
Under review as a conference paper at ICLR 2020

STYLE-BASED ENCODER PRE-TRAINING FOR MULTI-
MODAL IMAGE SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Image-to-image (I2I) translation aims to translate images from one domain to
another. To tackle the multi-modal version of I2I translation, where input and
output domains have a one-to-many relation, an extra latent input is provided to the
generator to specify a particular output. Recent works propose involved training
objectives to learn a latent embedding, jointly with the generator, that models the
distribution of possible outputs. Alternatively, we study a simple, yet powerful
pre-training strategy for multi-modal I2I translation. We first pre-train an encoder,
using a proxy task, to encode the style of an image, such as color and texture, into a
low-dimensional latent style vector. Then we train a generator to transform an input
image along with a style-code to the output domain. Our generator achieves state-
of-the-art results on several benchmarks with a training objective that includes just
a GAN loss and a reconstruction loss, which simplifies and speeds up the training
significantly compared to competing approaches. We further study the contribution
of different loss terms to learning the task of multi-modal I2I translation, and finally
we show that the learned style embedding is not dependent on the target domain
and generalizes well to other domains.

1 INTRODUCTION

Image-to-Image (I2I) translation is the task of transforming images from one domain to another (e.g.,
semantic maps→ scenes, sketches→ photo-realistic images, etc.). Many problems in computer
vision and graphics can be cast as I2I translation, such as photo-realistic image synthesis (Chen
& Koltun (2017); Isola et al. (2017); Wang et al. (2018a)), super-resolution (Ledig et al. (2017)),
colorization (Zhang et al. (2016; 2017a)), and inpainting (Pathak et al. (2016)). Therefore, I2I
translation has recently received significant attention in the literature. One main challenge in I2I
translation is the multi-modal nature for many such tasks – the relation between an input domain
A and an output domain B is often times one-to-many, where a single input image IAi ∈ A can be
mapped to different output images from domain B. For example, a sketch of a shoe or a handbag
can be mapped to corresponding objects with different colors or styles, or a semantic map of a scene
can be mapped to many scenes with different appearance, lighting and/or weather conditions. Since
I2I translation networks typically learn one-to-one mappings due to their deterministic nature, an
extra input is required to specify an output mode to which an input image will be translated. Simply
injecting extra random noise as input proved to be ineffective as shown in (Isola et al. (2017); Zhu et al.
(2017b)), where the generator network just learns to ignore the extra noise and collapses to a single or
few modes (which is one form of the mode collapse problem). To overcome this problem, Zhu et al.
(2017b) proposed BicycleGAN, which learns to encode the distribution of different possible outputs
into a latent vector z, and then learns a deterministic mapping G : (A, z)→ B. So, depending on the
latent vector z, a single input IAi ∈ A can be mapped to multiple outputs in B. While BicycleGAN
requires paired training data, several works (Lee et al. (2018); Huang et al. (2018)) extended it to the
unsupervised case, where images in domains A and B are not in correspondence (‘unpaired’). One
main component of unpaired I2I is a cross-cycle consistency constraint, where the network generates
an intermediate output by swapping the styles of a pair of images, then swaps the style between the
intermediate output again to reconstruct the original images. This enforces that the latent vector z
preserves the encoded style information when translated from an image i to another image j and
back to image i again. This constraint can also be applied to paired training data, where it encourages
style/attribute transfer between images. However, training BicycleGAN (Zhu et al. (2017b)) or
its unsupervised counterparts (Huang et al. (2018); Lee et al. (2018)) is not trivial. For example,
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BicycleGAN combines the objectives of both conditional Variational Auto-Encoders (cVAEs) (Sohn
et al. (2015)) and a conditional version of Latent Regressor GANs (cLR-GANs) (Donahue et al.
(2016); Dumoulin et al. (2016)) to train their network. The training objective of (Huang et al. (2018);
Lee et al. (2018)) is even more involved to handle the unsupervised setup.

In this work, we aim to simplify the training of general purpose multi-modal I2I translation networks,
while also improving the diversity and expressiveness of different styles in the output domain. Our
approach is inspired by the work of Meshry et al. (2019) which utilizes a staged training strategy
to re-render scenes under different lighting, time of day, and weather conditions. We propose a
pretraining approach for style encoders, in multi-modal I2I translation networks, which makes the
training simpler and faster by requiring fewer losses/constraints. Our approach is also inspired by
the standard training paradigm in visual recognition of first pretraining on a proxy task, either large
supervised datasets (e.g., ImageNet) (Krizhevsky et al. (2012); Sun et al. (2017); Mahajan et al.
(2018)) or unsupervised tasks (e.g., Doersch et al. (2015); Noroozi & Favaro (2016)), and then
fine-tuning (transfer learning) on the desired task. Similarly, we propose to pretrain the encoder
using a proxy task that encourages capturing style into a latent space. Our goal is to highlight the
importance of pretraining for I2I networks and demonstrate that a simple approach can be very
effective for multi-modal image synthesis. In particular, we make the following contributions:

• We explore style pretraining and its generalization for the task of multi-modal I2I translation,
which simplifies and speeds up the training compared to competing approaches.

