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ABSTRACT

This paper proposes Dirichlet Variational Autoencoder (DirVAE) using a Dirichlet
prior for a continuous latent variable that exhibits the characteristic of the categor-
ical probabilities. To infer the parameters of DirVAE, we utilize the stochastic
gradient method by approximating the Gamma distribution, which is a component
of the Dirichlet distribution, with the inverse Gamma CDF approximation. Addi-
tionally, we reshape the component collapsing issue by investigating two problem
sources, which are decoder weight collapsing and latent value collapsing, and
we show that DirVAE has no component collapsing; while Gaussian VAE ex-
hibits the decoder weight collapsing and Stick-Breaking VAE shows the latent
value collapsing. The experimental results show that 1) DirVAE models the la-
tent representation result with the best log-likelihood compared to the baselines;
and 2) DirVAE produces more interpretable latent values with no collapsing is-
sues which the baseline models suffer from. Also, we show that the learned latent
representation from the DirVAE achieves the best classification accuracy in the
semi-supervised and the supervised classification tasks on MNIST, OMNIGLOT,
and SVHN compared to the baseline VAEs. Finally, we demonstrated that the
DirVAE augmented topic models show better performances in most cases.

1 INTRODUCTION

A Variational Autoencoder (VAE) (Kingma & Welling, 2014c) brought success in deep generative
models (DGMs) with a Gaussian distribution as a prior distribution (Jiang et al., 2017; Miao et al.,
2016; 2017; Srivastava & Sutton, 2017). If we focus on the VAE, the VAE assumes the prior dis-
tribution to be N (0, I) with the learning on the approximated µ̂ and Σ̂. Also, Stick-Breaking VAE
(SBVAE) (Nalisnick & Smyth, 2017) is a nonparametric version of the VAE, which modeled the
latent dimension to be infinite using a stick-breaking process (Ishwaran & James, 2001).

While these VAEs assume that the prior distribution of the latent variables to be continuous random
variables, recent studies introduce the approximations on discrete priors with continuous random
variables (Jang et al., 2017; Maddison et al., 2017; Rolfe, 2017). The key of these approximations
is enabling the backpropagation with the reparametrization technique, or the stochastic gradient
variational Bayes (SGVB) estimator, while the modeled prior follows a discrete distribution. The
applications of these approximations on discrete priors include the prior modeling of a multinomial
distribution which is frequently used in the probabilistic graphical models (PGMs). Inherently, the
multinomial distributions can take a Dirichlet distribution as a conjugate prior, and the demands on
such prior have motivated the works like Jang et al. (2017); Maddison et al. (2017); Rolfe (2017)
that support the multinomial distribution posterior without explicit modeling on a Dirichlet prior.

When we survey the work with a explicit modeling on the Dirichlet prior, we found a frequent ap-
proach such as utilizing a softmax Laplace approximation (Srivastava & Sutton, 2017). We argue
that this approach has a limitation from the multi-modality perspective. The Dirichlet distribution
can exhibit a multi-modal distribution with parameter settings, see Figure 1, which is infeasible to
generate with the Gaussian distribution with a softmax function. Therefore, the previous continuous
domain VAEs cannot be a perfect substitute for the direct approximation on the Dirichlet distribu-
tion.

Utilizing a Dirichlet distribution as a conjugate prior to a multinomial distribution has an advantage
compared to the usage of a softmax function on a Gaussian distribution. For instance, Figure 1
illustrates the potential difficulties in utilizing the softmax function with the Gaussian distribution.
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Figure 1: Illustrated probability simplex with Gaussian-Softmax, GEM, and Dirichlet distributions.
Unlike the Gaussian-Softmax or the GEM distribution, the Dirichlet distribution is able to capture
the multi-modality that illustrates multiple peaks at the vertices of the probability simplex.

Given the three-dimensional probability simplex, the Gaussian-Softmax distribution cannot generate
the illustrated case of the Dirichlet distribution with a high probability measure at the vertices of the
simplex, i.e. the multi-modality where the necessity was emphasized in Hoffman & Johnson (2016).
Additionally, the Griffiths-Engen-McCloskey (GEM) distribution (Pitman, 2002), which is the prior
distribution of the SBVAE, is difficult to model the multi-modality because the sampling procedure
of the GEM distribution is affected by the rich-get-richer phenomenon, so a few components tend
to dominate the weight of the samples. This is different from the Dirichlet distribution that does
not exhibit such phenomenon, and the Dirichlet distribution can fairly distribute the weights to the
components, and the Dirichlet distribution is more likely to capture the multi-modality by controlling
the prior hyper-parameter (Blei et al., 2003). Then, we conjecture that an enhanced modeling on
Dirichlet prior is still needed 1) because there are cases that the Gaussian-Softmax approaches, or
the softmax Laplace approximation, cannot imitate the Dirichlet distribution; and 2) because the
nonparametric approaches could be influenced by the biases that the Dirichlet distribution does not
suffer from.

Given these motivations for modeling the Dirichlet distribution with the SGVB estimator, this pa-
per introduces the Dirichlet Variational Autoencoder (DirVAE) that shows the same characteristics
of the Dirichlet distribution. The DirVAE is able to model the multi-modal distribution that was
not possible with the Gaussian-Softmax and the GEM approaches. These characteristics allow the
DirVAE to be the prior of the discrete latent distribution, as the original Dirichlet distribution is.

