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ABSTRACT

Our goal is to infer reward functions from demonstrations. In order to infer the
correct reward function, we must account for the systematic ways in which the
demonstrator is suboptimal. Prior work in inverse reinforcement learning can
account for specific, known biases, but cannot handle demonstrators with unknown
biases. In this work, we explore the idea of learning the demonstrator’s planning
algorithm (including their unknown biases), along with their reward function.
What makes this challenging is that any demonstration could be explained either
by positing a term in the reward function, or by positing a particular systematic
bias. We explore what assumptions are sufficient for avoiding this impossibility
result: either access to tasks with known rewards which enable estimating the
planner separately, or that the demonstrator is sufficiently close to optimal that
this can serve as a regularizer. In our exploration with synthetic models of human
biases, we find that it is possible to adapt to different biases and perform better
than assuming a fixed model of the demonstrator, such as Boltzmann rationality.

1 INTRODUCTION

Our ultimate goal is to enable the design of agents that optimize for the right reward function. Unfor-
tunately, designing reward functions is challenging (Amodei et al., 2017) and can have unintended
side-effects (Hadfield-Menell et al., 2017). Inverse Reinforcement Learning (Russell, 1998; Ng et al.,
2000; Abbeel & Ng, 2004) aims to bypass the need for reward design by learning the reward from
observed demonstrations of good behavior.

Existing IRL algorithms typically make the assumption that the demonstrator is either optimal, or
Boltzmann rational, i.e. taking better actions with higher probability (Ziebart et al., 2008; Finn et al.,
2016). However, there is a rich literature showing that humans are not optimal, and are biased in
systematic ways. Consider a grad student who starts writing a paper a month in advance, expecting
it to take two weeks, but then misses the deadline. Should we infer that they prefer to lose sleep to
pursue a deadline that they then miss? Of course not – this is a classic case of the planning fallacy
(Buehler et al., 1994). It is not clear what exactly went wrong – perhaps the grad student did not have
a good dynamics model (not realizing that Amazon spot instances can be suddenly terminated), or
they failed to account for the uncertainty in their dynamics model (expecting that it wouldn’t happen
to them), or they optimized too much for short term reward (watching Netflix), and so on – we do not
know what the bias is. Ideally, even with this unknown bias, we would like our system to infer that
the grad student failed to plan appropriately, and that they would prefer to meet the deadline.

This leads to a tradeoff between the expressivity of our model of the demonstrator, and the ability of
the algorithm to learn the true reward function with few samples. On one extreme, if we know exactly
what bias the demonstrator has, we can account for it to infer the true reward function quickly and
accurately, as in Evans et al. (2016); Evans & Goodman (2015); Zheng et al. (2014); Majumdar et al.
(2017) (myopia and hyperbolic time discounting, sparse noise, and risk-sensitivity respectively). Even
suboptimal trajectories or failures (Shiarlis et al., 2016) can be thought of as a biased demonstrator,
where the bias is the specific model of failure. Unfortunately, people are complex, and it is unlikely
that we will know exactly which bias a person is displaying, or even the space of possible biases that
people might have. If we are incorrect about the bias, we will have a mis-specified model, and the
reward function will get garbage values that explain the "noise" resulting from the mis-specification
(Steinhardt, 2017; Steinhardt & Evans, 2017). On the other extreme, when the demonstrator could be
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any function mapping reward functions to policies, it is impossible to learn the true reward function
even with infinite data, because there are always alternative explanations for the observed policy
(Armstrong & Mindermann, 2017; Christiano, 2015). We could consider asking the human to rate
each demonstration (Burchfiel et al., 2016), but the human could be biased in these ratings as well.

In this paper, we focus on learning rewards when the demonstrator’s bias is unknown. We seek to
avoid impossibility results by introducing a set of assumptions that are weaker than assuming a known
bias, the core of which is that the demonstrator plans their actions similarly in similar tasks. This
leads us to investigate the idea that one could actually learn, rather than assume, the demonstrator’s
planning algorithm across multiple tasks, including any biases they may have.