• We provide a study of the importance of different losses and regularization terms for
multi-modal I2I translation networks.

• We show that the pretrained latent embeddings is not dependent on the target domain and
generalizes well to other domains (transfer learning).

• We achieve state-of-the art results on several benchmarks in terms of style capture and
transfer, and diversity of results.

2 RELATED WORK

Deep generative models There has been incredible progress in the field of image synthesis using
deep neural networks. In its unconditional setting, a decoder network learns to map random values
drawn from a prior distribution (typically Gaussian) to output images. Variational Auto-Encoders
(VAEs) (Kingma & Welling (2014)) assume a bijection mapping between output images and some
latent distribution and learn to map the latent distribution to a unit Gaussian using the reparameter-
ization trick. Alternatively, Generative Adversarial Networks (GANs) (Goodfellow et al. (2014))
directly map random values sampled from a unit Gaussian to images, while using a discriminator
network to enforce that the distribution of generated images resembles that of real images. Recent
works proposed improvements to stabilize the training (Gulrajani et al. (2017); Karnewar & Iyengar
(2019); Mao et al. (2017); Radford et al. (2016)) and improve the quality and diversity of the out-
put (Karras et al. (2018; 2019)). Other works combine both VAEs and GANs into a hybrid VAE-GAN
model (Larsen et al. (2016); Rosca et al. (2017)).

Conditional image synthesis Instead of generating images from input noise, the generator can be
augmented with side information in the form of extra conditional inputs. For example, Sohn et al.
(2015) extended VAEs to their conditional setup (cVAEs). Also, GANs can be conditioned on
different information, like class labels (Mirza & Osindero (2014); Odena et al. (2017); Van den Oord
et al. (2016)), language description (Mansimov et al. (2016); Reed et al. (2016)), or an image from
another domain (Chen & Koltun (2017); Isola et al. (2017)). The latter is called Image-to-Image
translation.

Image-to-Image (I2I) translation I2I translation is the task of transforming an image from one
domain, such as a sketch, into a another domain, such as photo-realistic images. While there are
regression-based approaches to this problem (Chen & Koltun (2017); Hoshen & Wolf (2018)),
significant successes in this field are based on GANs and the influential work of pix2pix (Isola et al.
(2017)). Following the success of pix2pix (Isola et al. (2017)), I2I translation has since been utilized
in a large number of tasks, like inpainting (Pathak et al. (2016)), colorization (Zhang et al. (2016;
2017a)), super-resolution (Ledig et al. (2017)), rendering (Martin-Brualla et al. (2018); Meshry et al.
(2019); Thies et al. (2019)), and many more (Dong et al. (2017); Wang & Gupta (2016); Zhang et al.
(2017b)). There has also been works to extend this task to the unsupervised setting (Hoshen & Wolf
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Figure 1: Overview of our training pipeline. Stage 1: pretraining the style encoder E using a triplet
loss. Stages 2, 3: training the generator G, and finetuning both G,E together using GAN and
reconstruction losses.

(2018); Kim et al. (2017); Liu et al. (2017); Ma et al. (2019); Royer et al. (2017); Zhu et al. (2017a)),
to multiple domains (Choi et al. (2018)), and to videos (Chan et al. (2018); Wang et al. (2018b)).

Multi-modal I2I translation Image translation networks are typically deterministic function approx-
imators that learn a one-to-one mapping between inputs and outputs. To extend I2I translation to
the case of diverse multi-modal outputs, Zhu et al. (2017b) proposed the BicycleGAN framework
that learns a latent distribution that encodes the variability in the output domain and conditions the
generator on this extra latent vector for multi-modal image synthesis. Wang et al. (2018a;b) learn
instance-wise latent features for different objects in a target image, which are clustered after training
to find f fixed modes for different semantic classes. At test time, they sample one of the feature
clusters for each object to achieve multi-modal synthesis. Other works extended the multi-modal
I2I framework to the unpaired settings where images from the input and output domains are not
in correspondence (Almahairi et al. (2018); Huang et al. (2018); Lee et al. (2018)) by augmenting
BicycleGAN with different forms of a cross-cycle consistency constraint between two unpaired
images. In our work, we focus on the supervised setting of multi-modal I2I translation. We propose a
simple, yet effective, pretraining strategy to learn a latent distribution that encodes variability in the
output domain. The learned distribution can be easily adapted to new unseen datasets with simple
fine-tuning, instead of training from random initialization.