Introducing the DirVAE requires the configuration of the SGVB estimator on the Dirichlet distri-
bution. Specifically, the Dirichlet distribution is a composition of the Gamma random variables,
so we approximate the inverse Gamma cumulative distribution function (CDF) with the asymptotic
approximation. This approximation on the inverse Gamma CDF becomes the component of approx-
imating the Dirichlet distribution. We compared this approach to the previously suggested approx-
imations, i.e. approaches with the Weibull distribution and with the softmax Gaussian distribution,
and our approximation shows the best log-likelihood among the compared approximations.

Moreover, we report that we had to investigate the component collapsing along with the research on
DirVAE. It has been known that the component collapsing issue is resolved by the SBVAE because
of the meaningful decoder weights from the latent layer to the next layer. However, we found that
SBVAE has latent value collapsing issue resulting in many near-zero values on the latent dimensions
that leads to the incomplete utilization of the latent dimension. Hence, we argue that Gaussian VAE
(GVAE) suffers from the decoder weight collapsing, previously limitedly defined as component
collapsing; and SBVAE has a problem of the latent value collapsing. Finally, we suggest that the
definition of component collapsing should be expanded to represent both cases of decoder weight
and latent value collapsings. The proposed DirVAE shows neither the near-zero decoder weights nor
the near-zero latent values, so the reconstruction uses the full latent dimension information in most
cases. We investigated this issue because our performance gain comes from resolving the expanded
version of the component collapsing. Due to the component collapsing issues, the existing VAEs
have less meaningful latent values or could not effectively use its latent representation. Meanwhile,
DirVAE does not have component collapsing due to the multi-modal prior which possibly leads
to superior qualitative and quantitative performances. We experimentally showed that the DirVAE
has more meaningful or disentangled latent representation by image generation and latent value
visualizations.
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Technically, the new approximation provides the closed-form loss function derived from the evi-
dence lower bound (ELBO) of the DirVAE. The optimization on the ELBO enables the represen-
tation learning with the DirVAE, and we test the learned representation from the DirVAE in two
folds. Firstly, we test the representation learning quality by performing the supervised and the
semi-supervised classification tasks on MNIST, OMNIGLOT, and SVHN. These classification tasks
conclude that DirVAE has the best classification performances with its learned representation. Sec-
ondly, we test the applicability of DirVAE to the existing models, such as topic models with DirVAE
priors on 20Newsgroup and RCV1-v2. This experiment shows that the augmentation of DirVAE
to the existing neural variational topic models improves the perplexity and the topic coherence, and
most of best performers were DirVAE augmented.

2 PRELIMINARIES

2.1 VARIATIONAL AUTOENCODERS

A VAE is composed of two parts: a generative sub-model and an inference sub-model. In the
generative part, a probabilistic decoder reproduces x̂ close to an observation x from a latent variable
z ∼ p(z), i.e. x ∼ pθ(x|z) = pθ(x|ζ) where ζ = MLP(z) is obtained from a latent variable
z by a multilayer perceptron (MLP). In the inference part, a probabilistic encoder outputs a latent
variable z ∼ qφ(z|x) = qφ(z|η) where η = MLP(x) is computed from the observation x by a MLP.
Model parameters, θ and φ, are jointly learned by optimizing the below ELBO with the stochastic
gradient method through the backpropagations as the ordinary neural networks by using the SGVB
estimators on the random nodes.

log p(x) ≥ L(x) = Eqφ(z|x)
[log pθ(x|z)]− KL(qφ(z|x)||pθ(z)) (1)

In GVAE (Kingma & Welling, 2014c), the prior distribution of p(z) is assumed to be a standard
Gaussian distribution. In SBVAE (Nalisnick & Smyth, 2017), the prior distribution becomes a GEM
distribution that produces samples with a Beta distribution and a stick-breaking algorithm.

2.2 DIRICHLET DISTRIBUTION AS A COMPOSITION OF GAMMA RANDOM VARIABLES

The Dirichlet distribution is a composition of multiple Gamma random variables. Note that the
probability density functions (PDFs) of Dirichlet and Gamma distributions are as follows:

Dirichlet(x;α) =
Γ(
∑
αk)∏

Γ(αk)

∏
xαk−1
k , Gamma(x;α, β) =

βα

Γ(α)
xα−1e−βx (2)

where αk, α, β > 0. In detail, if there are K independent random variables following the Gamma
distributions Xk ∼ Gamma(αk, β) or X ∼ MultiGamma(α, β · 1K) where αk, β > 0 for k =
1, · · · ,K, then we have Y ∼ Dirichlet(α) where Yk = Xk/

∑
Xi. It should be noted that the rate

parameter, β, should be the same for every Gamma distribution in the composition. Then, the KL
divergence can be derived as the following:

KL(Q||P ) =
∑

log Γ(αk)−
∑

log Γ(α̂k) +
∑

(α̂k − αk)ψ(α̂k) (3)

for P = MultiGamma(α, β ·1K) andQ = MultiGamma(α̂, β ·1K) where ψ is a digamma function.
The detailed derivation is provided in Appendix B.

