
Domain-independent Plan Intervention When Users Unwittingly Facilitate Attacks

Sachini Weerawardhana and Darrell Whitley1 Mark Roberts2
1Computer Science Department, Colorado State University, Fort Collins, CO, USA | {sachini, whitley}@cs.colostate.edu

2The U.S. Naval Research Laboratory, Code 5514; Washington, DC, USA | mark.roberts@nrl.navy.mil

Abstract

In competitive situations, agents may take actions to achieve
their goals that unwittingly facilitate an opponent’s goals. We
consider a domain where three agents operate: (1) a user (hu-
man), (2) an attacker (human or a software) agent and (3) an
observer (a software) agent. The user and the attacker com-
pete to achieve different goals. When there is a disparity in
the domain knowledge the user and the attacker possess, the
attacker may use the user’s unfamiliarity with the domain to
its advantage and further its own goal. In this situation, the
observer, whose goal is to support the user may need to in-
tervene, and this intervention needs to occur online, on-time
and be accurate. We formalize the online plan intervention
problem and propose a solution that uses a decision tree clas-
sifier to identify intervention points in situations where agents
unwittingly facilitate an opponent’s goal. We trained a clas-
sifier using domain-independent features extracted from the
observer’s decision space to evaluate the “criticality” of the
current state. The trained model is then used in an online set-
ting on IPC benchmarks to identify observations that warrant
intervention. Our contributions lay a foundation for further
work in the area of deciding when to intervene.

1 Introduction
When an agent is executing a plan to achieve some goal,
it’s progress may be challenged by unforeseen changes such
as an unexpected modification to the environment or an ad-
versary subverting the agent’s goal. In these situations, a
passive observer intervening to help the agent reach it’s in-
tended goal will be beneficial. Intervention is different from
the typical plan recognition problem because we assume
the observed agent pursues desirable goals while avoiding
undesirable states. Therefore, the observer must (1) moni-
tor actions/state unobtrusively to predict trajectories of the
observed agent (keyhole recognition) and (2) assist the ob-
served agent to safely complete the intended task or block
the current step if unsafe. Consider a user checking email
on a computer. An attacker who wants to steal the user’s
password makes several approaches: sending an email with
a link to a phishing website and sending a PDF file attach-
ment embedded with a keylogger. The user, despite being
unaware of the attacker’s plan, would like to complete the
task of checking email safely and avoid the attacker’s goal.
Through learning, our observer can recognize risky actions
the user may execute in the environment and ensure safety.

The decision of when to intervene must be made judi-
cially. Intervening too early may lead to wasted effort chas-
ing down false positives, helpful warnings being ignored as
a nuisances, or leaking information for the next attack. In-
tervening too late may result in the undesirable state. Fur-
ther, we are interested in assisting a human user with dif-
ferent skill levels, who would benefit more from customized
intervention. To this end, we need to identify actions that
warrant intervention over three different time horizons: (1)
critical action, which if unchecked will definitely trigger the
undesirable state, (2) mitigating action, which gives the user
some time to react because the threat is not imminent and
(3) preventing actions, which allows for long term planning
to help the user avoid threats. Based on the time horizon we
are current in, we can then plan to correct course accord-
ingly. In this work we focus on identifying the first horizon.
Intervention is useful in both online settings, where undesir-
able states may arrive incrementally and in offline settings
where observations are available prior to intervention.

In this paper, we model online intervention in a competi-
tive environment where three agents operate: (1) a user (hu-
man), (2) an attacker (human or a software) agent and (3)
an observer (a software) agent who will intervene the user.
The observer passively monitors the user and the attacker
competing to achieve different goals. The attacker attempts
(both actively and passively) to leverage the progress made
by a user to achieve its own goal. The attacker may mask
domain knowledge available to the user to expand the attack
vector and increase the likelihood of a successfull attack.
The user is pursuing a desirable goal while avoiding unde-
sirable states. Using domain-independant features, we train
a decision tree classifier to help the observer decide whether
to intervene. A variation of the relaxed plan graph (Blum
and Furst 1997) models the desirable, undesirable and neu-
tral states that are reachable at different depths. From the
graph, we extract several domain independent features: risk,
desirability, distances remaining to desirable goal and unde-
sirable states and active landmarks percentage.

We train a classifier to recognize an observation as a inter-
vention point and evaluate the learned model on previously
unseen observation traces to assess the accuracy. Further-
more, the domain independent features used in the classifier
offer a mechanism to explain why the intervention occurred.
In real-time, making the decision to intervene for each ob-

servation may be costly. We examine how the observer can
establish a wait time without compromising accuracy.

The contributions of this paper include: (1) formalizing
the online intervention problem as an intervention graph
that extends the planning graph, (2) introducing domain-
independent features that estimate the criticality of the cur-
rent state to cause a known undesirable state, (3) presenting
an approach that learns to classify an observation as inter-
vention or not, (4) incorporating salient features that are bet-
ter predictors of intervention to generate explanations, and
(5) showing this approach works well with benchmarks.

2 Example
Before we formalize the problem, we present examples for
two cases of the online intervention: (1) the attacker is ac-
tively trying to make the user reach the undesirable state by
leveraging the user’s progress and (2) the passive attacker
introduces an undesirable state to the environment without
the user’s knowledge (i.e., a trap), where attacker masks the
location of the trap and exploits the user’s unfamiliarity with
the domain to make the user reach the undesirable state. In
both cases, the observer monitors the attacker and the users’
actions. The user plans for a desirable goal state, Gd. Given
the unexpected modification to the domain model, executing
this plan may likely cause the user to reach the undesirable
state (Gu). The observer is assumed to be familiar with the
domain (regardless of attacker’s attempts to mask informa-
tion to the user) and has knowledge about commonly occur-
ring goals such as Gd and Gu. The user would like to be
interrupted if some action will trigger Gu.