3 APPROACH

Current multi-modal image translation networks require an extra input z that allows for modelling the
one-to-many relation between an input domain A and an output domain B as a one-to-one relation
from a pair of inputs (A, z) → B. In previous approaches, there has been a trade-off between
simplicity and effectiveness for providing the input z. On one hand, providing random noise as
the extra input z maintains a simple training objective (same as in pix2pix (Isola et al. (2017))).
However, Isola et al. (2017); Zhu et al. (2017b) showed that the generator has little incentive to utilize
the input vector z since it only encodes random information, and therefore the generator ends up
ignoring z and collapsing to one or few modes. On the other hand, BicycleGAN (Zhu et al. (2017b))
combines the objectives of both conditional Variational Auto-Encoder GANs (cVAE-GAN) and
conditional Latent Regressor GANs (cLR-GAN) to learn a latent embedding z simultaneously with
the generator G. Their training enforces two cycle consistencies: B → z → B̂ and z → B̃ → ẑ.
This proved to be very effective, but the training objective is more involved, which makes the training
slower. Also, since the latent embedding is being trained simultaneously with the the generator,
hyper-parameter tuning becomes more critical and sensitive.

We aim to combine the best of both worlds: an effective training of a latent embedding that models
the distribution of possible outputs, while retaining a simple training objective. This would allow
for faster and more efficient training, as well as less sensitivity to hyper-parameters. We observe
that the variability in many target domains can be represented by the style diversity of images in
the target domain B, where the style is defined in terms of the gram matrices used in the Neural
Style Transfer literature (Gatys et al. (2016)). Then, we learn an embedding by separately training an
encoder network E on an auxiliary task to optimize for z = E(IB) capturing the style of an image
IB . Finally, since we now have learned a deterministic mapping between z and the style of the target
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Figure 2: Qualitative comparison with baselines. Ours better matches the ground truth (GT) style.
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Figure 3: Style transfer for different datasets. For each dataset, we show output for applying different
styles to the same input image.

output image IB , training the generator G becomes simpler as G is just required to discover the
correlation between output images and their corresponding style embedding z.

To incorporate this into BicycleGAN (Zhu et al. (2017b)), we replace the simultaneous training of the
encoder E and the generator G with a staged training as follows:

Stage 1: Pretrain E on a proxy task that optimizes an embedding of images in the output domain B
into a low-dimensional style latent space, such that images with similar styles lie closely in
that space (i.e. clustered).

Stage 2: Train the generator network G while fixing the encoder E, so that G learns to associate the
style of output images to their deterministic style embedding z = E(IB).

Stage 3: Fine-tune both the E and G networks together, allowing for the style embedding to be
further adapted to best suit the image synthesis task for the target domain.

The intuition why such staged training would be effective for multi-modal I2I translation is that
the encoder is pretrained to model different modes of the output distribution as clusters of images
with similar styles (refer to the supp. material, figures 6,7, for a visualization of pretrained latent
embeddings). During stage 2, the latent space is kept fixed, and the input latent to the generator
can be used to clearly distinguish the style cluster to which the output belongs, which makes the
multi-modal synthesis task easier for the generator. Finally, stage 3 finetunes the learned embedding
to better serve the synthesis task at hand. Next, we explain how to pre-train the style encoder network
E in Section 3.1, and how to train the generator G using the pre-learned embeddings (Section 3.2).
Finally, we demonstrate the generalization of pre-training the style encoder E in Section 3.3.

3.1 PRE-TRAINING THE STYLE ENCODER E

The goal of pre-training the encoder network E is to learn a deterministic mapping from the style of a
target image IBi ∈ B to a latent style code zi = E(IBi ). Ideally, images with similar styles should be
close in the style embedding space, while images with different styles should be far from each other.
To supervise training such embedding, we utilize the style loss (Gatys et al. (2016)) as a distance
metric to measure the style similarity between any two given images. The style encoder network
E is then trained using a triplet loss (Schroff et al. (2015)), where the input is a triplet of images
(Ia, Ip, In), where (Ia, Ip) have similar style, while (Ia, In) have different style, as measured by the
style loss metric. The training objective for E is given by:

Ltri(Ia, Ip, In) =max
([
‖za − zp‖2 − ‖za − zn‖2 + α

]
, 0
)
+ λLreg (za, zp, zn) (1)
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Figure 4: Style interpolation. Left column is the input to the generator G, second and last columns
are input style images to the style encoder, and the middle images are linear interpolation in the
embedding space.

where α is a separation margin, λ is a relative weighting parameter between the main triplet objective
and an optional regularization term Lreg(·) which is an L2 regularization to encourage learning a
compact latent space.

Triplet selection. To generate triplets for pre-training the encoder E, we compute the set of kc
closest and kf furthest neighbors for each anchor image Ia as measured by the style loss. Then, for
each anchor image Ia, we randomly sample a positive image Ip and a negative image In from the
set of closest and furthest neighbors respectively. We found that, for large datasets, it is sufficient to
generate triplets for a subset of the training images. One challenge is the set of images with an outlier
style. Such images will be furthest neighbors to most images, and can mislead the training by just
projecting outlier images to separate clusters. To deal with this, we sample the negative style image
In from a larger set of furthest neighbors; while the positive image Ip is sampled from a small set of
closest neighbors so that it would have reasonable style similarity to the anchor image.

