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ABSTRACT

Graph convolutional neural networks have recently shown great potential for the
task of zero-shot learning. These models are highly sample efficient as related
concepts in the graph structure share statistical strength allowing generalization to
new classes when faced with a lack of data. However, we find that the extensive
use of Laplacian smoothing at each layer in current approaches can easily dilute
the knowledge from distant nodes and consequently decrease the performance in
zero-shot learning. In order to still enjoy the benefit brought by the graph structure
while preventing the dilution of knowledge from distant nodes, we propose a Dense
Graph Propagation (DGP) module with carefully designed direct links among
distant nodes. DGP allows us to exploit the hierarchical graph structure of the
knowledge graph through additional connections. These connections are added
based on a node’s relationship to its ancestors and descendants. A weighting
scheme is further used to weigh their contribution depending on the distance to
the node. Combined with finetuning of the representations in a two-stage training
approach our method outperforms state-of-the-art zero-shot learning approaches.

1 INTRODUCTION

With the ever-growing supply of image data, from an ever-expanding number of classes, there is an
increasing need to use prior knowledge to classify images from unseen classes into correct categories
based on semantic relationships between seen and unseen classes. This task is called zero-shot image
classification. To obtain satisfactory performance on this task, it is crucial to model precise class
relationships based on prior class knowledge. Previously prior knowledge has been incorporated in
form of semantic descriptions of classes, such as attributes (Akata et al., 2015; Romera-Paredes &
Torr, 2015; Long et al., 2017) or word embeddings (Socher et al., 2013; Frome et al., 2013; Li et al.,
2017), or by using semantic relations such as knowledge graphs (Palatucci et al., 2009; Rohrbach
et al., 2011; Salakhutdinov et al., 2011; Lu, 2016). Approaches that use knowledge graphs are
less-explored and generally are based on the assumption that unknown classes can exploit similarity
to known classes. Recently the benefit of hybrid approaches that combine knowledge graph and
semantic class descriptions has been illustrated (Wang et al., 2018).

The current state-of-the-art approach Wang et al. (2018) processes knowledge graphs by making
use of recent developments in applying neural network techniques to non-euclidean spaces, such
as graph and manifold spaces (Bronstein et al., 2017). A deep graph convolutional neural network
(GCN) (Kipf & Welling, 2017) is used and the problem is phrased as weight regression, where the
GCN is trained to regress classifier weights for each class. GCNs balance model complexity and
expressiveness with a simple scalable model relying on the idea of message passing, i.e. nodes pass
knowledge to their neighbors. However, these models were originally designed for classification tasks,
albeit semi-supervised, an arguably simpler task than regression. In recent work, it has been shown
that GCNs perform a form of Laplacian smoothing, where feature representations will become more
similar as depth increases leading to easier classification (Li et al., 2018). In the regression setting,
instead, the aim is to exchange information between nodes in the graph and extensive smoothing
is not desired as it dilutes information and does not allow for accurate regression. For instance, in
a connected graph all features in a GCN with n layers will converge to the same representation as
n→∞ under some conditions, hence washing out all information (Li et al., 2018).
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(b) Dense Graph Propagation

Figure 1: a) Illustration of graph propagation in a GCN (Kipf & Welling, 2017) for node ’Cat’.
Here, graph propagation represents the knowledge that a node receives in a single layer for previous
approaches. b) Proposed dense graph propagation for node ’Cat’. The node receives knowledge from
all its descendants during the descendant phase (blue arrows) and its ancestors during the ancestor
phase (red arrows). This leads to a densely connected graph where knowledge can directly propagate
between related nodes. Weights αk are used to weigh nodes that are k-hops away from a given node.