We analyze the feasibility of this idea in two settings, via two algorithms. In both algorithms, we
can navigate the tradeoff between model expressivity and sample efficiency through the choice of
architecture for the differentiable planner we learn, and the space of reward functions to consider.
In the first setting, we assume that we have access to the true reward functions in some subset of
tasks – that means we can learn the demonstrator’s planning algorithm on those tasks, after which
we can infer rewards from demonstrations in new tasks. In the more realistic setting where we have
no access to any reward function, we assume that the demonstrator is "close" to optimal. This is
a weaker version of the assumption of Boltzmann rationality that still allows us to learn particular
systematic biases. We operationalize this assumption by initializing the differentiable planner to
mimic the optimal agent, and then finetuning it to allow it to account for specific biases. We show that
this initialization is essential for good performance, as we would expect from the impossibility result.

In summary, this paper makes three contributions:

1. Assumptions that are more realistic than the assumption of Boltzmann rationality that allow
us to avoid known pitfalls of reward inference.

2. Algorithms that leverage these assumptions to infer reward functions from suboptimal
demonstrations.

3. An experimental evaluation demonstrating there is hope in the idea of learning better rewards
by learning biases too, despite the theoretical difficulty of the problem.

2 EXAMPLES OF BIASES

To put this work in context, we start with some examples of the kind of biases a general algorithm
should be able to capture and account for. While we use these for illustrative purposes, the whole
point of our work is that humans might have systematic suboptimalities completely different from
these examples. We don’t know all the possible biases a priori.

Running Example. We illustrate the effects of these biases on a simple 2D navigation task in figure 1.
There are multiple salient locations, each of which has a desirability score (which can be negative, in
which case the agent wants to avoid those locations). The agent can move in any of the four cardinal
directions, or stay in its current position. Every movement action has a chance of failing and causing
the agent to move in a direction orthogonal to the one it chose. Despite their simplicity, there are
several ways in which human-like suboptimal behavior can manifest in these environments.

Time inconsistency. Would you prefer to get $100 in 30 days, or $110 in 31 days? Faced with this
question, people typically choose the latter. However, thirty days later, when faced with the choice
of getting $100 now, or $110 tomorrow, they sometimes choose to take the $100. This reversal of
preferences over time would never happen with an optimal agent that maximizes expected sum of
discounted rewards. Researchers model this phenomenon using hyperbolic time discounting, in which
future rewards are discounted more aggressively than exponentially. This leads to a followup question
– how do humans make long-term plans, given that their future self will have different preferences?
Prior work has considered a spectrum from naive agents that assume their future self will have the
same preferences as they do, to sophisticated agents that perfectly understand how their preferences
will change over time and make plans that take such change into account (Frederick et al., 2002).

In figure 1, when going to a high reward, both the naive and sophisticated hyperbolic time discounters
can be "tempted" by a proximate smaller reward. The naive agent fails to anticipate the temptation,
and so once it gets near the smaller positive reward, it caves in to the temptation and stays there. The
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Figure 1: The plans of our synthetic agents on two navigation environments. Actual trajectories could differ
due to randomness in the transitions. Green squares indicate positive reward while red squares indicate negative
reward, with darker colors indicating higher magnitude of reward.

sophisticated agent explicitly plans to avoid the temptation – it does not collect the smaller reward
and instead takes a longer, more dangerous path around the smaller reward to get to the large reward.

Incorrect estimates of probabilities. Humans are notoriously bad at judging probabilities. The
availability heuristic (Tversky & Kahneman, 1973) refers to the human tendency to rate events as
more likely if they are easier to recall. The recency effect is a similar effect where recent events are
judged to be more probable. These biases are complicated and depend heavily on context and don’t
obviously transfer to our task. So, we use two simplified models – an overconfident agent, which
expects that the most likely next state is more likely than it actually is, leading it to take risks, and an
underconfident agent, which is overly cautious. In figure 1, the overconfident agent takes the shortest
path to the reward, underestimating the risk of slipping into the large region of negative reward, while
the underconfident agent plans a circuitous route around negative reward that it is unlikely to have
actually encountered.

Bounded computation. Researchers have studied models of bounded rationality, where humans are
assumed to be rational subject to the constraint that they have a bounded amount of computation. This
can be thought of as an explanation that many other heuristics and biases are actually computational
shortcuts that allow us to reach reasonably good decisions without too much cost (Kahneman, 2003).
In our task, we model computation bounds as a small time horizon for planning, leading to myopic
behavior. In figure 1, the myopic agent can only see close rewards, and goes directly to them, never
even realizing the possibility of going to the highest reward.