Active Attacker: We use the IPC block-words domain
(Gupta and Nau 1992) to illustrate the active attacker’s case.
The observer is watching the user stacking blocks to spell a
word. The domain contains 4 blocks: T, B, A, D. Figure 1
shows the undesirable state developing from initial state I .
Gd equals the word TAD, while Gu equals the word BAD.
The user can not recognize block B (indicated by dotted
lines), which prevents the user from identifying states re-
sulting from performing operations on B such as stack and
pick up, and therefore fail to circumventGu on his own. The
attacker will use block B to defeat the user and achieve Gu.

In the initial state (I), all blocks are on the table. The
user’s arm (solid line) and the attacker’s arm (dotted line)
are empty. In the next sequence of events, the observer sees
that the user has picked up block A (S1) and stacked A on D
(S2). Consider two alternative timelines T1 and T2 stemming
from S2. In T1, the observer sees that the user has picked up
T and the attacker has also picked up B. The next state shows
that the user has stacked T on A to spell the word TAD and
reachedGd successfully. In timeline T2, the attacker has suc-
ceeded in reaching Gu by stacking B on A before the user
stacked T on A, leveraging the user’s progress.

Passive Attacker: This case considers the 3x3 grid world
domain (McDermott 1999) shown in Figure 2. The observer
watches the user (white circle) navigating from a start point
(0,0) on the grid to reach Gd point (3,3) in 1-step actions.
When executing a plan to reach Gd, the user would like to
avoid the trap at point X (2,3), Gu but will not be able to

D A B
PICKUP A

T D B

A
D

B

I

Gd

S1

T1
T

A

T
A
D

BT

T D B
S2

ASTACK A D

STACK T A

A
D

B

Gu

T2

T
A
D

BT

STACK B A

Figure 1: Reaching Gu with an active attacker

1 2 30

1

2

3
Gu Gd

1 2 30

1

2

3
Gu Gd

MOVE 0-0 1-0

1 2 3

Gu Gd

1

2

3

MOVE 2-2 2-3
I S1

1 2 3

Gu Gd

1

2

3

T2

1 2 3

Gu Gd

1

2

3

T1

1 2 3

Gu Gd

1

2

3

MOVE 3-2 3-3...

...

Figure 2: Reaching Gu with passive attacker

do so unless the observer interrupted. Let us assume the ob-
server sees the user’s action resulting in state S1. Although
the move indicates that the user is moving toward Gu and
Gd, interruption is too early. In two alternative timelines
T1 (top right) and T2 (bottom), the observer sees different
moves. In T1 the user has reached Gd while avoiding Gu, in
which case the observer need not interrupt. However, in T2
the user has reached Gu, in which case it would have been
helpful if the user was blocked before moving to (2,3).

3 The Intervention Problem
Our formulation of the intervention problem makes several
assumptions about the three actors. (1) Observer: interven-
tion decisions are made in an online setting for each observa-
tion that appears incrementally and include actions executed
by the attacker or the user. The goals Gd or Gu are known
but the plans to reachGd or Gu are hidden. The domains for
which plan intervention problem is defined are discrete and
all actions are assumed to be of unit cost. The observer has
full observability in the domain and the environment is de-
terministic. Therefore, it can determine the actions that are
immediately applicable in the current state. (2) User: Fol-
lows a plan to reach Gd, but may reach Gu unwittingly. Gu
is hidden, but would like the observer’s help to avoid Gu.
The user does not have full observability of the domain or
the attacker’s actions. (3) Attacker: Follows a plan to reach
Gu. The attacker has full observability of the domain and
the user’s actions. Given these assumptions, the observer as-
sesses the state after each observation. This requires the ob-
server to hypothesize about possible interesting trajectories
from current state and evaluate each trajectory in terms of
their likelihood to cause Gu.

3.1 Definitions
Following STRIPS (Fikes and Nilsson 1971), we define a
planning problem as a tuple P = 〈F,A, I,G〉where F is the

set of fluents, I ⊆ F is the initial state,G ⊆ F represents the
set of goal states and A is the set of actions. Each action a ∈
A is a triple a = 〈Pre(a), Add(a), Del(a)〉 that consists
of preconditions, add and delete effects respectively, where
Pre(a), Add(a), Del(a) are all subsets of F . An action a
is applicable in a state s if preconditions of a are true in s;
pre(a) ∈ s. If an action a is executed in state s, it results in
a new state s′ = (s \ del(a) ∪ add(a)). The solution to P is
a plan π = {a1, . . . , ak} of length k that modifies I into G
by execution of actions a1, . . . , ak.

The plan recognition problem defined by Ramirez and
Geffner (2010) is a triple T = 〈D,G, O〉 where D =
〈F,A, I〉 is a planning domain, G is the set of goals, and
G ⊆ F . An observation sequence O = o1, . . . , om are ac-
tions oi ∈ A, i ∈ [1,m]. A solution to the plan recognition
problem is a subset of goals G ∈ G for which an optimal
plan P [G] satisfying O is produced.

Similarly, the plan intervention problem (I) also uses ob-
servations of actions. However, instead of using information
gleaned from the observation trace to find the most likely
plans (and goals), the intervention problem aims to assess
the current state for it’s ability to cause Gu and identify
whether or not the user needs to be blocked from making
further progress. Unlike Ramirez and Geffeners’ approach,
the observations used in our solution are not noisy nor do
they contain missing actions. This will be addressed in fu-
ture work.