We, therefore, argue that this approach is not ideal for the task of zero-shot learning and that
the number of layers in the graph should be small in order to avoid smoothing. We illustrate this
phenomenon in practice, by showing that a shallow GCN consistently outperforms previously reported
results. We employ a model-of-models framework by training the method to predict a set of logistic
regression classifier for each class on top of a set of extracted features produced by a CNN. Choosing
a small number of layers, however, has the effect that knowledge will not propagate well through the
graph. A 1-layer GCN for instance only considers neighbors that are two hops away in the graph such
that only immediate neighbors influence a given node. Thus, we propose a dense connectivity scheme,
where nodes are connected directly to descendants/ancestors in order to include distant information.
These connections allow us to propagate information without many smoothing operations but leads
to the problem that all descendants/ancestors are weighed equally when computing the regression
weight vector for a given class. However, intuitively, nodes closer to a given node should have higher
importance. To remedy this, we extend this framework by adding a weighting scheme that considers
the distance between nodes in order to weigh the contribution of different nodes. Making use of
shared weights based on the distance also has the advantage that it only adds a minimal amount
of additional parameters, is computationally efficient, and provides a balance between increasing
flexibility of the model and keeping it restrictive enough to allow good predictions for the nodes of
the unseen classes. Figure 1 illustrates the difference in the way knowledge is propagated in this
proposed Dense Graph Propagation (DGP) module compared to a GCN layer.

To allow the feature extraction stage of the pre-trained CNN to adjust to the newly learned classifiers
we propose a two-phase training scheme. In the first step, the DGP is trained to predict the last
layer CNN weights. In the second phase, we replace the last layer weights of the CNN with the
weights predicted by the DGP, freeze the weights and finetune the remaining weights of the CNN by
optimizing the cross entropy classification loss on the seen classes.

Our contributions can be summarized as follows. We present
• an analysis of our intuitions for zero-shot learning and illustrate how these intuitions can be

combined to design a DGP that outperforms previous zero-shot learning results.1
• our DGP module, which explicitly exploits the hierarchical structure of the knowledge graph

in order to perform zero-shot learning by more efficiently propagating knowledge through
the proposed dense connectivity structure.
• a novel weighting scheme for the dense model based on the distance between nodes.
• experimental results on various splits of the 21K ImageNet dataset, a commonly used large-

scale dataset for zero-shot learning. We obtain relative improvements of more than 50%
over the previously reported best results.

1The source code for the experiments performed in this paper is available at: https://www.dropbox.
com/s/jz3kff4qdpcooq0/Code.zip?dl=0.
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Figure 2: DGP is trained to predict classifier weightsW for each node/class in a graph. These weights
are extracted from the final layer of a pre-trained ResNet. The graph is constructed from a knowledge
graph and each node is represented by its word embedding (semantic information). The network
consists of two phases, a descendant phase where each node receives knowledge form its descendants
and an ancestor phase, where it receives knowledge from its ancestors.

2 RELATED WORK

Graph convolutional networks are a class of graph neural networks, based on local graph oper-
ators (Bruna et al., 2013; Defferrard et al., 2016; Kipf & Welling, 2017). Their advantage is that
their graph structure allows the sharing of statistical strength between classes making these methods
highly sample efficient. After being introduced in Bruna et al. (2013), they were extended with an
efficient filtering approach based on recurrent Chebyshev polynomials, reducing their computational
complexity to the equivalent of the commonly used CNNs in image processing operating on regular
grids (Defferrard et al., 2016). Kipf & Welling (2017) further proposed simplifications to improve
scalability and robustness and applied their approach to semi-supervised learning on graphs. Their
approach is termed graph convolutional network (GCN).

Zero-shot learning has in recent years been considered from various set of viewpoints such as
manifold alignment (Deutsch et al., 2017; Li et al., 2017), linear auto-encoder (Kodirov et al.,
2017), and low-rank embedded dictionary learning approaches (Ding et al., 2017), using semantic
relationships based on attributes (Misra et al., 2017; Socher et al., 2013; Frome et al., 2013) and
relations in knowledge graphs (Wang et al., 2018; Mensink et al., 2012; Rohrbach et al., 2011;
Palatucci et al., 2009). One of the early works (Larochelle et al., 2008) proposed a method based
on the idea of a model-of-model class approach, where a model is trained to predict models based
on their description. Each class is modeled as a function of its description. This idea has recently
been used in another work in Wang et al. (2018), the work most similar to our own, where a graph
convolutional neural network is trained to predict logistic regression classifiers on top of pre-trained
CNN features. Wang et al. (2018) proposed to use GCNs (Kipf & Welling, 2017) to predict a set
of logistic regression classifiers, one for each class, on top of pre-trained CNN features in order to
predict unseen classes. Their approach has yielded impressive performance on a set of zero-shot
learning tasks and can, to the author’s knowledge be considered to be the current state-of-the-art.