3 PROBLEM: LEARNING REWARDS OF DEMONSTRATORS WITH UNKNOWN
BIASES

Notation. A (finite-horizon) Markov Decision Process (MDP) (Puterman, 2014) is a tuple
〈S,A, T, r,H〉. S is a set of states. A is a set of actions. T is a probability distribution over
the next state, given the previous state and action. We write this as T (st+1|st, a). r is a reward
function that maps states and actions to rewards r : S × A → R. H ∈ Z+ is the finite planning
horizon for the agent. Since we are interested in the setting where the reward function r is unknown,
we will factor MDPs into world models w = 〈S,A, T,H〉 and reward functions r.

Instead of having access to a reward function, we observe the behavior of an demonstrator, who
performs the task well but may be suboptimal in systematic ways. In particular, we observe the
demonstrator’s policy π : S → A.

Estimating Biases and Rewards. Given a world model w and the demonstrator’s policy πD which
may exhibit an unknown bias, determine the reward r∗ that the demonstrator is optimizing.

We might hope to solve this problem without any additional assumptions. However, this problem is
unsolvable – Armstrong & Mindermann (2017) prove an impossibility result showing that for any
potential reward function r′, there is some planner D′ such that D′(w, r′) = D(w, r∗). The proof is
simple – simply set D′(w, r′) = π for any r′, that is D′ always returns π regardless of reward.
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Inverse reinforcement learning assumes that the demonstrator is (approximately) optimal to get
around this issue. It is common to assume Boltzmann rationality, where the probability of an action is
proportional to the exponent of its expected value (Baker et al., 2006), i.e. P (a|s) ∝ eQ(s,a), where
Q is the optimal Q function that satisfies the Bellman equation:

Q(s, a) = R(s, a) + γ
∑
s′

[
T (s′|s, a) max

a′
Q(s′, a′)

]
(1)

However, we know that humans are systematically suboptimal, and so we would like to relax this
assumption and try other, more realistic assumptions. The pathological solutions in the impossibility
result occur partly because the demonstrator can have arbitrary behavior on different environments.
While we certainly want the demonstrator to adapt to different environments, the algorithm that
the demonstrator uses to determine their policy should stay fixed across similar environments. This
imposes structure on the demonstrator’s planner that can eliminate some possibilities.

Assumption 1: The demonstrator plans in the same way for sufficiently similar environments.

To formalize this, we assume that there is a space of world models W with the same set of states
S and actions A, and a space of reward functions R ⊆ S × A → R. The demonstrator can plan
a stochastic policy given a world model and reward, that is, they are modeled as D : (W× R) →
(S → A→ [0, 1]). We call D the planning algorithm used by the demonstrator, or planner for short.
Of course, if D can be any function with this type signature, it can still map any arbitrary (w, r) pair
to any arbitrary policy D(w, r), but we will further ensure that D is simple (through regularization).
Given a list of world models W = [w1 . . . wn] and reward functions R = [r1 . . . rn], we define
D(W,R) to be the list of the demonstrator’s policies [D(w1, r1) . . . D(wn, rn)].

Note that this is a strong assumption and it does limit the scope of our work: while it is reasonable to
believe that people plan in the same way for variations of the same task, they likely have different
biases for different tasks, because they may have domain-specific heuristics. The setting of multiple
tasks has been studied before (Gleave & Habryka, 2018; Dimitrakakis & Rothkopf, 2011; Choi &
Kim, 2012), though not for the purpose of inferring systematic biases.

This assumption leads to a slightly easier problem, of recovering rewards from multiple tasks:

Estimating Biases and Rewards for Multiple Tasks. Given a list of world models W and the
demonstrator’s policies ΠD = D(W,R) which may exhibit an unknown bias, determine the list of
reward functions R (one for each w ∈W ) that the demonstrator was optimizing.