Plan intervention problem I = 〈D,O,Gu, Gd,M〉
consists of a planning domainD and a sequence of observed
actions O, a set of undesirable states Gu ⊆ F , a set of desir-
able states Gd ⊆ F (Gu 6= Gd), and a decision tree classi-
fier modelM that combines a vector of domain-independant
features to classify an obervation as requiring intervention
or not. The extension to typical plan/goal recognition comes
from the domain-independent feature vector, which will be
discussed in section 3.3. A solution to I is a vector of deci-
sion points corresponding to actions inO indicating whether
each action was identified as requiring intervention.

3.2 Modelling the Intervention Decision Space
To assess the criticality of the current state to cause Gu, the
observer enumerates action sequences that will transform
the current state to Gd. These action sequences and interme-
diate states make up the observer’s decision space, which is
a single-root directed acyclic connected graph S = 〈V,E〉,
where V is the set of vertices denoting possible states the
user could be in until Gd is reached, and E is the set of
edges representing actions from A. We refer to this graph as
the intervention graph. The root of the intervention graph in-
dicates the current state. Leaves of the graph are goal states
(i.e., Gu and Gd). A path from root of the tree to Gu repre-
sents a candidate attack plan, while a path from root to leaf
node containing Gd represents a desirable plan.

Figure 3 illustrates the observer’s decision space for un-
observed actions extending from state S1 in Figure 1. Some
subtrees are hidden for simplicity. Given the initial state
where all 4 blocks are on the table, the observer expects the
next action to be one in the set (PICK-UP {T, D, A, B}),
but B is hidden from the user. The attacker can execute any

A BDT

A
BDT

A BD
T

A B
D

T

A
BDT

A
BDT

A
BD

T

A B
DT

A
B

D

T
A

B

D

T

A
B

D

T
A
B

D

T

Gu

Gd

A
B

DT

safe operations by user
but not goal oriented

Figure 3: Fragment of the decision space at state I for block-
words plan intervention example in Figure 1

A
T

D

B

A
B

D

T

B
A

D

T

D
A

B

T

(Active Attacker)

0 3 30

(Passive Attacker)

3

X X XGd Gd Gd3 3 3

(1) (2) (3) (4) (1) (2) (3)0 3

X
Gd3

(4)0

Figure 4: User achieving Gd amid attacker actions in inter-
vention examples in Section 2

of the 4 actions. Using the intervention graph, the observer
hypothesizes all possible action sequences that can be ob-
served in the future, that will lead to Gu (spell BAD) or
Gd (spell TAD). One such sequence (as shown in the fig-
ure) is: PICK-UP A → STACK A D → PICK-UP T →
STACK T A. At this point the user reachesGd. On the other
hand if the sequence was PICK-UP A→ STACK A D→
PICK-UP B→ STACK B A, with the last two actions ex-
ecuted by the attacker, the attacker achieves Gu.

Figure 4 illustrates how the user’s plans to reachGd could
fail in the presence of an active (left) or passive (right) at-
tacker. In the case of an active attacker, given the assump-
tion that the attacker does not backtrack to a previous state
and only leverages progress made thus far, it can make four
attempts to prevent the user from reaching Gu by inserting
the hidden block into the partially built stack. If the user
achieves goal states 1 or 4 the user wins despite the at-
tacker. If the observed actions indicate that the user is head-
ing toward one of these two states, then an interrupt is un-
warranted. State 3 is less ideal for the user but Gu is not
achieved. In state 2 the attacker has successfully reachedGu.
Observations leading to state 2 warrant interruption.

In the case of a passive attacker, the observer needs to
hypothesize about likely goals of the user given the current
state. Figure 4 (right) shows three of many such plans the
user may follow to reach Gd. Paths 1, 2 and 3 all result in
user going past the undesirable state (marked x), and at some
point in these observation sequences the user must be inter-
rupted before Gu is reached. In contrast, path 4 indicates a
safe path and must not generate an interrupt.

Algorithm 1 describes how the intervention graph is built.
The intervention graph is similar to the relaxed planning
graph (RPG), where each level consists of predicates that
have been made true and actions a ∈ A whose precondi-
tions are satisfied. Initially, before any observations have

been made, the current state (i.e., root of the tree) is set
to initial state I . Next, using the domain theory D, actions
a ∈ A whose preconditions are satisfied at current state are
added to the graph. Each action in level i spawn possible
states for level i+1. Calling the method recursively for each
state until Gd and Gu are added to some subsequent level
in the graph will generate a possible hypotheses space for
the observer. As a new observation arrives, the root of the
graph is changed to reflect the new state after the observa-
tion and subsequent layers are also modified to that effect.
Similar to the RPG, we omit delete effects during construc-
tion. Also construction terminates once Gd is reached. The
graph building algorithm does not allow adding backtrack-
ing actions because it will create a cycle.

Algorithm 1 Build Intervention Graph

Require: D, s, Gu, Gd
1: i = 0; si ← I
2: procedure EXPANDGRAPH(D, s,Gu, Gd)
3: if si |= Gu, Gd then return 〈V,E〉
4: else
5: for a ∈ A where Pre(a) ∈ si do
6: si+1 ← ((si \Del(a)) ∪Add(a))
7: if si+1 ≡ si then continue
8: v ← AddVertex (si+1)
9: e← AddEdge (s, si+1, a)

10: V ∪ {v} ;E ∪ {e}
11: ExpandGraph (D, si+1, Gu, Gd)

3.3 Domain Independent Features
We extract a set of features from the intervention graph that
help determine when to intervene. These features include:
Risk, Desirability, Distance to Gd, Distance to Gu and Per-
centage of active undesirable landmarks in current state. We
use these features to train a decision tree. Figure 5 illus-
trates a fragment of the intervention graph after PICK-UP
A. Following the subtree extending from action STACK A
D, both Gu and Gd can be reached. Unexpanded subtree T1
also contains instances where the user can reach Gd safely,
without reaching Gu. We will use Figure 5 as a running ex-
ample to discuss feature computation.