3.2 GENERATOR TRAINING

After pre-training the style encoder E (stage 1), we have established a mapping from images in
the output domain, IB ∈ B, to their style-embedding z = E(IB). Feeding the style embedding
as input to the generator during training, the generator has good incentive to associate the style of
output images to their corresponding style embedding instead of learning to hallucinate the style. It’s
important to retain the deterministic correspondence between images and their style codes to facilitate
the job of the generator to discover this correlation. This is why, during stage 2, we keep the weights
of the style encoder E fixed. The forward pass reconstructs a training image IBi as ÎBi = G(IAi , zi),
where zi = E(IBi ). The training objective is similar to that of pix2pix (Isola et al. (2017)),

Limg(IBi , Î
B
i ) = LcGAN(I

B
i , Î

B
i ) + λrecLrec(I

B
i , Î

B
i ) (2)

where we use the Least Square GAN loss (LSGAN) (Mao et al. (2017)) for the LcGAN term, and
a VGG-based perceptual loss (Johnson et al. (2016)) for the reconstruction term Lrec. Once the
generator has learned to associate the output style with the input style embedding, stage 3 fine-tunes
both the generator G and the style encoder E together using the same objective (2).

Style sampling. To perform multimodal synthesis on a given input at test time, we can capture the
latent vector z from any existing image and transfer the style to the generated image. However, if we
wish to sample styles directly from the latent distribution, we can optionally enforce a prior on the
latent distribution. For example, we can add a KL divergence term on the latent vectors to enforce a
unit Gaussian prior. In our experiments, we found it more effective to add an L2 regularization on the
the latent vectors to enforce zero-mean embeddings and limit the variance of the latent space. We
then compute an empirical standard deviation for sampling. Another alternative to enable sampling is
to train a mapper networkM to map the unit Gaussian to the latent distribution. This can be done as
a post-processing step after the style encoder has been trained and finetuned. Specifically, we follow
the nearest-neighbor based Implicit Maximum Likelihood Estimation (IMLE) training (Li & Malik
(2018); Hoshen et al. (2019)) to train the mapper networkM. The training objective is given by:

M = argmin
M̃

∑
i

‖zi − M̃(ei)‖22, ei = argmin
rj

‖zi −M(rj)‖22 (3)

where {rj} is a set of random samples from the unit Gaussian prior, and for each latent code zi, we
select ei that maps to the nearest neighborM(ei) to zi.
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Figure 5: Style sampling for different datasets using our approach v3. We sample either fromN(µ, σ),
where µ, σ are computed from the train set (middle), or using the mapper networkM (right).

3.3 GENERALIZING THE PRE-TRAINING STAGE

The goal of the style pretraining is to learn an embedding that mimics the style loss, where images
with similar style lie closely in that space. Since the definition of image style in neural style transfer
literature is general and is not dependent on a specific image domain, encoding an image I to its style
embedding can also be seen as a general task that is independent of the output domain B. This allows
for performing the pretraining stage only once using auxiliary training data. The finetuning stage
eventually tweaks the embedding to better suit the specific target domain B. We show experimentally
in Section 4 that pretraining the style encoder on datasets other than the target domain B doesn’t
degrade the performance. It can even improve the performance if the target dataset is small, in which
case pretraining on an auxiliary dataset helps with the generalization of the overall model.

4 EXPERIMENTAL EVALUATION

Datasets. We evaluate our approach on five standard I2I translation benchmarks used in Isola et al.
(2017); Zhu et al. (2017b); Architectural labels→ photo, aerial→map, edges→ shoes/handbags and
night→ day. In addition, we use the Space Needle timelapse dataset (Martin-Brualla, 2007), which
consists of 2068 paired images with a 8280 × 1080 resolution, where the input domain includes
images with temporally smoothed appearance, and the output domain contains real images spanning
different lighting and weather conditions.
Baselines. While we report numbers for retrained models using the code released with BicycleGAN
(BicycleGAN v0) for completeness, we mainly compare to two stronger baselines:

• BicycleGAN v1: we implement BicycleGAN using the same network architecture as used
in our approach to have a fair comparison.

• BicycleGAN v2: we augment BicycleGAN with the cross-cycle consistency constraint
introduced in (Huang et al., 2018; Lee et al., 2018) as follows: the input is a pair of
training examples (IA1 , I

B
1 ), (IA2 , I

B
2 ) for which we obtain their respective style embeddings

z1 = E(IB1 ), z2 = E(IB2 ). We then apply a 2-step cyclic reconstruction of IB1 , I
B
2 ; in the

first step, we generate both images with a swapped style u = G(IA1 , z2), v = G(IA2 , z1).
In the the second step, we re-capture the latent style vectors ẑ2 = E(u), ẑ1 = E(v)

and generate the original images IB1 , I
B
2 by swapping the style again: ÎB1 = G(IA1 , ẑ1),

ÎB2 = G(IA2 , ẑ2). We add a cyclic reconstruction term for ÎB1 , Î
B
2 .