Since the person uses the same planner across all tasks, an agent can have an easier time recovering
rewards for each task by leveraging the common structure across the tasks. This is especially
appealing for agents that would get to observe people for some period of time before trying to assist
them. Unfortunately, Assumption 1 is not sufficient to solve this problem. Consider the case where
the demonstrator is optimal. Given the assumptions so far, we could infer that the demonstrator is
minimizing expected reward, i.e. that the reward they are optimizing is −r∗, since that perfectly
predicts πD. This is very bad, as we could infer a reward that incentivizes the worst possible behavior!

When humans take action, we typically assume that they are doing something that is reasonable for
achieving their goals, even if it is not optimal:

Assumption 2a: The demonstrator is "close" to optimal.

We explore this assumption in section 4.3 to solve the problem of estimating biases and rewards for
multiple tasks. We also explore an alternative approach, based on the fact that we have strong priors
about what humans are trying to optimize for, which allow us to infer how good they are at achieving
their goals. If we see some tasks where we know the demonstrator’s reward function and policy, we
can infer that the demonstrator is not minimizing expected reward.

Assumption 2b: We know what reward function the demonstrator is optimizing for some tasks.

Estimating Biases and Rewards with Access to Tasks with Known Rewards. Given a list of
world models W , a list of the demonstrator’s policies ΠD = D(W,R), a list of world models Wknown
with known rewards Rknown and a list of the demonstrator’s policies Πknown = D(Wknown, Rknown),
determine the reward functions R that D was optimizing.
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(a) Training the planner fθ . We hold the world model
w, reward r, and policy π fixed, and update the planner
fθ with gradient descent.

(b) Training the reward R. We hold the world model
w, planner fθ , and policy π fixed, and update the
reward r with gradient descent.

Figure 2: The architecture and operations on it that we use in our algorithms.

We will present algorithms for both settings in the next section. While our problem formulations
above assume that we have access to full policies ΠD, none of our algorithms rely on this assumption
– it is easy to modify them to work with trajectories instead.

4 ALGORITHMS TO ESTIMATE BIASES AND REWARDS

The key idea behind our algorithms is to learn a model of how the demonstrator plans, and invert the
model’s "understanding" using backpropagation to infer the reward from actions.

4.1 ARCHITECTURE

We model the demonstrator planning algorithm D using a differentiable planner fθ, which is a neural
net that can express planning algorithms whose parameters θ can be updated using gradient descent.
f has the same type as the demonstrator’s planner D, namely (W× R)→ (S → A→ [0, 1]). Thus,
the inputs to the differentiable planner f are a world model w ∈ W and a reward function r ∈ R;
the output is a stochastic policy π ∈ (S → A→ [0, 1]). We determine how well 〈f,R〉 matches the
demonstrator’s policy πD with the cross entropy loss L(fθ(W,R),ΠD) =

∑
i

L(fθ(wi, ri), πD,i).

While our algorithms can work with any differentiable planner, in this work we use a value iteration
network (VIN) (Tamar et al., 2016). A VIN is a fully differentiable neural network that embeds an
approximate value iteration algorithm inside a feed-forward classification network. For environments
where transitions only depend on "nearby" states (as in navigation tasks), the Bellman update can be
performed using an appropriate convolution, and the computation of values from Q-values can be
done with a max-pooling layer. By leaving the filters for the convolutions unspecified, the VIN can
automatically learn the transition probabilities. Of course, the VIN is merely one architecture for a
differentiable planner; we could equally well use other planners (Srinivas et al., 2018; Pascanu et al.,
2017; Guez et al., 2018). As research in this area advances, our work stands to benefit.

By choosing this particular architecture we are making another assumption:

Assumption 3: The inductive bias of fθ is well-suited to the task of learning the planner D.

In our experiments, this assumption says that the demonstrator’s planner is well-modeled by a Value
Iteration Network. This is not a good assumption currently, but we expect that as more research is
done on differentiable planners, they will become more sophisticated and will become better able to
learn human planning algorithms.