Risk (R) quantifies how likely the effects of current ob-
servation will lead to Gu. R is also coupled with the un-
certainty the observer has about the next observation. We
model the uncertainty as a uniform probability distribution
across the set of actions whose preconditions are satisfied
in current state. We define R as the posterior probability of
reaching Gu while the user is trying to achieve Gd. Given
the intervention graph, we extract paths from root to any leaf
containing the Gd, including the ones in which the user has
been subverted to reach Gu instead. By virtue of construc-
tion termination, Gd will always be a leaf. R is computed
for paths leading to state (2) in Figure 4 (left) because in
that state the attacker has won. In the passive attacker case
any path in the intervention graph that causes the user to
reach point X, before Gd is reached qualifies as candidates
to compute R.

T D B
A

1.0

T D B
A

T D B
A

T D B
A

T
D B
A

T D
BA

STACK B A
0.5

T D

B
A

STACK A T
0.33

STACK A B
0.33

STACK A D
0.33

PICKUP T
0.5

PICKUP B
0.5

T

D B
ASTACK T A

0.5

T1

T2

0.33

0.33

0.33

0.17

0.17

STACK T B
0.5

STACK B T
0.5

0.08

0.08

Figure 5: Fragment of the decision space after PICKUP A
has been observed for block-words example. Numbers under
each state and action indicate the probability. Subrees T1 and
T2 are not expanded for simplicity.

Let Πcandidates be the plans reaching Gd and let
|Πcandidates| = n. The plan set Πu contains action se-
quences that reach state Gu such that, Πu ⊆ Πcandidates,
|Πu| = m and (m <= n). We compute posterior proba-
bility of reaching Gu for a path π ∈ Πu, using chain rule
in probability as, Pπ =

∏k
j=1 P (αj |α1, α2, ..., αk−1), and

αj ∈ A and k is the length of path untilGu is reached. Then:

R =

{∑m
i=1 Pπi
m m > 0
0 m = 0

There are six action sequences the observer might observe
when the user is trying to achieve Gd (n = 6) and only one
of those six sequences will make the user reach Gu (m =
1). Since we assumed full observability for the observer, the
root of the tree (current state) is assigned the probability of
1.0. Then, actions that are immediately possible after current
state (STACK A B, STACK A D, STACK A T) are each
assigned probabilites following a uniform distribution across
the branching factor (0.33). Then for each applicable action
in the current state, the resulting state gets the probability of
(1.0 × 0.33 = 0.33). Similarly, we apply the chain rule of
probability for each following state and action level in the
graph until Gu first appears in the path. In this graph, Gu
appears two actions later and R = 0.08

1 = 0.08.
Desirability (D) measures the effect of the observed ac-

tion to help the user pursue the desirable goal safely. It
separates common harmless actions from avoidable ones
and connects the observations to knowledge of the goals
the user wants to achieve. Given Πcandidates as the set of
plans extracted from the intervention graph that reach Gd
and |Πcandidates| = n. The plan set Πd contains action se-
quences that reach state Gd without reaching Gu, Πd =
Πcandidates\Πu, we compute posterior probability of reach-
ing Gd without reaching Gu for a path π ∈ Πd, using chain
rule in probability as, Pπ =

∏k
j=1 P (αj |α1, α2, ..., αk−1),

and αj ∈ A and k is the length of path. Then:

D =

{∑n−m
i=1 Pπi
n−m n−m > 0

0 n−m = 0

In Figure 5, there are five instances where user achieved

Gd without reaching Gu (two in subree T1, three in the
expanded branch). Extracting paths from root to these
five instances, returns actions sequences the user may fol-
low to reach Gd safely (Πd). Following the same ap-
proach to assign probabilities for states and actions, D =
(0.08+0.08+0.08+0.04+0.04)

5 = 0.07. Computation for R and
D is similar for the passive attacker case.
R and D are based on probabilities indicating the confi-

dence the observer has about the next observation. We also
use simple distance measures: (1) distance to Gu (δu) and
(2) distance to Gd (δd). Both distances are measured in the
number of actions required to reach a state containing Gd or
Gu from root in the intervention graph.

Distance to Gu (δu) measures the distance to state Gu
from the current state in terms of the number of actions. As
with the computations of R and D, given Πcandidates is the
set of paths extracted from the intervention graph that reach
Gd and |Πcandidates| = n. The path set Πu contains action
sequences that reach state Gu such that, Πu ⊆ Πcandidates,
|Πu| = m and (m <= n). We count s, the number of the
edges (actions) before Gu is reached for each path π ∈ Πu

and δu is defined as the average of the distance values given
by the formula:

δu =

{∑m
i=1 si
m m > 0
−1 m = 0

In this formula,−1 indicates that the undesirable state is not
reachable from the current state. For the example problem
illustrated in Figure 5, δu = 3

1 = 3.
Distance to Gd (δd) measures the distance to Gd from

current state. The path set Πd contains action sequences that
reach Gd without reaching Gu, Πd = Πcandidates \ Πu, we
count t, the number of the edges where Gd is achieved with-
out reaching Gu for each path π ∈ Πd. Then, δd is defined
as the average of the distances given by the formula:

