3 (30%) 31 (-33%)

L1 4.0× 10−3 (+29%) 3.0× 10−3 (+30%) 39 (-15%)

WAE (Conv)
Squared L2 6.7× 10−3 5.8× 10−3 30
Log-cosh 7.0× 10−3 (+4%) 5.7× 10−3 (-2%) 21 (-30%)

L1 6.5× 10−3 (-3%) 5.1× 10−3 (-12%) 33 (+10%)
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Figure 7: Samples of VAEs trained with L1 reconstruction loss on MNIST dataset.

L1 reconstruction loss are shown in Fig 7 and Fig. 8, and the numerical results are summarized in
Table 3 and Table 4, where the improvement percentages are computed w.r.t the squared L2 loss.

One can see that on the MNIST dataset, the log-cosh loss performs much better than the L2 loss, as
expected. It is also observed that the L1 loss also performs very well, and sometimes even slightly
better than the log-cosh loss. This is because 90% pixels of MNIST data are very close to binary
value {0, 1} and the outputs of our networks are in the interval (0, 1), always falling into one side
of the ground truth value (0 or 1). Thus the typical issue of the L1 loss oscillating between non-
differential point does not occur often here, and thus the advantage of log-cosh being smooth around
0 does not exhibit benefits than L1.
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Figure 8: Samples of VAEs trained with L1 reconstruction loss on CelebA dataset.
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Figure 9: Interpolation results of VAEs trained on MNIST.

In comparison, for colored images or black-white images with gray pixels, the ground truth in gen-
eral is somewhere between 0 and 1, and an output of a network may fall left or right of this value,
suffering from the oscillation of derivatives of L1. Indeed, we can see that on CelebA, the L1 loss
performs much worse than the log-cosh loss in both scores (Table 4) and the visualization (Fig. 8).

C INTERPOLATION EXPERIMENTS ON MNIST

We randomly take two samples (x1, x2) from real dataset and feed them to the encoder to get the
latent vectors (z1, z2). Then we linearly interpolate between z1 and z2 in the latent space and use
them to decode images. The decoded images are shown in Fig 9. The log-cosh loss enforces well
behaved manifold in latent space, which is obviously better than squared L2 loss.
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Figure 10: SSIM index of images restored with different loss. Each point corresponds to a restored
image. Larger SSIM index is better. The green line indicates equal SSIM index. The log-cosh loss
fails to outperform the L1 loss in only 1 out of the 100 tested images as highlighted by red point

D APPLYING LOG-COSH TO IMAGE RESTORATION TASKS

It is promising to apply the log-cosh loss to various image restoration applications such as denoising,
deblurring, demosaicking, and super-resolution. Here we provide an example of text removal, and
show that the log-cosh loss consistently outperforms the L2 and L1 loss. We use a recently proposed
denoising framework called noise2noise Lehtinen et al. (2018), which learns to restore good images
by only going through bad ones. The network architecture is based on the idea of convolutional
auto-encoder, consisting of convolutional and deconvolutional layers. The training dataset consists
of 291 images widely used (e.g. in Schulter et al. (2015); Kim et al. (2016)). Among these, 200
images of the training set come from the Berkeley Segmentation Dataset Martin et al. (2001) and
the rest 91 images come from Yang et al. (2010). Following Lehtinen et al. (2018), we add texts to
the images and let the model learn to remove these texts. After training, we test the trained model
on the Urban 100 dataset Huang et al. (2015) which consists of 100 high resolution images. We
use the SSIM index Wang et al. (2004) which is often used as a measure to evaluate the similarity
between the restored images and the target images in the denoising tasks. We compare the squared
L2 loss and the L1 loss to the log-cosh loss, and the results are shown in Fig. 10. We can see that
the log-cosh loss consistently outperforms both the squared L2 loss and the L1 loss. Actually, the
log-cosh loss fails to outperform the L1 loss in only 1 out of the 100 tested images, illustrated by the
red point in Fig. 10.

We list some restored images in Fig. 11 to show how the log-cosh loss stands out. The L2 loss may
lead to a severe color shift, because the L2 loss encourages the outputs to shift toward the mean color
of the noisy images, which is locally distorted by texts. The L1 loss encourages to take the median
and does not suffer from color shift, but severe artifacts can appear, as highlighted by red boxes in
Fig. 11. The log-cosh loss releases the problems by averaging observations around the median. It
behaves like the L1 at the beginning of training when the error is large, thus avoiding the color shift.
In addition, when the error is small, The log-cosh loss behaves like the L2 and encourages to smooth
the color by taking the mean, thus reducing the artifacts introduced by the L1 loss. As highlighted
by red boxes, in the results of the log-cosh loss, the artifacts are removed or sometimes still exist but
their color is much closer to the background.
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 Clean targets Input L2 L1 Log-cosh Clean targets Input L2 L1 Log-cosh

1-SSIM 0.354 0.175 0.085 0.0831-SSIM 0.354 0.175 0.085 0.083

1-SSIM 0.402 0.072 0.029 0.0281-SSIM 0.402 0.072 0.029 0.028

1-SSIM 0.335 0.237 0.140 0.1351-SSIM 0.335 0.237 0.140 0.135

1-SSIM 0.400 0.157 0.059 0.0551-SSIM 0.400 0.157 0.059 0.055
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1-SSIM 0.400 0.157 0.059 0.055

 Clean targets Input L2 L1 Log-cosh
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1-SSIM 0.402 0.072 0.029 0.028
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1-SSIM 0.400 0.157 0.059 0.055

Figure 11: Text removal results of models trained with the squared L2, L1 and log-cosh loss. We list
1-SSIM here to show the difference between the restored images and the target images. The results
of the L2 loss suffers from severe color shift. The results of the L1 loss suffer from severe artifacts.
Both problems are released by the log-cosh loss.
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