3 APPROACH

Here we first formalize the problem of zero-shot learning and provide information on how a GCN
model can be utilized for the task of zero-shot learning and then describe our proposed model DGP.
Our zero-shot learning framework to address this task is illustrated in Figure 2. We train our DGP, to
predict the last layer CNN weights for each class/concept.

3.1 ZERO-SHOT LEARNING

Zero-shot classification aims to predict the class labels of a set of test data points to a set of classes
Cte. However, unlike in common supervised classification, the test data set points have to be assigned
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to previously unseen classes, given a L dimensional semantic representation vector z ∈ RL per class
C and a set of training data points Dtr = {( ~Xi, ci) i = 1, ..., N}, where ~Xi denotes the i-th training
image and ci ∈ Ctr the corresponding class label. Here C denotes the set of all classes and Cte and Ctr
the test and training classes, respectively. Note that training and test classes are disjoint Cte ∩ Ctr = ∅
for the zero-shot learning task. In this work, we perform zero-shot classification by using the word
embedding of the class labels and the knowledge graph to predict classifiers for each unknown class
in form of last layer CNN weights.

3.2 GRAPH CONVOLUTIONAL NETWORKS FOR ZERO-SHOT LEARNING

Given a graph with N nodes and with C input features per node, X ∈ RN×C is used to denote the
feature matrix. Here each node represents a distinct concept/class in the classification task and each
concept is represented by a word vector of the class name. The connections between the classes in
the knowledge graph are encoded in form of a symmetric adjacency matrix A ∈ RN×N , which also
includes self-loops. We employ a simple propagation rule to perform convolutions on the graph

H(l+1) = σ
(
D−1AH(l)Θ(l)

)
, (1)

where H(l) represents the activations in the lth layer and Θ ∈ RC×F denotes the trainable weight
matrix for layer l. For the first layer, H(0) = X . σ(·) denotes a nonlinear activation function, in our
case a Leaky ReLU. Dii =

∑
j Aij is a degree matrix D ∈ RN×N , which normalizes rows in A to

ensure that the scale of the feature representations is not modified by A. Similar to previous work
done on graph convolutional neural networks, this propagation rule can be interpreted as a spectral
convolution (Kipf & Welling, 2017).

The model is trained to predict the classifier weights for the seen classes by optimizing the loss

L =
1

2M

M∑
i=1

L∑
j=1

(Wi,j − W̃i,j)
2 , (2)

where W̃ ∈ RM×L denotes the prediction of the GCN for the known classes and therefore corresponds
to the M rows of the GCN output, which correspond to the training classes. M denotes the number
of training classes and L denotes the dimensionality of the weight vectors. The ground truth weights
are obtained by extracting the last layer weights of a pre-trained CNN and denoted as W ∈ RM×L.
During testing, the features of new images are extracted from the CNN and the classifiers predicted
by the GCN are used to classify the features.

3.3 DENSE GRAPH PROPAGATION MODULE

Our DGP for zero-shot learning aims to utilize the hierarchical graph structure for the zero-shot
learning task and avoids the dilution of knowledge by intermediate nodes. This is achieved using
a dense graph connectivity scheme consisting of two phases, namely the descendant propagation
phase and the ancestor propagation phase. This two-phase approach further enables the model to
learn separate relations between a node and its ancestors and a node and its descendants. Appendix B
provides empirical evidence for this choice. Unlike in the GCN, we do not use the knowledge graph
relations directly as an adjacency graph to include information from neighbors further away. We
do therefore not suffer from the problem of knowledge being washed out due to averaging over the
graph. Instead, we introduce two separate connectivity patterns, one where nodes are connected to
all their ancestors and one where nodes are connected to all descendants. We utilize two adjacency
matrices Aa ∈ RN×N that denotes the connections from nodes to their ancestors and adjacency
matrix Ad that denotes the connections from nodes to their descendants. Note, Ad = AT

a . Unlike
in previous approaches, this connectivity pattern allows nodes direct access to knowledge in their
extended neighborhood as opposed to knowledge that has been modified by intermediate nodes. Note
that both these adjacency matrices include self-loops. The connection pattern is illustrated in Figure 1.
The same propagation rule as in Equation 1 is applied consecutively for the two connectivity patterns
leading to the overall DGP propagation rule