δd =

{∑n−m
i=1 ti
n−m n−m > 0
−1 n−m = 0

In this formula, −1 indicates that Gd can not be reached
safely from the current state. For the example problem illus-
trated in Figure 5, δd =

⌈
3+3+7+7+3

5

⌉
= 5. Both δu and δd

are computed similarly for the passive attacker case.
Percentage of active attack landmarks (Lac) captures

the criticality of current state toward contributing to Gu.
Landmarks (Hoffmann, Porteous, and Sebastia 2004) are
predicates (or actions) that must be true in every valid plan
for a planning problem. We used the algorithm in Hoffmann
et al. (2004) to extract fact landmarks for the planning prob-
lem P = 〈D,Gu〉. These landmarks are referred to as at-
tack landmarks because they establish predicates that must
be true to reach Gu. Landmark Generation Graph (LGG)
(Hoffmann, Porteous, and Sebastia 2004) for P for the ac-
tive attacker case is shown in Figure 6. Predicates (ON B
A), (ON A D) correspond toGu. Predicates that are grouped
must be made true together. When the observed actions ac-
tivate any attack landmarks, it signals that an undesirable
state is imminent. Landmarks have been successfully used
in deriving heuristics in plan recognition (Vered et al. 2018)

(ON B A) (ON A D)

(CLEAR D) (HOLDING A)(CLEAR A) (HOLDING B)

STACK B A STACK A D

(CLEAR B) (ONTABLE B)
(HANDEMPTY)

(CLEAR A) (ONTABLE A)
(HANDEMPTY)

PICK UP APICK UP B

Gu

Figure 6: LGG for P . Contains verified fact landmarks for
P and greedy-necessary orders. A box with multiple land-
marks indicate fact landmarks that must be true together.

Algorithm 2 Generate Feature Vectors

Require: D, I , O, Gu, Gd, p-probability distribution.
1: procedure FEATUREVECTOR(D,O, I,Gu, Gd, p)
2: i = 0; si ← I
3: for o ∈ O do
4: G(V,E)← ExpandGraph(D, si, Gu, Gd)
5: Apply action probabilities to e ∈ E following p
6: Apply state probabilities to v ∈ V following p
7: V (o)← [Ro, Do, δuo , δdo ,Laco , Class]

and generating alternative plans (Bryce 2014). We compute
a feature using attack landmarks: percentage of active attack
landmarks in current state (Lac). To compute Lac for the ex-
ample in Figure 5, we count the number of landmark predi-
cates that have become active (l) in the root of the interven-
tion graph. Then, (Lac) is given by the formula: Lac = l

|Lu|
In Figure 5, l = 4 ((CLEAR B),(CLEAR D),(ONTABLE
B),(HOLDING A)) and Lac = 4/10 = 0.4.

4 Learning When to Intervene
We train the decision tree classifier in supervised learning
mode to categorize observed actions into two classes: “Y”
indicating that the interruption is warranted and “N”, indi-
cating that intervention is unwarranted. According to this
policy, in the expanded sub-tree in Figure 5 the path that
reaches Gu is labeled as follows: PICK-UP A (N), STACK
A D (N), PICK-UP B (N), STACK B A (Y). Label for
each action is indicated within brackets. We will make this
labeled data set available for the community. Given a la-
beled observation set and corresponding feature vectors, we
train the decision tree classifier with 10-fold cross valida-
tion. Then the trained model is used to predict intervention
for previously unseen intervention problems. We decided to
chose the decision tree as the classifier because the decision
tree learned model had the highest accuracy in predicting in-
tervention on new problems compared to the two other clas-
sifiers: random forests (Breiman 2001) and Naive Bayes.

To generate training data we first created twenty plan-
ning problems for each benchmark domain. Then observa-
tion traces corresponding to each problem were generated.
We enforced a limit of 100 observation traces for each plan-
ning problem for grid domains. These observation traces
were provided as input to Algorithm 2. The algorithm takes
a PDDL domain, a set of undesirable and desirable states
and a probability distribution as input and produces a rela-

tion V of observations and feature vectors. We train a deci-
sion tree classifier using the Weka 1 framework. We selected
the implementation of C4.5 algorithm (Quinlan 1993) (J48),
which builds a decision tree using the concept of information
entropy. We chose the decision tree classifier for its ability
determine salient features for intervention, which facilitates
generating explanations for the user.

5 Results and Discussion
We focus on two questions: (1) Using domain-independent
features indicative of the likelihood to reachGu from current
state, can the intervening agent correctly interrupt to prevent
the user from reaching Gu? and (2) If the user was not in-
terrupted now, how can we establish a wait time until the
intervention occurred before Gu? To address the first ques-
tion, we evaluated the performance of the learned model to
predict intervention on previously unseen problems.

The experiment suit consists of the two example domains
from Section 2. To this we added Navigator and Ferry do-
mains from IPC benchmarks. In Navigator domain, an agent
simply moves from one point in grid to another goal desti-
nation. In the Ferry domain, a single ferry moves cars be-
tween different locations. To simulate intervention in active
attacker case (the Block-Words domain), we chose word
building problems. The words user and the attacker want
to build are different but they have some common letters
(e.g., TAD/BAD). The attacker is able to exploit the user’s
progress on stacking blocks to complete word the attacker
wants to build. In Easy-IPC and Navigator domains, we des-
ignated certain locations on the grid as traps. The goal of the
robot is to navigate to a specific point on the grid safely. In
the Ferry domain a port is compromised and a ferry carrying
a car there results in an undesirable state. The ferry’s objec-
tive is to transport cars to specified locations without passing
a compromised port.