2.3 SGVB FOR GAMMA RANDOM VARIABLE AND APPROXIMATION ON DIRICHLET
DISTRIBUTION

This section discusses several ways of approximating the Dirichlet random variable; or the SGVB
estimators for the Gamma random variables which compose a Dirichlet distribution. Utilizing
SGVB requires a differentiable non-centered parametrization (DNCP) for the distribution (Kingma
& Welling, 2014d). The main SGVB for Gamma random variables, used in DirVAE, is using the
inverse Gamma CDF approximation explained in the next section. Prior works include two ap-
proaches: the use of the Weibull distribution and the softmax Gaussian distribution, and the two
approaches are explained in this section.
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Approximation with Weibull distribution. Because of the similar PDFs between the Weibull dis-
tribution and the Gamma distribution, some prior works used the Weibull distribution as a posterior
distribution of the prior Gamma distribution (Zhang et al., 2018):

Weibull(x; k, λ) =
k

λ

(x
λ

)k−1

e−(x/λ)k where k, λ > 0 . (4)

The paper Zhang et al. (2018) pointed out that there are two useful characteristics when approxi-
mating the Gamma distribution with the Weibull distribution. One useful property is that the KL
divergence expressed in a closed form, and the other is the simple reparametrization trick with a
closed form of the inverse CDF from the Weibull distribution. However, we noticed that the Weibull
distribution has a component of e−(x/λ)k , and the Gamma distribution does not have the additional
power term of k in the component. Since k is placed in the exponential component, small changes
on k can cause a significant difference that limits the optimization.

Approximation with softmax Gaussian distribution. As in MacKay (1998); Srivastava & Sutton
(2017), a Dirichlet distribution can be approximated by a softmax Gaussian distribution by using a
softmax Laplace approximation. The relation between the Dirichlet parameter α and the Gaussian
parameters µ,Σ is explained as the following:

µk = logαk −
1

K

∑
i

logαi, Σk =
1

αk

(
1− 2

K

)
+

1

K2

∑
i

1

αi
, (5)

where Σ is assumed to be a diagonal matrix, and we use the reparametrization trick in the usual
GVAE for the SGVB estimator.

3 MODEL DESCRIPTION

Along with the inverse Gamma CDF approximation, we describe two sub-models in this section:
the generative sub-model and the inference sub-model. Figure 2 describes the graphical notations of
various VAEs and the neural network view of our model.

(a) GVAE (b) SBVAE (c) DirVAE
(d) DirVAE in the neural
network view

Figure 2: Sub-figures 2a, 2b, and 2c are the graphical notations of the VAEs as latent variable
models. The solid lines indicate the generative sub-models where the waved lines denote a prior
distribution of the latent variables. The dotted lines indicate the inference sub-models. Sub-figure
2d denotes a neural network structure corresponding to Sub-figure 2c. Red nodes denote the random
nodes which allow the backpropagation flows to the input.

Generative sub-model. The key difference between the generative models between the DirVAE
and the GVAE is the prior distribution assumption on the latent variable z. Instead of using the stan-
dard Gaussian distribution, we use the Dirichlet distribution which is a conjugate prior distribution
of the multinomial distribution.

z ∼ p(z) = Dirichlet(α), x ∼ pθ(x|z) (6)

Inference sub-model. The probabilistic encoder with an approximating posterior distribution
qφ(z|x) is designed to be Dirichlet(α̂). The approximated posterior parameter α̂ is derived by
the MLP from the observation x with the softplus output function, so the outputs can be positive
values constrained by the Dirichlet distribution. Here, we do not directly sample z from the Dirich-
let distribution. Instead, we use the Gamma composition method described in Section 2.2. Firstly,
we draw v ∼ MultiGamma(α, β · 1K). Afterwards, we normalize v with its summation

∑
vi.
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The objective function to optimize the model parameters, θ and φ, is composed of Equation (1) and
(3). Equation (7) is the loss function to optimize after the composition. The inverse Gamma CDF
method explained in the next paragraph enables the backpropagation flows to the input with the
stochastic gradient method. Here, for the fair comparison of expressing the Dirichlet distribution
between the inverse Gamma CDF approximation method and the softmax Gaussian method, we set
αk = 1− 1/K when µk = 0 and Σk = 1 by using Equation (5); and β = 1.

L(x) = Eqφ(z|x)
[log pθ(x|z)]− (

∑
log Γ(αk)−

∑
log Γ(α̂k) +

∑
(α̂k − αk)ψ(α̂k)) (7)

Approximation with inverse Gamma CDF. A previous work Knowles (2015) suggested that, if
X ∼ Gamma(α, β), and if F (x;α, β) is a CDF of the random variable X , the inverse CDF can be
approximated as F−1(u;α, β) ≈ β−1(uαΓ(α))1/α. Hence, we can introduce an auxiliary variable
u ∼ Uniform(0, 1) to take over all the randomness of X , and we treat the Gamma sampled X as a
deterministic value in terms of α and β.

It should be noted that there has been a practice of utilizing the combination of decomposing a
Dirichlet distribution and approximating each Gamma component with inverse Gamma CDF. How-
ever, such practices have not been examined with its learning properties and applicabilities. The
following section shows a new aspect of component collapsing that can be remedied by this combi-
nation on Dirichlet prior in VAE, and the section illustrates the performance gains in a certain set of
applications, i.e. topic modeling.

4 EXPERIMENTAL RESULTS

This section reports the experimental results with the following experiment settings: 1) a pure VAE
model; 2) a semi-supervised classification task with VAEs; 3) a supervised classification task with
VAEs; and 4) topic models with DirVAE augmentations.