4.1 EVALUATION

Image reconstruction. We report the reconstruction quality of validation set images, using both
PSNR and AlexNet-based LPIPS (Zhang et al., 2018) metrics, in Table 1. Note that our results without
fine-tuning (stage 2) are on-par-with the baselines, which verifies the validity of our approach and
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Table 1: Validation set reconstruction quality, as measured by PSNR (higher is better) and
LPIPS (Zhang et al., 2018) (lower is better), for various datasets. We compare between retrain-
ing BicycleGAN (Zhu et al., 2017b) authors’ released code (Bicycle v0), our implementation of the
two baselines (BicycleGAN v1 and BicycleGAN v2) described in Section 4, and our approach both
before finetuning (ours - stage 2), and after finetuning (ours - stage 3).

edge2shandbags edges2shoes labels2facades night2day maps space needle
PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

Bicycle v0 17.08 0.255 20.24 0.177 12.64 0.431 13.25 0.520 14.32 0.396 – –

Bicycle v1 18.52 0.198 21.84 0.124 13.08 0.378 13.88 0.491 14.67 0.359 19.72 0.233
Bicycle v2 19.23 0.192 22.51 0.132 13.36 0.375 14.48 0.480 16.17 0.407 19.84 0.238

ours - stage 2 18.01 0.209 21.40 0.140 13.44 0.383 14.34 0.476 15.08 0.392 21.39 0.227
ours - stage 3 18.91 0.177 22.68 0.117 13.44 0.370 15.05 0.452 15.15 0.349 22.11 0.187

Table 2: Generalization of a pretrained style en-
coder E. We report validation set reconstruction
for the edges2handbags and night2day datasets
when pretraining with different datasets. Stages
2, 3 show results before/after finetuning E respec-
tively.

Dataset pretrain dataset Stage 2 Stage 3

PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

edges2handbags
edges2handbags 18.01 0.209 18.91 0.177
edges2shoes 17.89 0.215 18.96 0.176
space_needle 17.86 0.221 19.02 0.175

night2day
night2day 13.75 0.489 15.15 0.454
space_needle 14.34 0.476 15.05 0.452
edges2handbags 13.91 0.492 15.03 0.461

Table 3: Diversity score is the average LPIPS
distance (Zhang et al., 2018). User preference
score is the percentage a method is preferred
over Ours v4, on the edges2shoes dataset.

Approach LPIPS ↑
(transfer)

LPIPS ↑
(sampling)

User
preference ↑

Bicycle v1 0.102 0.119 30.0%
Bicycle v2 0.138 0.132 37.7%

Ours v1 0.153 0.148 46.5%
Ours v2 0.171 0.140 41.1%
Ours v3 0.149 0.165 50.4%
Ours v4 0.154 0.132 50%

that style-based encoder pre-training successfully learns to distinguish different modes in the output
domain, which proves effective for training multi-modal I2I networks. Fine-tuning (stage 3) further
improves our results compared to the baselines. Figure 2 shows qualitatively how our approach
reconstructs the target style more faithfully.

Style transfer and sampling. Figure 3 shows style transfer to validation set images from different
datasets. We can also sample random styles directly from the the latent distribution as described in
Section 3.2. Figure 5 shows results for both adhoc sampling from the assumed N(µ, σ) empirical
distribution, as well as formally sampling from a unit Gaussian using the mapper networkM. While
both results look good, we note that the assumption for adhoc sampling is not explicitly enforced,
and thus could sample bad style codes outside the distribution (see Appendix A.5 for examples).

Style interpolation. Figure 4 shows style interpolation by linearly interpolating between two latent
vectors. Note the smooth change in lighting and cloud patterns when going from cloudy to sunny
(second row).