H = σ
(
D−1a Aaσ

(
D−1d AdXΘd

)
Θa

)
. (3)
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Distance weighting scheme In order to allow DGP to weigh the contribution of various neighbors in
the dense graph, we propose a weighting scheme that weighs a given nodes neighbors based on the
graph distance from the node. Note, the distance is computed on the knowledge graph and not the
dense graph. We use wa = {wa

i }Ki=0 and wd = {wd
i }Ki=0 to denote the weights for the ancestor and

the descendant propagation phase, respectively. wa
i and wd

i correspond to weights for nodes that are
i hops away from the given node. wa

0 , w
d
0 correspond to self-loops and wa

K , w
d
K correspond to the

weights for nodes further than K − 1 hops away. We normalize the weights using a softmax function
αa
k = softmax(wa

k) =
exp(wa

k)∑K
i=0 exp(wa

i )
. Similarly, αd

k = softmax(wd
k). The weighted propagation rule

in Equation 3 becomes

H = σ

(
K∑

k=0

αa
kD

a−1

k Aa
kσ

(
K∑

k=0

αd
kD

d−1

k Ad
kXΘd

)
Θa

)
, (4)

where Aa
k and Ad

k is used to denote the parts of the adjacency matrices that only contains the k-
hop edges for the ancestor and descendant propagation phase, respectively. Da

k and Dd
k are the

corresponding degree matrices for Aa
k and Ad

k.

3.4 FINETUNING

Training of the proposed model is done in two stages, where the first stage trains the DGP to predict
the last layer weights of a pre-trained CNN using Equation 2. Note, W̃ , in this case, contains the
M rows of H , which correspond to the training classes. In order to allow the feature representation
of the CNN to adapt to the new class classifiers, we train the CNN by optimizing the cross-entropy
classification loss on the seen classes in a second stage. During this stage, the last layer weights are
fixed to the predicted weights of the training classes in the DGP and only the feature representation
is updated. This can be viewed as utilizing the DGP as a constraint for the CNN, as we indirectly
incorporate the graph information in order to constrain the CNN output space.

3.5 TRAINING DETAILS

We use a ResNet-50 (He et al., 2015) model that has been pre-trained on the ImageNet 2012 dataset.
Following Wang et al. (2018), we use the GloVe text model (Pennington et al., 2014), which has
been trained on the Wikipedia dataset, as the feature representation of our concepts in the graph. The
DGP model consists of two layers as illustrated in Equation 3 with feature dimensions of 2048 and
the final output dimension corresponds to the number of weights in the last layer of the ResNet-50
architecture, 2049 for weights and bias. Following the observation of Wang et al. (2018), we perform
L2-Normalization on the outputs as it regularizes the outputs into similar ranges. Similarly, we also
normalize the ground truth weights produced by the CNN. We further make use of Dropout (Srivastava
et al., 2014) with a dropout rate of 0.5 in each layer. The model is trained for 3000 epochs with a
learning rate of 0.001 and weight decay of 0.0005 using Adam (Kingma & Ba, 2015). We make use of
leaky ReLUs with a negative slope of 0.2. The number of values per phaseK was set to 4 as additional
weights had diminishing returns. The proposed DGP model is implemented in PyTorch (Paszke et al.,
2017) and training and testing are performed on a GTX 1080Ti GPU. Finetuning is done for 20
epochs using SGD with a learning rate of 0.0001 and momentum of 0.9.