4.1 EXPERIMENTS FOR REPRESENTATION LEARNING OF VAES

Baseline models. We select the following models as baseline alternatives of the DirVAE: 1) the
standard GVAE; 2) the GVAE with softmax (GVAE-Softmax) approximating the Dirichlet distri-
bution with the softmax Gaussian distribution; 3) the SBVAE with the Kumaraswamy distribution
(SBVAE-Kuma) & the Gamma composition (SBVAE-Gamma) described in Nalisnick & Smyth
(2017); and 4) the DirVAE with the Weibull distribution (DirVAE-Weibull) approximating the
Gamma distribution with the Weibull distribution described in Zhang et al. (2018). We use the fol-
lowing benchmark datasets for the experiments: 1) MNIST; 2) MNIST with rotations (MNIST+rot);
3) OMNIGLOT; and 4) SVHN with PCA transformation. We provide the details on the datasets in
Appendix D.1.

Experimental setting. As a pure VAE model, we compare the DirVAE with the following mod-
els: GVAE, GVAE-Softmax, SBVAE-Kuma, SBVAE-Gamma, and DirVAE-Weibull. We use 50-
dimension and 100-dimension latent variables for MNIST and OMNIGLOT, respectively. We pro-
vide the details of the network structure and optimization in Appendix D.2. We set α = 0.98 · 150

for MNIST and α = 0.99 · 1100 for OMNIGLOT for the fair comparison to GVAEs by using
Equation (5). All experiments use the Adam optimizer (Kingma & Ba, 2014a) for the parameter
learning. Finally, we acknowledge that the hyper-parameter could be updated as Appendix C, and
the experiment result with the update is separately reported in Appendix D.2.

Quantitative result. For the quantitative comparison among the VAEs, we calculated the Monte-
Carlo estimation on the marginal negative log-likelihood, the negative ELBO, and the reconstruction
loss. The marginal log-likelihood is approximated as p(x) ≈

∑
i
p(x|zi)p(zi)

q(zi)
for single instance x

where q(z) is a posterior distribution of a prior distribution p(z), which is further derived in Ap-
pendix A. Table 1 shows the overall performance of the alternative VAEs. The DirVAE outperforms
all baselines in both datasets from the log-likelihood perspective. The value of DirVAE comes from
the better encoding of the latent variables that can be used for classification tasks which we examine
in the next experiments. While the DirVAE-Weibull follows the prior modeling with the Dirichlet
distribution, the Weibull based approximation can be improved by adopting the proposed approach
with the inverse Gamma CDF.
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Table 1: Negative log-likelihood, negative ELBO, and reconstruction loss of the VAEs for MNIST
and OMNIGLOT dataset. The lower values are the better for all measures.

MNIST (K = 50) OMNIGLOT (K = 100)

Neg. LL Neg. ELBO Reconst. Loss Neg. LL Neg. ELBO Reconst. Loss

GVAE (Nalisnick & Smyth, 2017) 96.80 − − − − −
SBVAE-Kuma (Nalisnick & Smyth, 2017) 98.01 − − − − −
SBVAE-Gamma (Nalisnick & Smyth, 2017) 100.74 − − − − −
GVAE 94.54±0.79 98.58±0.04 74.31±0.13 119.29±0.44 126.42±0.24 98.90±0.36
GVAE-Softmax 98.18±0.61 103.49±0.16 79.36±0.82 130.01±1.16 139.73±0.81 123.34±1.43

SBVAE-Kuma 99.27±0.48 102.60±1.81 83.90±0.82 130.73±2.17 132.86±3.03 119.25±1.00

SBVAE-Gamma 102.14±0.69 135.30±0.24 113.89±0.25 128.82±1.82 149.30±0.82 136.36±1.53

DirVAE-Weibull 114.59±11.15 183.33±2.96 150.92±3.70 140.89±3.21 198.01±2.46 145.52±3.13

DirVAE 87.64±0.64 100.47±0.35 81.50±0.27 108.24±0.42 120.06±0.35 99.78±0.36

Qualitative result. As a qualitative result, we report the latent dimension-wise reconstructions
which are decoder outputs with each one-hot vector in the latent dimension. Figure 3a shows 50
reconstructed images corresponding to each latent dimension from GVAE-Softmax, SBVAE, and
DirVAE. We manually ordered the digit-like figures in the ascending order for GVAE-Softmax and
DirVAE. We can see that the GVAE-Softmax and the SBVAE have components without significant
semantic information, which we will discuss further in Section 4.2, and the DirVAE has interpretable
latent dimensions in most of the latent dimensions. Figure 3b also supports the quality of the latent
values from DirVAE by visualizing learned latent values through t-SNE (Maaten & Hinton, 2008).

(a) Latent dimension-wise reconstructions of GVAE-
Softmax, SBVAE, and DirVAE. The DirVAE shows
more meaningful latent dimensions than other VAEs. (b) (Left) GVAE, (Middle) SBVAE, (Right) DirVAE.

Figure 3: Latent dimension visualization with reconstruction images and t-SNE latent embeddings.

4.2 DISCUSSION ON COMPONENT COLLAPSING

Decoder weight collapsing, a.k.a. component collapsing. One main issue of GVAE is compo-
nent collapsing that there are a significant number of near-zero decoder weights from the latent
neurons to the next decoder neurons. If these weights become near-zero, the values of the latent
dimensions loose influence to the next decoder, and this means an inefficient learning given a neural
network structure. The same issue occurs when we use the GVAE-Softmax. We rename this com-
ponent collapsing phenomenon as decoder weight collapsing to specifically address the collapsing
source.