Pre-training generalization. Since the notion of style, as defined in the Neural Style Transfer
literature, is universal and not specific to a certain domain, we hypothesized that style-based encoder
pretraining would learn a generic style embedding that can generalize across multiple domains and
be effective for multi-modal image I2I translation. Here, we experimentally verify our hypothesis in
Table 2. For a target dataset, we train the generator G three times, each with different pre-training of
the style encoderE: (1) same dataset pre-training: pre-trainE using the output domainB of the target
dataset. (2) similar-domain pre-training: pre-train on a different dataset, but whose output domain
bears resemblance to the output domain of the target dataset (e.g., edges2shoes and edges2handbags,
or day images from night2day and the Space Needle timelapse dataset). (3) different-domain pre-
training: pre-train on a different dataset whose output domain has different styles from that of the
target dataset (e.g., edges2handbags and the Space Needle timelapse datasets, or night2day and
edges2handbags datasets). Table 2 shows that without fine-tuning (stage 2), the edges2handbags
dataset shows a slight performance degradation when going from pre-training on the same dataset,
to pre-training on a similar-domain dataset, and finally pre-training on a different-domain dataset.
On the other hand, the night2day dataset has only ∼100 unique scenes for training. So, pre-training
on another dataset such as Space Needle generalizes better to new scenes in the validation set, since
it helps avoid overfitting the small number of unique scenes in the training set. After fine-tuning,
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Table 4: Ablation study on the effect of different components and loss terms using the edges2handbags
dataset. We study direct and cyclic reconstructions on ground truth images (dir_recon, cyc_recon),
discriminator loss on direct reconstructions and on generated images with a randomly sampled style
(D_dir, D_rand_z), latent reconstruction (z_recon), L2 and KL regularization on the latent vector z
(z_L2, z_KL), and finally the use of VAE vs. just an auto-encoder.

Approach
Loss setup

PSNR↑ IS↑ LPIPS ↓
dir_recon cyc_recon D_dir D_rand_z z_recon z_L2 z_KL VAE

Bicycle v1 3 – 3 3 3 – 3 3 18.28± 0.30 2.31± 0.05 0.201± 0.003

Bicycle v2 3 3 3 3 3 – 3 3 18.96± 0.30 2.45± 0.07 0.192± 0.002

Bicycle v1.2 3 – 3 3 3 – 3 – 19.02± 0.10 2.36± 0.12 0.175± 0.001

Bicycle v2.2 3 3 3 3 3 – 3 – 19.34± 0.07 2.44± 0.06 0.176± 0.002

Bicycle v1.3 3 – 3 3 3 3 – – 19.21± 0.06 2.34± 0.08 0.177± 0.002

Bicycle v2.3 3 3 3 3 3 3 – – 19.24± 0.09 2.33± 0.04 0.180± 0.001

Ours v1 3 3 3 3 3 3 – – 18.97± 0.13 2.41± 0.07 0.189± 0.004

Ours v2 3 – 3 3 3 3 – – 18.94± 0.10 2.43± 0.03 0.183± 0.002

Ours v3 3 – 3 – – 3 – – 18.94± 0.05 2.42± 0.03 0.176± 0.001

Ours v4 3 – 3 – – – – – 18.94± 0.02 2.46± 0.03 0.177± 0.001

performance differences further reduce to be insignificant. We also investigate the generalization of
encoder pre-training using non-style distance metrics in Appendix A.4.
Ablative study. We investigate the role of different loss terms as we transition from the loss setup of
baselines to that of our training approach. We first remove the variational part in both BicycleGAN v1
and BicycleGAN v2 baselines resulting in Bicycle v1.2, v2.2. We further remove the Gaussian prior
and replace the KL loss with an L2 regularization in Bicycle v1.3, v2.3. To maintain random latent
vector sampling during training without a prior, we sample a random training image, and use its style
code. We define different versions of our approach (v1, v2, v3, and v4) based on different loss setup
during training as follows: we start with ‘Ours v1’, which has the same setup as Bicycle v2.3, except
that it uses pre-trained embeddings as described in Section 3.1. We then remove cyclic reconstruction,
random z sampling, and L2 regularization terms resulting in ‘Ours v2’, ‘v3’, and ‘v4’ respectively.
We run each setup on the edges2handbags dataset. In order to draw more reliable conclusions, we
repeat each experiment 3 times and report the mean and standard deviation in Table 4. We notice that
removing the variational part in VAEs is enough to achieve good results. While VAEs in general are
robust to noise in the input latent, we observe that this comes at the expense of the expressiveness of
the latent space (e.g., less faithful style capture and transfer), especially for low dimensional latents.
We also observe that our approach generally performs better with less constraints (loss terms). For
example, “Ours v1, v2” have lower results than their “Bicycle v1.3, v2.3” counterparts. This shows
that the main benefit of pre-trained embeddings is when the network is less constrained.

Diversity and user study. We evaluate diversity by computing the average LPIPS distance over
1600 output images. We measure diversity on two setups: we sample 100 validation images, and (1)
apply style transfer from 16 randomly sampled images, or (2) we sample 16 random codes using the
mapper networkM to obtain 1600 outputs. We also measure the realism and faithfulness of style
transfer through a user study, where 30 participants are shown an input shoe sketch, an input style
image and two style transfer outputs. They are given unlimited time to choose which output looks
more realistic, and if both are realistic, then which transfers the style more faithfully. We fix ‘Ours
v4’ approach as anchor and compare other methods to it. Table 3 shows that the baselines achieve
lower diversity and user preference compared to our approach, specially in the style transfer setup.
Different variations of our method, except for ‘Ours v2’ yield similar diversity and user preference
scores. We observe that ‘Ours v2’ shows artifacts in some outputs, leading to higher diversity but
lower user preference. Our diversity results for the style sampling setup have some variation and are
sensitive the mapper network training, but are still either on-par or better than the baselines.