4 EXPERIMENTS

We performed a comparative evaluation of the DGP against previous state-of-the-art on the ImageNet
dataset (Deng et al., 2009), the largest commonly used dataset for zero-shot learning. In our work, we
follow the train/test split suggested by Frome et al. (2013), who proposed to use the 21K ImageNet
dataset for zero-shot evaluation. They define three tasks in increasing difficulty, denoted as "2-hops",
"3-hops" and "All". Hops refer to the distance that classes are away from the ImageNet 2012 1K
classes in the ImageNet hierarchy and thus is a measure of how far unseen classes are away from
seen classes. "2-hops" contains all the classes within two hops from the seen classes and consists
of roughly 1.5K classes, while "3-hops" contains about 7.8K classes. "All" contains close to 21K
classes. None of the classes are contained in the ImageNet 2012 dataset, which was used to pre-train
the ResNet-50 model. Mirroring the experiment setup in Frome et al. (2013); Norouzi et al. (2014);
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Wang et al. (2018) we further evaluate the performance when training categories are included as
potential labels. Note that since the only difference is the number of classes during testing, the model
does not have to be retrained. We denote the splits as "2-hops+1K", "3-hops+1K", "All+1K".

4.1 COMPARING APPROACHES

We compare our DGP to the following approaches: Devise (Frome et al., 2013) linearly maps vi-
sual information in form of features extracted by a convolutional neural network to the semantic
word-embedding space. The transformation is learned using a hinge ranking loss. Classification is per-
formed by assigning the visual features to the class of the nearest word-embedding. ConSE (Norouzi
et al., 2014) projects image features into a semantic word embedding space as a convex combination
of the T closest seen classes semantic embedding weighted by the probabilities that the image belongs
to the seen classes. The probabilities are predicted using a pre-trained convolutional classifier. Similar
to Devise, ConSE assigns images to the nearest classes in the embedding space. EXEM (Changpinyo
et al., 2017) creates visual class exemplars by averaging the PCA projections of images belonging
to the same seen class. A kernel-based regressor is then learned to map a semantic embedding
vector to the class exemplar. For zero-shot learning visual exemplars can be predicted for the unseen
classes using the learned regressor and images can be assigned using nearest neighbor classification.
SYNC (Changpinyo et al., 2016) aligns a semantic space (e.g., the word-embedding space) with a
visual model space, adds a set of phantom object classes in order to connect seen and unseen classes,
and derives new embeddings as a convex combination of these phantom classes. GCNZ (Wang et al.,
2018) represents the current state of the art and is the approach most related to our proposed DGP. A
GCN is trained to predict last layer weights of a convolutional neural network.

Guided by experimental evidence (see Appendix C) and our intuition that extensive smoothing
is a disadvantage for the weight regression in the task of zero-shot learning we add as another
baseline, a single-hidden-layer GCN (SGCN) with non-symmetric normalization (D−1A) (as defined
in Equation 1). Note, GCNZ made use of a symmetric normalization (D−1/2AD−1/2) but our
experimental evaluation indicates that the difference is negligible (see Appendix D). It further yields
a better baseline as our proposed DGP also utilizes the non-symmetric normalization. As DGP, our
SGCN model makes use of the proposed two-stage finetuning approach.

4.2 COMPARISON TO STATE-OF-THE-ART METHODS: IMAGENET

Quantitative results for the comparison on the ImageNet datasets are shown in Table 1. Compared
to previous results such as ConSE (Changpinyo et al., 2016), EXEM (Changpinyo et al., 2017), and
GCNZ (Wang et al., 2018) our proposed methods outperform the previous results with a considerable
margin, achieving, for instance, more than 50% relative improvement for Top-1 accuracy on the 21K
ImageNet "All" dataset. We observe that our methods especially outperform the baseline models
on the "All" task, illustrating the potential of our methods to more efficiently propagate knowledge.
DGP also achieves consistent improvements over the SGCN model. We observed that finetuning
consistently improved performance for both models in all our experiments. Ablation studies that
highlight the impact of finetuning and weighting of neighbors for the 2-hop scenario can be found
in Table 3. DGP(-wf) is used to denote the accuracy that is achieved after training the DGP model
without weighting (adding no weights in Equation 4) and without finetuning. DGP(-w) and DGP(-f)
are used to denote the results for DGP without weighting and DGP without finetuning, respectively.
We further report the accuracy achieved by the SGCN model without finetuning (SGCN(-f)). We
observe that the proposed weighting scheme, which allows distant neighbors to have less impact, is
crucial for the dense approach. Further, finetuning the model consistently leads to improved results.
The results are stable over multiple runs and we include variance information for multiple runs in
Appendix E.