Latent value collapsing. SBVAE claims that SBVAE solved the decoder weight collapsing by
learning the meaningful weights as shown in Figure 4a. However, we notice that SBVAE produces
the output values, not the weight parameters, from the latent dimension to be near-zero in many
latent dimensions after averaging many samples obtained from the test dataset. Figure 4b shows
the properties of DirVAE and SBVAE from the perspective of the latent value collapsing, which
SBVAE shows many near-zero average means and near-zero average variances, while DirVAE does
not. The average Fisher kurtosis and average skewness of DirVAE are 5.76 and 2.03, respectively
over the dataset, while SBVAE has 20.85 and 4.35, which states that the latent output distribution
from SBVAE is more skewed than that of DirVAE. We found out that these near-zero latent values
prevent learning on decoder weights, which we introduce as another type of collapsing problem, as
latent value collapsing that is different from the decoder weight collapsing. These results mean that
SBVAE distributes the non-near-zero latent values sparsely over a few dimensions while DirVAE
samples relatively dense latent values. In other words, DirVAE utilizes the full spectrum of latent
dimensions compared to SBVAE, and DirVAE has a better learning capability in the decoder net-
work. Figure 3a supports the argument on the latent value collapsing by activating each and single
latent dimension with a one-hot vector through the decoder. The non-changing latent dimension-
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(a) Latent dimension-wise L2-norm of decoder weights of VAEs.
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(b) Latent values of VAEs.

Figure 4: Sub-figure 4a shows GVAE and GVAE-Softmax have component collapsing issue, while
SBVAE and DirVAE do not. Sub-figure 4b shows that SBVAE has many near-zero output values in
the latent dimensions.

wise images of SBVAE proves that there were no generation differences between the two differently
activated one-hot latent values.

4.3 APPLICATION 1. EXPERIMENTS OF (SEMI-)SUPERVISED CLASSIFICATION WITH VAES

Semi-supervised classification task with VAEs. There is a previous work demonstrating that the
SBVAE outperforms the GVAE in semi-supervised classification task (Nalisnick & Smyth, 2017).
The overall model structure for this semi-supervised classification task uses a VAE with separate
random variables of z and y, which is introduced as the M2 model in the original VAE work (Kingma
et al., 2014b). The detailed settings of the semi-supervised classification tasks are enumerated in
Appendix D.3. Fundamentally, we applied the same experimental settings to GVAE, SBVAE, and
DirVAE in this experiment, as specified by the authors in Nalisnick & Smyth (2017).

Table 2 enumerates the performances of the GVAE, the SBVAE, and the DirVAE, and the result
shows that the error rate of classification result using 10%, 5% and 1% of labeled data for each
dataset. In general, the experiment shows that the DirVAE has the best performance out of three
alternative VAEs. Also, it should be noted that the performance of the DirVAE is more improved in
the most complex task with the SVHN dataset.

Table 2: The error rate of semi-supervised classification task using VAEs.

MNIST (K = 50) MNIST+rot (K = 50) SVHN (K = 50)

10% 5% 1% 10% 5% 1% 10% 5% 1%

GVAE (Nalisnick & Smyth, 2017) 3.95±0.15 4.74±0.43 11.55±2.28 21.78±0.73 27.72±0.69 38.13±0.95 36.08±1.49 48.75±1.47 69.58±1.64

SBVAE (Nalisnick & Smyth, 2017) 4.86±0.14 5.29±0.39 7.34±0.47 11.78±0.39 14.27±0.58 27.67±1.39 32.08±4.00 37.07±5.22 61.37±3.60

DirVAE 4.60±0.07 5.05±0.18 7.00±0.17 11.18±0.32 13.53±0.46 26.20±0.66 24.81±1.13 28.45±1.14 55.99±3.30

Supervised classification task with latent values of VAEs. Also, we tested the performance of
the supervised classification task with the learned latent representation from the VAEs. We applied
the vanilla version of VAEs to the datasets, and we classified the latent representation of instances
with k-Nearest Neighbor (kNN) which is one of the simplest classification algorithms. Hence, this
experiment can better distinguish the performance of the representation learning in the classification
task. Further experimental details can be found in Appendix D.4.

Table 3 enumerates the performances from the experimented VAEs in the datasets of MNIST and
OMNIGLOT. Both datasets indicated that the DirVAE shows the best performance in reducing the
classification error, which we conjecture that the performance is gathered from the better represen-
tation learning. It should be noted that, to our knowledge, this is the first reported comparison of
latent representation learning on VAEs with kNN in the supervised classification using OMNIGLOT
dataset. We identified that the classification with OMNIGLOT is difficult given that the kNN error
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rates with the raw original data are as high as 69.94%, 69.41%, and 70.10%. This high error rate
mainly originates from the number of classification categories which is 50 categories in our test
setting of OMNIGLOT, compared to 10 categories in MNIST.

Table 3: The error rate of kNN with the latent representations of VAEs.

MNIST (K = 50) OMNIGLOT (K = 100)

k = 3 k = 5 k = 10 k = 3 k = 5 k = 10

GVAE (Nalisnick et al., 2016) 28.40 20.96 15.33 − − −
SBVAE (Nalisnick et al., 2016) 9.34 8.65 8.90 − − −
DLGMM (Nalisnick et al., 2016) 9.14 8.38 8.42 − − −
GVAE 27.16±0.48 20.20±0.93 14.89±0.40 92.34±0.25 91.21±0.18 88.79±0.35