The components of our algorithms. There are two main operations that we make use of on this
architecture, which we illustrate in figure 2. First, given world models W , reward functions R (either
known or hypothesized), and the demonstrator’s policies ΠD, we can train a corresponding planner
using gradient descent (figure 2a):

θ = min
θ′
L(fθ′(W,R),ΠD) (TRAIN-PLANNER)
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Second, given world models W , demonstrator’s policies ΠD, and some planner parameters θ, we can
infer the corresponding reward functions using gradient descent (figure 2b):

R = min
R′
L(fθ(W,R

′),ΠD) (TRAIN-REWARD)

We can also perform both of these at the same time by training the planner parameters and rewards
jointly given world models W and the demonstrator’s policies ΠD:

R, θ = min
R′,θ′
L(fθ′(W,R

′),ΠD) (TRAIN-JOINTLY)

4.2 LEARNING THE PLANNER FROM KNOWN REWARDS FIRST (ASSUMPTION 2B)

First, we tackle the simpler setting when we have access to a set of tasks with known rewards. We
illustrate this in Algorithm 1. We first train the planner on the world models for which we have
rewards, which lets us learn a model of how the demonstrator plans, including any systematic biases
they may have. Then, we use the learned planner weights to infer the reward on the world models for
which we don’t know the reward.

Algorithm 1 Estimating biases and rewards with access to tasks with known rewards.
1: function IRL-WITH-REWARDS(W , ΠD, Wknown, Rknown, Πknown)
2: θ← TRAIN-PLANNER(Wknown, Rknown,Πknown)
3: return TRAIN-REWARD(W, θ,ΠD)

4.3 LEARNING THE PLANNER AND REWARDS SIMULTANEOUSLY (ASSUMPTION 2A)

The assumption that we have some tasks with known rewards is very strong, and may not hold in
practice. How could we infer rewards without making this assumption? The obvious answer is to
train θ and R jointly as in Equation TRAIN-JOINTLY. However, since we have discarded Assumption
2b, we can once again learn the planner that minimizes expected reward, and infer that the reward is
−r∗. We must instead use Assumption 2a, that the demonstrator is "close" to optimal.

To use this assumption in our algorithm, we simulate data from an optimal agent with randomly
generated world models and rewards, and use this to train the planner to mimic an optimal agent.
After initializing this way, we can then train the planner and reward jointly. This gives us Algorithm 2.
We show in section 5.3 that the initialization, enacting assumption 2a, is crucial for good performance.

Algorithm 2 Estimating biases and rewards for multiple tasks with no known rewards.
1: function IRL-WITHOUT-REWARDS(W , ΠD)
2: Wsim, Rsim ← Generate random world models and rewards
3: Πsim ← Run optimal agent on 〈Wsim, Rsim〉
4: θinit ← TRAIN-PLANNER(Wsim, Rsim,Πsim)
5: Rinit ← TRAIN-REWARD(W, θ,ΠD)
6: θ,R← TRAIN-JOINTLY(W,ΠD) . using θinit and Rinit as initializations
7: return R

5 EVALUATION

We evaluate our algorithms by simulating demonstrators with different biases, and testing whether
the same method can correctly infer reward for all these demonstrators. Details on the experiment
setup are provided in the supplementary material.

5.1 EVALUATING REWARD INFERENCE

Hypothesis. The key idea behind this work is that accounting for unknown systematic bias should
outperform the assumption of a particular inaccurate bias, e.g. noisy rationality or the lack thereof.

6



Under review as a conference paper at ICLR 2019

Figure 3: Reward obtained when planning with the inferred reward, as a percentage of the maximum possible
reward, for different bias models and algorithms.

Manipulated variables. In order to test this, we manipulate whether we learn the demonstrator
model or assume it. To avoid confounds introduced by changing the inference algorithm, we use the
same algorithm for both. In the learning case, we train the planner on the ground truth demonstrator
data; in the assume case, we train it on data generated from a) a Boltzmann-rational demonstrator;
and b) an optimal demonstrator – these are the two models commonly assumed by IRL algorithms.
Keeping the algorithm the same enables us to isolate the effect of adapting to an unknown model
from the effect of having to use an approximate differentiable planner rather than a perfect one. We
will quantify the second effect, i.e. the approximation error introduced by the VIN, in section 5.2

In the setting where we learn the bias, we further manipulate whether we have access to known
rewards for some tasks or not – i.e. whether we use Algorithm 1 or Algorithm 2.