Qualitative results of DGP and the SGCN are shown in Figure 3. Example images from unseen
test classes are displayed and we compare the results of our proposed DGP and the SGCN to results
produced by a pre-trained ResNet. Note, ResNet can only predict training classes while the others
predict classes not seen in training. For comparison, we also provide results for our re-implementation
of GCNZ. We observe that the SGCN and DGP generally provide coherent top-5 results. All methods
struggle to predict the opener and tend to predict some type of plane instead, however, DGP does
include opener in the top-5 results. We further observe that the prediction task on this dataset for

6



Under review as a conference paper at ICLR 2019

Table 1: Top-k accuracy for the different mod-
els on the ImageNet dataset. Accuracy when
only testing on unseen classes. Results indicated
with ∗, †, and ‡ are taken from Changpinyo et al.
(2016), Changpinyo et al. (2017), and Wang et al.
(2018), respectively.

Test set Model Hit@k (%)
1 2 5 10 20

2-hops

ConSE∗ 8.3 12.9 21.8 30.9 41.7
SYNC∗ 10.5 17.7 28.6 40.1 52.0
EXEM† 12.5 19.5 32.3 43.7 55.2
GCNZ‡ 19.8 33.3 53.2 65.4 74.6

SGCN (ours) 26.2 40.4 60.2 71.9 81.0
DGP (ours) 26.6 40.7 60.3 72.3 81.3

3-hops

ConSE∗ 2.6 4.1 7.3 11.1 16.4
SYNC∗ 2.9 4.9 9.2 14.2 20.9
EXEM† 3.6 5.9 10.7 16.1 23.1
GCNZ‡ 4.1 7.5 14.2 20.2 27.7

SGCN (ours) 6.0 10.4 18.9 27.2 36.9
DGP (ours) 6.3 10.7 19.3 27.7 37.7

All

ConSE∗ 1.3 2.1 3.8 5.8 8.7
SYNC∗ 1.4 2.4 4.5 7.1 10.9
EXEM† 1.8 2.9 5.3 8.2 12.2
GCNZ‡ 1.8 3.3 6.3 9.1 12.7

SGCN (ours) 2.8 4.9 9.1 13.5 19.3
DGP (ours) 3.0 5.0 9.3 13.9 19.8

Table 2: Top-k accuracy for the different models
on the ImageNet dataset. Accuracy when testing
on seen and unseen classes. Results indicated with
††, ‡‡, and ‡ are taken from Frome et al. (2013),
Norouzi et al. (2014), and Wang et al. (2018),
respectively.

Test set Model Hit@k (%)
1 2 5 10 20

2-hops+1K

DeViSE†† 0.8 2.7 7.9 14.2 22.7
ConSE‡‡ 0.3 6.2 17.0 24.9 33.5
ConSE‡ 0.1 11.2 24.3 29.1 32.7
GCNZ‡ 9.7 20.4 42.6 57.0 68.2

SGCN (ours) 11.9 27.0 50.8 65.1 75.9
DGP (ours) 10.3 26.4 50.3 65.2 76.0

3-hops+1K

DeViSE†† 0.5 1.4 3.4 5.9 9.7
ConSE‡‡ 0.2 2.2 5.9 9.7 14.3
ConSE‡ 0.2 3.2 7.3 10.0 12.2
GCNZ‡ 2.2 5.1 11.9 18.0 25.6

SGCN (ours) 3.2 7.1 16.1 24.6 34.6
DGP (ours) 2.9 7.1 16.1 24.9 35.1

All+1K

DeViSE†† 0.3 0.8 1.9 3.2 5.3
ConSE‡‡ 0.2 1.2 3.0 5.0 7.5
ConSE‡ 0.1 1.5 3.5 4.9 6.2
GCNZ‡ 1.0 2.3 5.3 8.1 11.7

SGCN (ours) 1.5 3.4 7.8 12.3 18.2
DGP (ours) 1.4 3.4 7.9 12.6 18.7

zero-shot learning is difficult as it contains classes of fine granularity, such as many different types of
squirrels, planes, and furniture. Additional examples are provided in the appendix.