GVAE-Softmax 25.68±2.64 21.79±2.17 18.75±2.06 94.76±0.20 94.22±0.37 92.98±0.42

SBVAE 10.01±0.52 9.58±0.47 9.39±0.54 86.90±0.82 85.10±0.89 82.96±0.64

DirVAE 5.98±0.06 5.29±0.06 5.06±0.06 76.55±0.23 73.81±0.29 70.95±0.29

Raw Data 3.00 3.21 3.44 69.94 69.41 70.10

4.4 APPLICATION 2. EXPERIMENTS OF TOPIC MODEL AUGMENTATION WITH DIRVAE

One usefulness of the Dirichlet distribution is being a conjugate prior to the multinomial distribu-
tion, so it has been widely used in the field of topic modeling, such as Latent Dirichlet Allocation
(LDA) (Blei et al., 2003). Recently, some neural variational topic (or document) models have been
suggested, for example, ProdLDA (Srivastava & Sutton, 2017), NVDM (Miao et al., 2016), and
GSM (Miao et al., 2017). NVDM used the GVAE, and the GSM used the GVAE-Softmax to make
the sum-to-one positive topic vectors. Meanwhile, ProdLDA assume the prior distribution to be
the Dirichlet distribution with the softmax Laplace approximation. To verify the usefulness of the
DirVAE, we replace the probabilistic encoder part of the DirVAE to each model. Two popular perfor-
mance measures in the topic model fields, which are perplexity and topic coherence via normalized
pointwise mutual information (NPMI) (Lau et al., 2014), have been used with 20Newsgroups and
RCV1-v2 datasets. Further details of the experiments can be found in Appendix D.5. Table 4 indi-
cates that the augmentation of DirVAE improves the performance in general. Additionally, the best
performers from the two measurements are always the experiment cell with DirVAE augmentation
except for the perplexity of RCV1-v2, which still remains competent.

Table 4: Topic modeling performances of perpexity and NPMI with DirVAE augmentations.

20Newsgroups (K = 50) RCV1-v2 (K = 100)

ProdLDA NVDM GSM LDA (Gibbs) ProdLDA NVDM GSM LDA (Gibbs)

Reported 1172 837 822 - - - - -
Reproduced 1219±8.87 810±2.60 954±1.22 1314±18.50 1190±45.24 796±6.24 1386±21.06 1126±12.66

Perplexity Add SBVAE 1164±2.55 878±14.21 980±13.50 - 1077±22.57 1050±12.19 1670±4.78 -

Add DirVAE 1114±2.30 752±12.17 916±1.64 - 992±2.19 809±12.60 1526±6.11 -

Reported 0.240 0.186 0.121 - - - - -
Reproduced 0.273±0.019 0.119±0.003 0.199±0.006 0.225±0.002 0.194±0.005 0.023±0.002 0.267±0.019 0.266±0.006

NPMI Add SBVAE 0.247±0.015 0.162±0.007 0.162±0.006 - 0.190±0.006 0.116±0.016 0.207±0.004 -

Add DirVAE 0.359±0.026 0.247±0.010 0.201±0.003 - 0.193±0.004 0.131±0.015 0.308±0.005 -

5 CONCLUSION

Recent advances in VAEs have become one of the cornerstones in the field of DGMs. The VAEs
infer the parameters of explicitly described latent variables, so the VAEs are easily included in the
conventional PGMs. While this merit has motivated the diverse cases of merging the VAEs to the
graphical models, we ask the fundamental quality of utilizing the GVAE where many models have
latent values to be categorical probabilities. The softmax function cannot reproduce the multi-modal
distribution that the Dirichlet distribution can. Recognizing this problem, there have been some pre-
vious works that approximated the Dirichlet distribution in the VAE settings by utilizing the Weibull
distribution or the softmax Gaussian distribution, but the DirVAE with the inverse Gamma CDF
shows the better learning performance in our experiments of the representation: the semi-supervised,
the supervised classifications, and the topic models. Moreover, DirVAE shows no component col-
lapsing and it leads to better latent representation and performance gain. The proposed DirVAE can
be widely used if we recall the popularity of the conjugate relation between the multinomial and the
Dirichlet distributions because the proposed DirVAE can be a brick to the construction of complex
probabilistic models with neural networks.
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APPENDIX

This is an appendix for Dirichlet Variational Autoencoder. Here, we describe the derivations of key
equations and experimental setting details which were used in the body of the paper. The detailed
information such as model names, parameter names, or experiment assumptions is based on the
main paper.

A MONTE-CARLO ESTIMATION ON THE MARGINAL LIKELIHOOD

Proposition A.1. The marginal log-likelihood is approximated as p(x) ≈
∑
i
p(x|zi)p(zi)

q(zi)
, where

q(z) is a posterior distribution of a prior distribution p(z).

Proof.

p(x) =

∫
z

p(x, z)dz =

∫
z

p(x, z)
q(z)

q(z)
dz

=

∫
z

p(x|z)p(z)
q(z)

q(z)
dz =

∫
z

p(x|z)p(z)

q(z)
q(z)dz

≈
∑
i

p(x|zi)p(zi)
q(zi)

where zi ∼ q(z)

B KL DIVERGENCE OF TWO MULTI-GAMMA DISTRIBUTIONS

Proposition B.1. Define X = (X1, · · · , XK) ∼ MultiGamma(α, β · 1K) as a vector of K in-
dependent Gamma random variables Xk ∼ Gamma(αk, β) where αk, β > 0 for k = 1, · · · ,K.
The KL divergence between two MultiGamma distributions P = MultiGamma(α, β · 1K) and
Q = MultiGamma(α̂, β · 1K) can be derived as the following:

KL(Q||P ) =
∑

log Γ(αk)−
∑

log Γ(α̂k) +
∑

(α̂k − αk)ψ(α̂k) , (8)

where ψ is a digamma function.