Finally, we manipulate the actual bias of the demonstrator. Following Evans et al. (2016), we
implement the myopic, naive and sophisticated synthetic demonstrators as modifications of the value
iteration algorithm. Similarly, we implement the overconfident and underconfident demonstrators by
modifying the transition probability distributions used to plan in value iteration. We also include an
optimal demonstrator, and stochastic (Boltzmann) versions of all demonstrators.

Dependent measures. We measure the reward obtained by planning optimally with the inferred
reward function, as a percentage of the maximum possible reward that could be obtained.

Findings. Figure 3 shows our results comparing learning a demonstrator model with assuming an
optimal or a Boltzmann demonstrator. The top left subfigure plots what happens on average, across
all synthetic demonstrators we tested. The results provide support to our hypothesis: both learning
methods (orange) outperform assuming a model (gray). Looking at the breakdown per demonstrator,
we see that assuming optimal does not do well when the demonstrator has any noise (bottom graph).
Similarly, assuming Boltzmann does not do well when the demonstrator is not noisy (top graph). The
learning methods tend to perform on par with the best of two choices. In some cases, like the naive
and sophisticated hyperbolic discounters, especially the noisy ones, the learning methods outperform
both optimal and Boltzmann assumptions. The optimal assumption performs well in some of the
non-noisy cases, because our demonstrator bias models are almost deterministic (they only break ties
randomly). So, as long as the demonstrator eventually reaches the best reward location, the reward
inference works well.

Interestingly, Algorithm 1 does not always outperform Algorithm 2, despite it having access to
known rewards. We believe this has to do with the fact that Algorithm 2 exploits Assumption 2a
(demonstrator close to optimal) and initializes from training on simulated optimal demonstrator data.
Algorithm 1 does not rely on this assumption and therefore does not benefit from this initialization,
whereas the assumption is correct for most of the models we test.

5.2 TRADEOFF BETWEEN BEING ADAPTIVE TO BIAS VS. USING EXACT PLANNING

Our paper is not about a practical solution to be used right now, but rather an investigation of the
viability of an idea. The core reason behind this is that to be adaptive to different kinds of biases we
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Figure 4: Percent reward obtained for different bias models using variations of Algorithm 2, which does not get
access to any known rewards. These algorithms can vary along two dimensions – whether they are initialized
with the assumption that the demonstrator is rational, and whether they train the planner and reward jointly or
with coordinate ascent. The original version of Algorithm 2 does initialize, and trains jointly.

might see, we learn a model of the demonstrator’s planning algorithm via a differentiable planner.
Unfortunately, this causes our planning to be approximate – whatever benefit we get from the adapting
to biases, we lose because of the approximation. But these planners will become more practical, they
can make this idea practical as well.

To quantify this loss, we replace the VIN with a differentiable exact model of the demonstrator,
and infer the reward by backpropagating through the exact model. Since value iteration is not
differentiable, we implement soft value iteration, where max operations are replaced with logsumexp
operations, and measure percent reward obtained when inferring rewards for an optimal demonstrator.

Results. With an exact model of the demonstrator, we get (98.1±0.1)% of the maximum reward when
performing optimal planning on the inferred rewards, while we get (86.9± 1.6)% with Algorithm 1
and (86.2± 1.6)% with Algorithm 2. Again, better planners would improve both algorithms.

5.3 HOW IMPORTANT ARE THE VARIOUS PARTS OF THE ALGORITHM?

Algorithm 2 was predicated on Assumption 2a, that the demonstrator’s planner was "close" to rational,
which motivated the initialization step where the planner is trained to mimic an optimal agent. We test
how important this is by modifying Algorithm 2 to infer rewards without an initialization (removing
lines 2-5). We include versions of the algorithm where we perform coordinate ascent by alternating
planner training and reward training instead of training the planner and reward jointly.

Results. Figure 4 shows the results for a subset of demonstrators (full results are in the supplementary
material). We can see that the initialization is indeed crucial for good performance, as expected. It
also turns out that the joint training outperforms coordinate ascent.

6 DISCUSSION

Summary. In this work, we considered the very general problem of inverse reinforcement learning
when the demonstrator has an unknown bias. In this problem we face a severe tradeoff between
the ability to adapt to unknown biases, and the ability to infer any reward function. We introduced
assumptions that are weaker than the typical assumption of noisy rationality, and tested algorithms
that leverage these assumptions to perform better on average across different kinds of biases than
assuming a specific bias known a priori.