Conclusion. We investigated the effectiveness of embedding pre-training for the task of multi-
modal I2I translation. The pre-training can be done once on auxiliary data, and generalizes well
to other domains. This allows for a faster training of I2I translation networks with fewer losses
and achieves more faithful style capture and transfer. Furthermore, we studied the contribution of
different loss terms, where we discovered that noise added by a variational auto-encoder can limit
the expressiveness of low-dimensional latent spaces. Finally, we achieved state-of-the-art results on
several benchmarks.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The generator network G has a symmetric encoder-decoder architecture based on Wang et al. (2018a),
with extra skip connections by concatenating feature maps of the encoder and decoder. We use a
multiscale-patchGAN discriminator (Wang et al., 2018a) with 3 scales and employ a LSGAN (Mao
et al., 2017) loss. The mapper network M is a multi-layer perceptron (MLP) with three 128-
dimensional hidden layers and a tanh activation function. For the reconstruction loss, we use the
perceptual loss (Johnson et al., 2016) evaluated at convi,2 for i ∈ [1, 5] of VGG (Simonyan &
Zisserman, 2014) with linear weights of wi = 1/26−i for i ∈ [1, 5]. The architecture of the style
encoder E is adopted from Lee et al. (2018), and we use a latent style vector z ∈ R8. Our optimizers
setup is similar to that in Zhu et al. (2017b). We use three Adam optimizers: one for the generator G
and encoder E, another for the discriminator D, and another optimizer for the generator G alone with
β1 = 0, β2 = 0.99 for the three optimizers, and learning rates of 0.001, 0.001 and 0.0001 respectively.
We use a separate Adam optimizer for the mapper networkM with β1 = 0.5, β2 = 0.99, and a
learning rate of 0.01 with a decay rate of 0.7 applied every 50 steps. Relative weights for the loss
terms are λcGAN = 1, λrec = 0.02 and λL2 = 0.01 for the GAN loss, reconstruction loss, and L2
latent vector regularization respectively. When sampling triplets for any anchor image Ic, we use
kc = 5, kf = 13 for the size of the set of close and far neighbors respectively.

A.2 MORE QUANTITATIVE COMPARISON

We report the Inception Score (IS) computed over the validation set of various datasets in Table 5.
Surprisingly, results after finetuning (“ours - stage 3”) are slightly worse than those before finetuning
(“ours - stage 2”), but both are still better than the baselines except for the maps dataset. We also
note the Inception Score is not very suited to image-to-image translation tasks, since it prefers output
diversity with respect to ImageNet classes, not within-class diversity as in our case.

Table 5: Inception score comparison (higher is better) for different datasets.

handbags shoes facades night2day maps space needle

Bicycle v1 2.13 2.83 1.41 1.65 3.26 1.82
Bicycle v2 2.07 2.64 1.45 1.74 3.57 1.77
ours - stage 2 2.22 2.75 1.61 1.76 3.32 1.90
ours - stage 3 2.15 2.85 1.56 1.84 3.28 1.89

A.3 LATENT SPACE VISUALIZATION

Figure 6a visualizes the latent space learned by the style encoder E after pretraining and before
finetuning (a), after finetuning (b), and the latent space learned by BicycleGAN (Zhu et al., 2017b)
(c). The embedding learned through pretraining and before finetuning shows meaningful clusters.
Finetuning further brings the embedding closer to that of BicycleGAN.

A.4 ENCODER PRE-TRAINING WITH NON-STYLE METRICS

Pre-training the encoder using a style-based triplet loss showed to be successful for multi-modal
image translation tasks where the variability in the target domain is mainly color-based. This is
shown in the results obtained on several benchmarks, even before the finetuning stage (“ours - stage
2” in Table 1). We note though that the usage of style-loss as a distance metric for triplet sampling is
just one choice and can be replaced with other distance metrics depending on the target application.
Triplet sampling with style distance results in learning an embedding space where images with similar
colors/styles lie closely in that space as shown in Section A.3. If, for example, we sample triplets
instead based on the distance between VGG-Face (Parkhi et al., 2015) embeddings, the encoder
will learn a latent space which is clustered by identity. In this section, we aim to validate that the
proposed pre-training strategy can be extended to multi-modal image-to-image translation tasks with
non-style variability. We inspect the task of manipulating facial expressions, where the input is a
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neutral face, and the output can have other emotions or facial expressions. For this task, similar
emotions should be embedded closely in the latent space. We therefore use an off-the-shelf facial
expression recognition system to compute the emotion similarity/distance between any pair of images.
Specifically, we compute the emotion distance as the euclidean distance between the 512-dimensional
feature map of the last layer of a pretrained classification network (e.g., (Jie, 2018)). We visualize the
learned latent space in Figure 7, which shows clusters with similar emotions or facial expressions.
We also show example translation results on a holdout set of the front-view images of the KDEF
dataset (KDEF, 2017) in Figure 8. We note that the generator successfully learns to manipulate
facial expressions based solely on the pre-trained embeddings (without the finetuning stage). On the
other hand, the BicycleGAN-based baselines collapsed to a single mode (over 3 different runs). This
shows that our staged-training approach is stable and not sensitive to hyper-parameters, unlike the
BicycleGAN baselines which will require careful hyper-parameter tuning to work properly on this
task. We also point out that the poor output quality is mainly due to using a pixel-wise reconstruction
loss for the generator training, while the input-output pairs in this dataset are not aligned. We didn’t
investigate improving the generator training as this is orthogonal to verifying the generalization of
encoder pre-training.