Proof. Note that the derivative of a Gamma-like function Γ(α)
βα can be derived as follows:

d

dα

Γ(α)

βα
= β−α(Γ′(α)− Γ(α) log β) =

∫ ∞
0

xα−1e−βx log x dx .

Then, we have the following.

KL(Q||P ) =

∫
D
q(x) log

q(x)

p(x)
dx

=

∫ ∞
0

· · ·
∫ ∞

0

∏
Gamma(α̂k, β) log

β
∑
α̂k

∏
Γ−1(α̂k)e−β

∑
xk

∏
x
α̂k−1

k

β
∑
αk

∏
Γ−1(αk)e−β

∑
xk

∏
x
αk−1

k

dx

=

∫ ∞
0

· · ·
∫ ∞

0

∏
Gamma(α̂k, β)

×
[∑

(α̂k − αk) log β +
∑

log Γ(αk)−
∑

log Γ(α̂k) +
∑

(α̂k − αk) log xk

]
dx

=
[∑

(α̂k − αk) log β +
∑

log Γ(αk)−
∑

log Γ(α̂k)
]

+

∫ ∞
0

· · ·
∫ ∞

0

βα̂k∏
Γ(α̂k)

e−β
∑
xk
∏

xα̂k−1
k

(∑
(α̂k − αk) log xk

)
dx

11



Under review as a conference paper at ICLR 2019

=
[∑

(α̂k − αk) log β +
∑

log Γ(αk)−
∑

log Γ(α̂k)
]

+
∑

(α̂k − αk)βα̂kΓ−1(α̂k)β−α̂k
(
Γ′(α̂k)− Γ(α̂k) log β

)
=
∑

(α̂k − αk) log β +
∑

log Γ(αk)−
∑

log Γ(α̂k) +
∑

(α̂k − αk)(ψ(α̂k)− log β)

=
∑

log Γ(αk)−
∑

log Γ(α̂k) +
∑

(α̂k − αk)ψ(α̂k)

C HYPER-PARAMETER α LEARNING STRATEGY

In this section, we introduce the method of moment estimator (MME) to update the Dirichlet prior
parameter α. Suppose we have a set of sum-to-one proportions D = {p1, · · · ,pN} sampled from
Dirichlet(α), then the MME update rule is as the following:

αk ←
S

N

∑
n

pn,k where S =
1

K

∑
k

µ̃1,k − µ̃2,k

µ̃2,k − µ̃2
1,k

for µ̃j,k =
1

N

∑
n

pjn,k . (9)

After the burn-in period for stabilizing the neural network parameters, we use the MME for the
hyper-parameter learning using the sampled latent values during training. We alternatively update
the neural network parameters and hyper-parameter α. We choose this estimator because of its
closed form nature and consistency (Minka, 2000). The usefulness of the hyper-parameter update
can be found in Appendix D.2.

Proposition C.1. Given a proportion set D = {p1, · · · ,pN} sampled from Dirichlet(α), MME of
the hyper-parameter α is as the following:

αk ←
S

N

∑
n

pn,k where S =
1

K

∑
k

µ̃1,k − µ̃2,k

µ̃2,k − µ̃2
1,k

for µ̃j,k =
1

N

∑
n

pjn,k .

Proof. Define µj,k = E[pjk] as the jth moment of the kth dimension of Dirichlet distribution with
prior α. Then, by the law of large number, µj,k ≈ µ̃j,k. It can be easily shown that µ1,k = αk∑

i αi

and µ2,k = αk∑
i αi

1+αk
1+

∑
i αi

= µ1,k
1+αk

1+
∑
i αi

so that

numerator
(µ1,k − µ2,k

µ2,k − µ2
1,k

)
=

αk∑
i αi
− αk∑

i αi

1 + αk
1 +

∑
i αi

=
αk(
∑
i 6=k αi)

(
∑
i αi)(1 +

∑
i αi)

denominator
(µ1,k − µ2,k

µ2,k − µ2
1,k

)
=

αk∑
i αi

1 + αk
1 +

∑
i αi
−
( αk∑

i αi

)2

=
αk(
∑
i 6=k αi)

(
∑
i αi)

2(1 +
∑
i αi)

holds for each k = 1, · · · ,K. Therefore,∑
i

αi =
µ1,k − µ2,k

µ2,k − µ2
1,k

≈ 1

K

∑
k

µ1,k − µ2,k

µ2,k − µ2
1,k

≈ 1

K

∑
k

µ̃1,k − µ̃2,k

µ̃2,k − µ̃2
1,k

and hence,

α̂k = (
∑
i

αi)µ̃1,k =
S

N

∑
n

pn,k.
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D EXPERIMENTAL SETTINGS

In this section, we support Section 4 in the original paper with more detailed experimental settings.
Our Tensorflow implementation is available at https://TO BE RELEASED.

D.1 DATASET DESCRIPTION

We use the following benchmark datasets for the experiments in the original paper: 1) MNIST;
2) MNIST with rotations (MNIST+rot); 3) OMNIGLOT; and 4) SVHN with PCA transformation.
MNIST (LeCun et al., 1998) is a hand-written digit image dataset of size 28 × 28 with 10 labels,
consists of 60, 000 training data and 10, 000 testing data. MNIST+rot data is reproduced by the
authors of Nalisnick & Smyth (2017) consists of MNIST and rotated MNIST1. OMNIGLOT2 (Lake
et al., 2013; Snderby et al., 2016) is another hand-written image dataset of characters with 28 × 28
size and 50 labels, consists of 24, 345 training data and 8, 070 testing data. SVHN3 is a Street
View House Numbers image dataset with the dimension-reduction by PCA into 500 dimensions
(Nalisnick & Smyth, 2017).