In addition to the trained data set, we also generated 3
separate instances of 20 problems each (total of 60) for the
benchmark domains to produce testing data for the learned
model. The three instances contained intervention problems
that were different the trained instances. For example, num-
ber of blocks in the domain (block-words), size of grid
(navigator, easy-ipc), accessible and inaccessible paths on
the grid (navigator, easy-ipc), properties of artifacts in the
grid (easy-ipc). For each instance we generated 10 observa-
tion traces for each planning problem (i.e., 200 observation
traces per instance). We define true-positive as the classifier
correctly predicting “Y”. True-negative is an instance where
the classifier correctly predicts “N”. False-positives are in-
stances where classifier incorrectly predicts an observation
as an interrupt. False-negatives are instances where the clas-
sifier incorrectly predicts the observation not as an interrupt.

5.1 Feature Selection
When a human user receives an interruption, the user may
like to know a reason. To extract salient features for in-
tervention, we applied a correlation based feature selection
technique in data pre-processing step to identify the top four

1http://www.cs.waikato.ac.nz/ml/weka/

Domain Feature Correlation

Blocks

Risk 0.85
Distance to Gd 0.30
Desirability 0.23
Distance to Gu 0.09

Easy-IPC

Risk 0.84
Distance to Gd 0.44
Distance to Gu 0.27
Desirability 0.23

Navigator

Risk 0.85
Distance to Gd 0.28
Desirability 0.18
Distance to Gu 0.04

Ferry

Risk 0.84
Distance to Gd 0.34
Desirability 0.16
Distance to Gu 0.08

Table 1: Correlation factors of top 4 features for benchmark
domains.

best predictors. Feature selection reduces complexity of the
model, makes the outcome of the model easier to interpret,
and reduces over-fitting.

The attribute selector in Weka uses the Pearson’s correla-
tion to measure predictive ability between nominal attributes
and the class. Our feature vector consists of nominal at-
tributes. Table 1 summarizes top 4 correlated features for
each domain. Risk is the best performing feature. Distance
desirable state feature is the next best choice for a feature.
The percentage of active attack landmarks was the weakest
predictor of intervention across all benchmark domains and
was removed from training.

Interrupting at each observation: Assuming the deci-
sion to intervene is made for every observation, we calcu-
lated the true-positive rate (TPR= TP

TP+FN), false-positive
rate (FPR= FP

FP+TN), true-negative rate (TNR= TN
TN+FP),

false-negative rate (FNR= FN
TP+FN) of the trained model. For

each domain, row ‘Each’ in table 2 summarizes TPR, FPR,
TNR, FNR for predicting intervention in unseen observation
traces. The classifier works well in identifying intervention
across domains. In line with our expectation, TPR and TNR
are very high (> 95%) across domains and FNR and FPR is
very low(< 5%). Because the accuracy remains consistant
across test instances we conclude that the model is reason-
ably tolerant for modifications in the domain such as grid
sizes and number of objects.

Delaying the interruption: In real-life, making the in-
tervention decision for every observation may be costly. If
we are intervening a human user, he may disregard frequent
interruptions as noise. For this reason, we examine how to
establish a wait time until intervention occurs for the first
time. We used the feature (Lac) as a checkpoint for the in-
tervening agent to wait safely without interrupting the user.

We modified the observation traces to contain action se-
quences starting from a point where the current state con-
tained 50% and 75% of active landmarks. For problem in-
stances where 75% active landmark percentage was infeasi-
ble, we limited it to the maximum active landmark percent-
age. We used the same learned model to predict intervention
for these modified traces. For each domain, row ‘Delayed50’

in table 2 summarizes TPR, FPR, TNR, FNR for predicting
interruptions for benchmark domains given that the decision
is delayed until 50% <= Lac < 75%. The row ‘Delayed75’
indicates that the decision was delayed until Lac >= 75%.

Accuracy is not affected significantly by delaying the in-
tervention from the chosen checkpoints. However, a nega-
tive effect of delaying intervention is missing true positives.
We evaluated how the delay affects the percentage of true
positive observations missed. Table 3 summarizes these re-
sults. Intuitively, the longer the delay, a higher percentage of
true positives will be missed. For the Blocks-Word domain,
there is no effect between the the delay until 50% and 75%.
In both cases the delaying the decision does not cause the
intervening agent to miss any true positives. The most sig-
nificant loss occurs in Navigator domain, where delay un-
til 75% will cause a loss of 2%-28% while delaying until
50% is the safest choice. The Ferry domain exhibits a sim-
ilar pattern where the delay until 75% landmarks become
active will cause a loss of 8%-18%. We conclude that de-
laying interruptions can be controlled by the percentage of
active landmarks in the current state and that for certain do-
mains it is a trade off between loss of true-positives and the
delay.

6 Explaining Intervention
When an observation that warrants intervention is identified
intervening agent issues a warning (and an explanation) to
the user. The user needs to take corrective/mitigating ac-
tions to avoid the undesirable state. The decision trees can
help explain intervention. Decision trees generated for the
benchmark domains are shown in Figure 7. Combining the
shallow trees and the definitions of the features allow us to
generate a clear and succinct set of rules to explain interven-
tion. For the Block-word domain, (Figure 7-a), the rule that
explains intervention first looks at the value of Risk. If the
risk is less than or equal to 0.5 then that observation does not
qualify as an intervention point. By definitions, this means
that from the current state there are multiple ways to reach
the undesirable state, indicating the observation is a com-
mon action that can be perceived as harmless. Next, if the
observation that has a risk level of grater than 0.5 (indicating
there are fewer ways of reach the undesirable state and that
it’s imminent), next feature to look at is the distance to the
undesirable state. If the distance is negative, indicating that
execution of this step will trigger the undesirable state, then
the observation warrants intervention. Otherwise the obser-
vation does not require intervention. With this decision tree,
an explanation for intervention in Blocks-words domain can
be developed as: The current step was intervened because
the risk level is significant (> .5) and the effect of this ob-
served action will trigger the undesirable state.