Testing including training classifiers. Following the example of (Frome et al., 2013; Norouzi
et al., 2014; Wang et al., 2018), we also report the results when including both training labels and
testing labels as potential labels during classification of the zero-shot examples. Results are shown
in Table 2. For the baselines, we include two implementations of ConSE, one that uses AlexNet as
a backbone (Norouzi et al., 2014) and one that uses ResNet-50 (Wang et al., 2018). Compared to
Table 1, we observe that the accuracy is considerably lower, but the SGCN and DGP still outperform
the previous state-of-the-art approach GCNZ. SGCN outperforms DGP for low k in the Top-k
accuracy measure especially for the 2-hops setting, while DGP outperforms SGCN for larger k. We
observe that DGP tends to favor prediction to the closest training classes for its Top-1 prediction (see
Table 4). However, this is not necessarily a drawback and is a well-known tradeoff (Chao et al., 2016)
between performing well on the unseen classes and the seen classes, which are not considered in this
setting. In the next paragraph, we will evaluate the model’s performance on the seen classes. This
tradeoff can be controlled by including a novelty detector, which predicts if an image comes from the
seen or unseen classes as done in Socher et al. (2013) and then assigns it to the zero-shot classifier or
a classifier trained on the seen classes. Another approach is calibrated stacking (Chao et al., 2016),
which rescales the prediction scores of the known classes.

Zero-shot learning models should perform well not only on unseen but also on seen classes. To put the
zero-shot performance into perspective, we perform experiments where we analyze how the model’s
performance on the original 1000 seen classes is affected by domain shift as additional unseen classes
(all 2-hop classes) are introduced. Table 4 shows the results when the model is tested on the validation
dataset from ImageNet 2012. We compare the performance to our re-implementation of the GCNZ
model with ResNet-50 backbone and also the performance from the original ResNet-50 model, which
is trained only on the seen classes. It can be observed that both our methods outperform GCNZ on
Hit@1 and Hit@2 accuracy.

Analysis of weighting scheme In order to validate our intuition that weighting allows our approach to
weigh distance neighbors less, we can inspect the learned weighting. For the first stage the weights are
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plane, shoe shop, hook,
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Figure 3: Qualitative result comparison on Imagenet. The correct class is highlighted in bold. We
report the top-5 classification results.

0.244, 0.476, 0.162, 0.060, 0.058 and for the second (final) stage 0.493, 0.322, 0.097, 0.047, 0.041.
Note, the first value corresponds to self-attention, the second to the 1-hop neighbors, and so forth.
For the first stage, ancestors aggregate information mainly from their immediate descendants to later
distribute it to their descendants. Further, we observe that distant neighbors have less impact in the
final stage.

Table 3: Results of the ablation experiments on
the 2-hops dataset. (-f), (-w), and (-wf) indicate
models without finetuning, weighting and with-
out both weighting and finetuning, respectively.

Test set Model Hit@k (%)
1 2 5 10 20

2-hops

SGCN(-f) 24.8 38.3 57.5 69.9 79.6
DGP(-wf) 23.8 36.9 56.2 69.1 78.6
DGP(-f) 24.6 37.8 56.9 69.6 79.3
DGP(-w) 25.4 39.5 59.9 72.0 80.9

SGCN (ours) 26.2 40.4 60.2 71.9 81.0
DGP (ours) 26.6 40.7 60.3 72.3 81.3

Table 4: Performance on the seen ImageNet
classes. ResNet represents ideal performance
as it only predicts known classes.

Model Hit@k (%)
1 2 5 10

ResNet 75.1 85.5 92.7 95.7
GCNZ (us) 38.3 62.9 82.3 89.8

SGCN (ours) 49.1 68.7 83.9 89.4
DGP (ours) 54.6 69.7 83.8 89.1

Scalability. To obtain good scalability it is important that the adjacency matrix A is a sparse matrix
so that the complexity of computing D−1AXΘ is linearly proportional to the number of edges
present in A. Our approach utilizes the structure of knowledge graphs, where entities only have few
ancestors and descendants, to ensure this. The adjacency matrix for the ImageNet hierarchy used in
our experiments, for instance, has a density of 9.3× 10−5, while our dense connections only increase
the density of the adjacency matrix to 19.1× 10−5. With regards to the number of parameters, the
SGCN consist of 4,810,752 weights. DGP increases the number of trainable parameters by adding
2× (K+ 1) additional weights. However, as K = 4 in our experiments, this difference in the number
of parameters is negligible.