Limitations and future work. We see this paper as taking a step towards exploring the idea of
learning planners from demonstrations to learn reward functions. This is not yet a practical idea,
due to the practical limitations of differentiable planners. Thus, to analyze how feasible this is with
different possible biases and with ground truth reward functions, we resorted to synthetic demonstrator
data as opposed to human data.

Further, our assumption that the demonstrator has the same bias across many tasks is key to our work,
but is very strong. We could extend this work by using meta-learning to learn a prior over planners.
We will also need to infer the demonstrator’s beliefs as in Baker & Tenenbaum (2014), for which
we could use TOMNets (Rabinowitz et al., 2018). We are excited to look into this, and into what
additional inductive bias we could leverage, in our future work.
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A ADDITIONAL EXPERIMENTAL DATA

In section 5, we presented data on the results of running various algorithms against a set of demon-
strators, reporting the reward obtained according to the true reward function when using the inferred
reward with an optimal planner, as a percentage of the maximum possible true reward. Table 1
shows the percentage reward obtained for all combinations of algorithms and demonstrators. We
also measure the accuracy of the planner and reward at predicting the demonstrator’s actions in new
gridworlds where the rewards are the same but the wall locations have changed. These results are
presented in Table 2. Note that there are often multiple optimal actions at a given state, which makes
it challenging to get high accuracy.
Table 1: Percent reward obtained when the algorithm (column) is used to infer the bias of the demonstrator
(row). The optimal and Boltzmann algorithms assume a fixed model of the demonstrator and train the VIN to
mimic the model before performing reward inference (and were used in figure 3). We also include the four
flavors of Algorithm 2 that were plotted in figure 4. The VI algorithm uses a differentiable implementation of
soft value iteration as the planner instead of a VIN (used in section 5.2). The demonstrators are the optimal
agent, the biased agents of figure 1, and versions of each of these agents with Boltzmann noise.

Agent Optimal Boltzmann Algorithm 1 Coord w/ init Joint w/ init Coord w/o init Joint w/o init VI

Average 67.0± 2.7 79.7± 0.8 89.5± 0.7 85.0± 0.5 86.4± 0.6 −3.9± 0.7 2.6± 1.0 71.9± 3.0
Optimal 87.3± 1.0 73.9± 2.3 86.9± 1.6 86.2± 1.6 88.5± 1.1 −4.2± 1.2 2.6± 3.7 98.1± 0.1
Naive 86.4± 0.9 74.4± 1.6 91.1± 0.8 84.6± 1.2 87.5± 0.9 −3.2± 1.3 2.6± 3.7 96.1± 0.1

Sophisticated 87.5± 1.1 77.1± 1.6 91.8± 1.3 83.6± 1.3 87.9± 1.0 −3.6± 1.4 2.6± 3.7 96.7± 0.1
Myopic 82.8± 0.8 77.0± 1.2 81.0± 2.8 80.6± 0.8 82.6± 1.0 −5.5± 2.8 2.6± 3.7 87.5± 0.2

Overconfident 87.5± 1.2 70.7± 1.7 82.1± 1.4 83.9± 1.5 86.7± 1.2 −2.7± 1.1 2.6± 3.7 97.5± 0.1
Underconfident 88.0± 0.8 74.7± 1.6 86.7± 1.2 86.1± 1.5 88.5± 1.0 −2.4± 1.4 2.6± 3.7 98.9± 0.2

Boltzmann 8.5± 1.0 90.7± 1.3 91.4± 0.8 88.4± 1.6 91.3± 0.9 −3.0± 1.9 2.6± 3.7 8.7± 0.1
B-Naive 52.8± 2.3 77.3± 2.9 98.5± 0.1 82.5± 2.4 75.8± 2.9 −8.3± 4.5 2.6± 3.7 47.7± 0.2

B-Sophisticated 51.5± 2.1 74.5± 2.8 98.8± 0.2 80.1± 1.5 77.0± 2.3 −8.7± 3.9 2.6± 3.7 48.0± 0.2
B-Myopic 77.7± 1.1 90.8± 0.6 95.6± 1.0 91.5± 0.6 91.9± 0.5 −2.4± 2.1 2.6± 3.7 83.4± 0.1