For the passive attacker domains (Figure 7 - (b),(c),(d))
the learned model generated even simpler trees with only
one feature being used to determine intervention. For Easy-
IPC and Navigator domains, the Risk feature determines the
class of an observation. This leads to generating explana-
tions for the Easy-IPC and Navigator domains such as The
current step was intervened because the risk level is signif-
icant (> .75 for Easy-IPC and > .5 for Navigator). For the

Risk

Distance to
Critical State

>0.5

N

<=0.5

YN

<=0>0

Risk

>0.75 <=0.75

Y N

Risk

<=0.5

Y N

> 0.5

Distance to
Desirable State

>-1

Y N

<= -1

(a) Block-words (b) Easy-IPC (c) Navigator (d) Ferry

Figure 7: Decision trees generated for (a) Blocks, (b) Easy-
IPC, (c) Navigator, (d) Ferry domains

Ferry domain, Distance to Gd determines intervention. A
negative value indicates that if the next step was executed
there is no way to reach the desirable goal state without trig-
gering the undesirable state. Thus an explanation of inter-
vention for the Ferry domain will be: The current step was
intervened because the effect of this step will make it impos-
sible to reach the desired goal without triggering the unde-
sirable state.

7 Related Work
Closely related areas of literature for this work is plan/goal
recognition. Plan recognition is the problem of inferring
the course of action (i.e., plan) an actor may take towards
achieving a goal from a sequence of observations (Schmidt,
Sridharan, and Goodson 1978; Kautz and Allen 1986). The
constructed plan, if followed to completion, is expected to
result in states that correspond to goals of the actor, which
in turn presupposes that the actor intends to achieve those
goals. Plan/goal recognition approaches in the literature ex-
plore both domain-dependent and independent methods. In
domain-dependent methods agents rely heavliy on domain
knowledge for inference. For example, Kabanza et al. (2010)
presents a solution that recognizes an agents adversarial in-
tent by mapping observations made to date to a plan library.
Boddy et al. (2005) discuss how to construct and manipu-
late domain models that describe behaviors of adversaries
in computer security domain and use these models to gen-
erate plans. Another approach uses Goal Driven Autonomy
(GDA) that allows agents to continuously monitor the cur-
rent plans execution and assess if the current state matches
with expectation (Klenk, Molineaux, and Aha 2013).

More recent work attempts to separate this knowledge de-
pendency by allowing the agent to learn knowledge from ob-
servations (Jaidee, Muñoz-Avila, and W. Aha 2011). In con-
trast, domain-independent goal recognition that use plan-
ning to infer agents goals. Ramirez and Geffner (2009;
2010) used an existing planner to generate hypotheses from
observations to infer a single agent’s plan. Their approaches
offer advantages of being more adaptive to input as well as
exploiting existing planning systems and plan representa-
tions. Their first approach computed the set of goals that can
be achieved by optimal plans that match the observations.
The second approach removed the optimality constraint and
computed a probability distribution across possible plans

Domain Interrupt
Type

Instance 1(20) Instance 2 (20) Instance 3 (20)
TPR FPR TNR FNR TPR FPR TNR FNR TPR FPR TNR FNR

Blocks
Each 1 0 1 0 1 0 1 0 1 0 1 0
Delayed50 1 0 1 0 1 0 1 0 1 0 1 0
Delayed75 1 0 1 0 1 0 1 0 1 0 1 0

Easy-IPC
Each 1 .05 .95 0 1 .03 .97 0 1 .03 .97 0
Delayed50 1 .06 .94 0 1 .03 .97 0 1 .03 .97 0
Delayed75 1 .06 .94 0 1 .03 .97 0 1 .03 .97 0

Navigator
Each 1 .01 .99 0 1 .03 .97 0 1 .02 .98 0
Delayed50 1 .01 .99 0 1 .03 .97 0 1 .02 .98 0
Delayed75 1 .02 .98 0 1 .03 .97 0 1 .03 .97 0

Ferry
Each 1 .02 .98 0 1 .05 .95 0 1 0 1 0
Delayed50 1 .02 .98 0 1 .05 .95 0 1 0 1 0
Delayed75 1 .02 .98 0 1 .03 .97 0 1 0 1 0

Table 2: True-positive (TPR), False-positive (FPR), True-negative (TNR), False-negative (FNR) rates for predicting interrupt
decision for unseen problems.

Domain Delay Instance 1 Instance 2 Instance 3

Blocks
Delayed50 0% 0% 0%
Delayed75 0% 0% 0%

Easy-IPC
Delayed50 0% 6% 5%
Delayed75 0% 6% 5%

Navigator
Delayed50 0% 0% 0%
Delayed75 28% 2% 4%

Ferry
Delayed50 6% 5% 0%
Delayed75 11% 8% 18%

Table 3: Percentage of missed observations that should have
been flagged as an interrupt

that could be generated from existing planners (Ramırez and
Geffner 2010). Keren et al. (Keren, Gal, and Karpas 2014)
introduced the worst-case distinctiveness (wcd) metric as a
measurement of the ease of performing goal recognition in a
domain. The wcd problem finds the longest sequence of ac-
tions an agent can execute while hiding its goal. They show
that by limiting the set of available actions in the model wcd
can be minimized, which will allow the agent to reveal it’s
goal as early as possible.