5 CONCLUSION

In contrast to previous approaches using graph convolutional neural networks for zero-shot learning,
we illustrate that the task of zero-shot learning benefits from shallow networks. Further, to avoid the
lack of information propagation between distant nodes in shallow models, we propose DGP, which
exploits the hierarchical structure of the knowledge graph by adding a dense connection scheme.
Experiments illustrate the ability of the proposed methods, outperforming previous state-of-the-art
methods for zero-shot learning. In future work, we aim to investigate the potential of more advanced
weighting mechanisms to further improve the performance of DGP compared to the SGCN. The
inclusion of additional semantic information for settings where these are available for a subset of
nodes is another future direction.
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A QUALITATIVE RESULTS

Figure 4 and 5 provide further qualitative results of our finetuned Graph Propagation Module GPM
and Dense Graph Propagation Module DGP compared to a standard ResNet and GCNZ, our reimple-
mentation of Wang et al. (2018).
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Figure 4: Qualitative result comparison on Imagenet. The correct class is highlighted in bold. We
report the top-5 classification results.
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Figure 5: Qualitative result comparison on Imagenet. The correct class is highlighted in bold. We
report the top-5 classification results.
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B TWO-PHASE PROPAGATION

Table 5 illustrates the benefit of a two-phase directed propagation rule where ancestors and descen-
dants are considered individually compared to two consecutive updates using the full adjacency
matrix in the dense method.

Table 5: Results for 2-hops with/without separating the adjacency matrix into ancestors and descen-
dants for DGP.

Model Hit@k (%)
1 2 5 10 20

without 26.0 40.2 59.8 71.4 80.3
with 26.6 40.7 60.3 72.3 81.3

C ANALYSIS OF NUMBER OF LAYERS

Table 6 illustrates the drop in performance that is caused by using additional hidden layers in the
GCN for the 2-hops experiment. All hidden layers have dimensionality of 2048 with 0.5 dropout.

Table 6: Results for 2-hops for SGCN with increasing depth.

#Layers Hit@k (%)
1 2 5 10 20

1 24.8 38.3 57.5 69.9 79.6
2 24.2 37.7 57.4 69.2 78.1
3 23.9 37.5 57.1 68.4 77.2

D PERFORMANCE IMPROVEMENTS BETWEEN GCNZ AND SGCN

Table 7 explains the performance difference between our SGCN, our reimplementation of GCNZ
and the reported results in Wang et al. (2018). Note, unless otherwise stated training is performed
for 3000 epochs. Non-symmetric normalization (D−1A) is denoted as non-sym in the normalization
column, while a symmetric normalization (D−1/2AD−1/2) is denoted as sym. No finetuning has
been performed for SGCN in these results.

Table 7: Illustration of the improvements between the original results of GCNZ in Wang et al. (2018),
our reimplementation of GCNZ and our SGCN.

Model Norm Hit@k (%)
1 2 5 10 20

GCNZ (300 epochs) (Wang et al., 2018) sym 19.8 33.3 53.2 65.4 74.6
GCNZ (300 epochs) (Wang et al., 2018)a sym 21.0 33.7 52.7 64.8 74.3
GCNZ (ours) (300 epochs) sym 21.4 34.7 54.3 67.5 77.6
GCNZ (ours) sym 23.5 36.9 56.5 68.8 78.0
SGCN (ours) sym 24.6 38.1 57.6 70.0 79.7
SGCN (ours) non-sym 24.8 38.3 57.5 69.9 79.6

aUpdated results from Wang et al. (2018) https://github.com/JudyYe/zero-shot-gcn
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E ROBUSTNESS OF RESULTS

Table 8 shows the mean and std for 3 runs for the 2-hops and All dataset. It can clearly be observed
that as the number of classes increases (2-hops to all), results become more stable.

Table 8: Mean and std for 3 runs. More stable as # class increases.

Test set Model Hit@k (%)
1 2

2-hops SGCN 26.17±0.03 40.41±0.03
DGP 26.67±0.09 40.74±0.04

All SGCN 2.80±0.01 4.90±0.01
DGP 2.95±0.00 5.05±0.02
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