B-Overconfident 7.0± 0.9 84.1± 2.3 79.2± 2.3 81.4± 2.8 86.3± 1.3 −0.8± 1.6 2.6± 3.7 8.7± 0.1
B-Underconfident 86.7± 0.9 91.3± 0.7 91.2± 0.7 90.7± 1.0 92.4± 0.8 −1.8± 1.2 2.6± 3.7 92.1± 0.1

Table 2: Accuracy when predicting the demonstrator’s actions (row) on new gridworlds using the planner and
reward inferred by the algorithm (column). Algorithms and demonstrators are the same as in Table 1.

Agent Optimal Boltzmann Algorithm 1 Coord w/ init Joint w/ init Coord w/o init Joint w/o init VI

Optimal 61.3± 0.4 59.8± 0.4 62.0± 0.3 62.8± 0.2 63.6± 0.3 63.0± 0.2 72.4± 0.1 25.7± 0.1
Naive 60.1± 0.3 59.4± 0.3 58.6± 0.3 61.3± 0.3 61.8± 0.3 61.0± 0.3 71.1± 0.1 24.9± 0.1

Sophisticated 60.5± 0.4 59.2± 0.4 59.3± 0.3 61.0± 0.3 62.0± 0.4 61.2± 0.3 71.2± 0.1 24.9± 0.1
Myopic 54.1± 0.4 53.5± 0.5 54.9± 0.5 55.6± 0.2 56.1± 0.3 56.0± 0.1 62.8± 0.1 20.4± 0.1

Overconfident 61.6± 0.4 60.1± 0.4 61.8± 0.4 63.3± 0.3 63.7± 0.3 63.1± 0.2 72.8± 0.1 25.9± 0.1
Underconfident 60.9± 0.4 59.5± 0.4 61.4± 0.3 62.4± 0.3 62.9± 0.3 62.5± 0.3 72.0± 0.1 25.5± 0.1

Boltzmann 56.7± 1.1 60.5± 0.4 60.9± 0.3 60.3± 0.2 60.8± 0.3 62.3± 0.3 67.1± 0.5 24.2± 0.1
B-Naive 56.6± 0.8 59.8± 0.8 60.4± 0.1 60.3± 0.2 60.5± 0.7 59.9± 0.3 68.5± 0.3 23.7± 0.1

B-Sophisticated 57.6± 0.7 60.2± 0.7 60.5± 0.2 60.5± 0.2 61.2± 0.3 60.1± 0.3 68.5± 0.3 23.7± 0.1
B-Myopic 56.3± 0.2 56.9± 0.4 55.9± 0.2 56.5± 0.2 57.0± 0.2 56.3± 0.1 62.4± 0.1 20.3± 0.0

B-Overconfident 56.9± 1.1 60.7± 0.4 61.3± 0.3 60.9± 0.2 61.6± 0.3 62.7± 0.2 68.0± 0.5 24.2± 0.1
B-Underconfident 62.4± 0.3 63.1± 0.4 63.4± 0.2 63.0± 0.1 63.6± 0.1 63.5± 0.2 72.2± 0.1 25.4± 0.1

B EXPERIMENT DETAILS

All results are averaged over 10 runs with different seeds, on randomly generated 14x14 gridworlds
that have 7 squares with non-zero rewards. We ensure that all such squares can be reached from the
start state, and that at least half of the positions in grid are not walls.

We use a Value Iteration Network with 10 iterations as our differentiable planner, and set the space of
rewards to be S → R; that is, any state can be mapped to any reward, but the reward is assumed not
to depend on the action. We added an extra convolutional layer to the initial part of the VIN (which
learns the proxy reward) as initial experiments showed that this could better learn an optimal planner
for our gridworlds. We apply L2 regularization to the VIN with scale 0.0001, and do not regularize
the reward.

For all experiments, we kept the number of demonstrations fixed to 8000. For Algorithm 1, this was
split into 7000 policies with rewards that were used to train the planner, and 1000 on which rewards
had to be inferred. Note that this does not include any simulated data – for example, Algorithm 2
would get 8000 biased policies, and would also simulate a further 7000 policies from an optimal
agent in order to initialize the planner and reward.
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