In online recognition, Vered et al. (2018) propose an ap-
proach that combines goal-mirroring and landmarks to infer
the goal of an agent. Landmarks are used to minimize the
number of hypotheses the agent has to evaluate, thus im-
proving the effeciency of the recognition process. Pozanco
et al. (2018) combines Ramirez and Geffener’s plan recog-
nition approach and leverages landmarks to counterplan and
block an opponent’s goal achievement. The main difference
between plan intervention and recognition is that, in inter-
vention the time intervention happens is critical. In plan
recognition, identifying the plan at the right time is not a
priority. The user’s preferences in intervention (e.g., in-time,
targetted intervention vs. prolonged and incremental) and
the source of uncertainty in the environment (e.g., environ-
ment, attacker) complicate the intervening agent’s decisioni
and can be seen as trade-offs. Furthermore, our approach
complements existing approaches by using a decision tree

to identify events that warrant intervention and identifying
salient features that may be useful in generating explana-
tions to plan intervention.

8 Summary and Future Work
We formalized the online plan intervention problem in a
competitive domain where an attacker both actively and
passively attempts to leverage progress made by a user to
achieve the attacker’s own conflicting goals. We introduced
the intervention graph, which models the decision space of
an observer, whose goal is to support the user by block-
ing actions that allows the attacker to achieve his goal. We
trained a classifier using domain-independent features ex-
tracted from the intervention graph to evaluate the criticality
of the current state. The model predicts intervention with
high accuracy for the benchmark domains.

Our solution suffers from state space explosion for large
domains. As an solution, we suggest sampling from alter-
native plans generated from off-the-shelf planners. This will
also allow us to compare the proposed approach with exist-
ing online goal-recognition methods. The uncertainty model
can be extended to limiting the observer’s ability to fully
perceive the current state. We recognize the attack models
(for both active and passive cases) can be expanded to dif-
ferent threat models. For example, the attacker can behave
as truly adversarial and undo progress the user has made
so far and guide the user towards an entirely different goal.
We will improve on explanations by suggesting actions that
will help the user avoid the undesirable state when interven-
tion occurs, instead of delegating the responsibility of being
safe to the user, and integrating causal reasoning to explana-
tions. These extensions lay a foundation for applying clas-
sical planning techniques for decision support and assistive
agents.

Acknowledgments
We thank the anonymous reviewers for comments that
helped improve the paper. The authors also thank AFOSR
and NRL for funding this research.

References
Blum, A. L., and Furst, M. L. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90(1):281–300.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005. Course
of action generation for cyber security using classical planning. In
Proceedings of the International Conference on Automated Plan-
ning and Scheduling (ICAPS), 12–21.
Breiman, L. 2001. Random forests. Machine Learning 45(1):5–32.
Bryce, D. 2014. Landmark-based plan distance measures for di-
verse planning. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS).
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 2(3):189–208.
Gupta, N., and Nau, D. S. 1992. On the complexity of blocks-world
planning. Journal of Artificial Intelligence 56(2):223–254.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered land-
marks in planning. Journal of Artificial Intelligence Research
22(1):215–278.
Jaidee, U.; Muñoz-Avila, H.; and W. Aha, D. 2011. Integrated
learning for goal-driven autonomy. In International Joint Confer-
ence on Artificial Intelligence (IJCAI), 2450–2455.
Kabanza, F.; Bellefeuille, P.; Bisson, F.; Benaskeur, A. R.; and Iran-
doust, H. 2010. Opponent behaviour recognition for real-time strat-
egy games. In Proceedings of the 5th AAAI Conference on Plan,
Activity, and Intent Recognition (PAIR), AAAIWS’10-05, 29–36.
AAAI Press.
Kautz, H. A., and Allen, J. F. 1986. Generalized plan recogni-
tion. In Proceedings of 5th National Conference on Artificial Intel-
ligence (AAAI), 32–37.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition design.
In Proceedings of the 24th International Conference on Automated
Planning and Scheduling (ICAPS), 154–162.
Klenk, M.; Molineaux, M.; and Aha, D. W. 2013. Goal-driven
autonomy for responding to unexpected events in strategy simula-
tions. Computational Intelligence 29:187–206.
McDermott, D. 1999. Using regression-match graphs to control
search in planning. Artificial Intelligence 109(1–2):111–159.
Pozanco, A.; Yolanda, E.; Fernández, S.; and Borrajo, D. 2018.
Counterplanning using goal recognition and landmarks. In Pro-
ceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI), 4808–4814.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Ramırez, M., and Geffner, H. 2009. Plan recognition as planning.
In Proceedings of the 21st International Joint Conference on Artif-
ical Intelligence (IJCAI), 1778–1783.
Ramırez, M., and Geffner, H. 2010. Probabilistic plan recogni-
tion using off-the-shelf classical planners. In Proceedings of the
Conference of the Association for the Advancement of Artificial In-
telligence (AAAI), 1121–1126.
Schmidt, C. F.; Sridharan, N.; and Goodson, J. L. 1978. The plan
recognition problem: An intersection of psychology and artificial
intelligence. Artificial Intelligence 11(1-2):45–83.
Vered, M.; Pereira, R. F.; Magnaguagno, M.; Meneguzzi, F.; and
Kaminka, G. A. 2018. Online goal recognition as reasoning over
landmarks. In The AAAI 2018 Workshop on Plan, Activity, and
Intent Recognition (PAIR).