A.5 STYLE SAMPLING COMPARISON

Figure 9 compares style sampling using the mapper networkM vs adhoc sampling from the assumed
N(µ, σ) of an L2-regularized latent space, where µ, σ are empirically computed from the training set.
Note that adhoc sampling can sometimes sample bad style codes outside the distribution (e.g. third
image in first row, and first image in third row in the right side of Figure 9), since the assumption that
a L2-regularized space would yield normally distributed latents with zero mean and low standard
deviation is not explicitly enforced.

A.6 TRAINING TIME

Simplifying the training objective allows for faster training time, as well as a larger batch size due to
lower memory usage. Table 6 shows the processing time per 1000 training images for the baselines
as well as different variations of our approach as defined in Table 4.

Table 6: Training time (in seconds) per 1000 images for the
baselines, as well as different versions of our approach (defined
in Table 4).

Approach Batch
size

time/kimg↓
(sec)

Max
batch size

time/kimg↓
(sec)

Bicycle v1 8 93.11 12 85.36
Bicycle v2 8 155.72 8 155.72

Ours v1 8 145.50 8 145.50
Ours v2 8 98.55 12 93.04
Ours v3 8 64.92 16 53.80
Ours v4 8 63.96 16 51.23

A.7 CONVERGENCE ANALYSIS

Figure 10 compares the convergence of our staged training compared to the BicycleGAN baselines.
The dotted line in the graph marks the transition between stages 2 and 3 of our training (i.e, switching
from a fixed pre-trained encoder E to finetuning both G and E together). We measure the recon-
struction error (LPIPS) of the validation set of the edges2handbags dataset as the training progresses.
Results show that with a fixed pre-trained encoder, staged training starts with higher error than the
baselines, but quickly drops to show similar performance as the baselines, and even beats the baselines
before switching to stage 3 (marked by a dotted line). When starting to finetune the encoder E, we get
a spike in the reconstruction error as the network adapts to the shift in the pre-trained embeddings, but
then the performance of the staged training steadily widens the performance gap with the baselines.
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This shows the importance of the finetuning stage to tweak the pre-trained embeddings to better serve
the image synthesis task.

14



Under review as a conference paper at ICLR 2020

(a) Our approach: after style pretraining.

(b) Our approach: after finetuning.

(c) BicycleGAN v1 baseline.

Figure 6: t-SNE plots for the latent style space learned by the style encoder E (a) after style
pretraining, (b) after finetuning, and (c) using the BicycleGAN v1 baseline.

15



Under review as a conference paper at ICLR 2020

Figure 7: t-SNE plot for the pre-trained latent space learned for facial expressions on a subset of the
KDEF dataset.

Ours

Bicycle v1

Bicycle v2

Input Different emotions

Figure 8: Emotion translation results. First row shows the input image, as well as the ground truth
images from which we encode the latent emotion vector for reconstruction. Our staged training
approach is able to achieve multi-modal synthesis, while the baselines collapse to a single mode.

Sampling using the mapper network 𝓜 Sampling from empirical N(μ, 𝜎)

Figure 9: Sixteen randomly sampled styles using both the mapper networkM (left), as well as adhoc
sampling from the empirically computed N(µ, σ) distribution of a L2-regularized latent space (right).
Adhoc sampling could sample bad style codes outside the latent distribution (marked in red).
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Figure 10: Convergence comparison between the proposed staged training (ours - v3) and the
BicycleGAN baselines measured by the reconstruction error (LPIPS) of the validation set of the
edges2handbags dataset. Dotted line shows the transition between stages 2 and 3 of our training (i.e,
switching from a fixed E to finetuning both G and E together).

17


	Introduction
	Related work
	Approach
	Pre-training the style encoder E
	Generator training
	Generalizing the pre-training stage

	Experimental evaluation
	Evaluation

	Appendix
	Implementation details
	More quantitative comparison
	Latent space visualization
	Encoder pre-training with non-style metrics
	Style sampling comparison
	Training time
	Convergence analysis