D.2 REPRESENTATION LEARNING OF VAES

We divided the datasets into {train,valid,test} as the following: MNIST = {45, 000 : 5, 000 :
10, 000} and OMNIGLOT = {22, 095 : 2, 250 : 8, 070}.
For MNIST, we use 50-dimension latent variables with two hidden layers in the encoder and one
hidden layer in the decoder of 500 dimensions. We set α = 0.98 · 150 for the fair comparison to
GVAEs using the Equation (5). The batch size was set to be 100. For OMNIGLOT, we use 100-
dimension latent variables with two hidden layers in the encoder and one hidden layer in the decoder
of 500 dimensions. We assume α = 0.99 · 1100 for the fair comparison to the GVAEs using the
Equation (5). The batch size was set to be 15.

For both datasets, the gradient clipping is used; ReLU function (Nair & Hinton, 2010) is used as an
activation function in hidden layers; Xavier initialization (Glorot & Bengio, 2010) is used for the
neural network parameter initialization; and the Adam optimizer (Kingma & Ba, 2014a) is used as
an optimizer with learning rate 5e-4 for all VAEs except 3e-4 for the SBVAEs. The prior assump-
tions for each VAE is the following: 1) N (0, I) for the GVAE and the GVAE-Softmax; 2) GEM(5)
for the SBVAEs; and 3) Dirichlet(0.98 · 150) (MNIST) and Dirichlet(0.99 · 1100) (OMNIGLOT)
for the DirVAE-Weibull. Finally, to compute the marginal log-likelihood, we used 100 samples for
each 1, 000 randomly selected from the test data.

We add the result of VAE with 20 normalizing flows (GVAE-NF20) (Rezende & Mohamed, 2015)
as a baseline in Table 5. Also, latent dimension-wise decoder weight norm and t-SNE visualization
on latent embeddings of MNIST is given in Figure 5a and 5b which correspond to Figure 4a and 3,
respectively.

Additionally, DirVAE-Learning use the same α for the initial value, but the DirVAE-Learning op-
timizes hyper-parameter α by the following stages through the learning iterations using the MME
method in Appendix C: 1) the burn-in period for stabilizing the neural network parameters; 2) the
alternative update period for the neural network parameters and α; and 3) the update period for the
neural network parameters with the fixed learned hyper-parameter α. Table 5 shows that there are
improvements in the marginal log-likelihood, ELBO, and reconstruction loss with DirVAE-Learning
in both datasets. We also give the learned hyper-parameter α in Figure 6.

D.3 SEMI-SUPERVISED CLASSIFICATION TASK WITH VAES

The overall model structure for this semi-supervised classification task uses a VAE with a separate
random variable of z and y, which is introduced as the M2 model in the original VAE work (Kingma
et al., 2014b). However, the same task with the SBVAE uses a different model modified to ignore

1http://www.iro.umontreal.ca/ lisa/twiki/bin/view.cgi/Public/MnistVariations
2https://github.com/yburda/iwae/tree/master/datasets/OMNIGLOT
3http://ufldl.stanford.edu/housenumbers/
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Table 5: Negative log-likelihood, negative ELBO, and reconstruction loss of the VAEs for MNIST
and OMNIGLOT dataset. The lower values are the better for all measures.

MNIST (K = 50) OMNIGLOT (K = 100)

Neg. LL Neg. ELBO Reconst. Loss Neg. LL Neg. ELBO Reconst. Loss

GVAE (Nalisnick & Smyth, 2017) 96.80 − − − − −
SBVAE-Kuma (Nalisnick & Smyth, 2017) 98.01 − − − − −
SBVAE-Gamma (Nalisnick & Smyth, 2017) 100.74 − − − − −
GVAE 94.54±0.79 98.58±0.04 74.31±0.13 119.29±0.44 126.42±0.24 98.90±0.36
GVAE-Softmax 98.18±0.61 103.49±0.16 79.36±0.82 130.01±1.16 139.73±0.81 123.34±1.43

GVAE-NF20 95.87±0.64 113.14±0.47 90.09±1.19 113.51±1.29 129.82±0.64 108.96±1.19

SBVAE-Kuma 99.27±0.48 102.60±1.81 83.90±0.82 130.73±2.17 132.86±3.03 119.25±1.00

SBVAE-Gamma 102.14±0.69 135.30±0.24 113.89±0.25 128.82±1.82 149.30±0.82 136.36±1.53

DirVAE-Weibull 114.59±11.15 183.33±2.96 150.92±3.70 140.89±3.21 198.01±2.46 145.52±3.13

DirVAE 87.64±0.64 100.47±0.35 81.50±0.27 108.24±0.42 120.06±0.35 99.78±0.36

DirVAE-Learning 84.42±0.53 99.88±0.40 80.73±0.31 100.01±0.52 119.73±0.31 99.55±0.32

0

2

4

6

8

GVAE-NF20

(a) Latent dimension-wise L2-norm of decoder weights of
GVAE-NF20.

(b) GVAE-NF20 t-SNE visualization.

Figure 5: Decoder weight collapsing and t-SNE latent embeddings visualization of GVAE-NF20 on
MNIST.

the relation between the class label variable y and the latent variable z, but they still share the same
parent nodes: qφ(z,y|x) = qφ(z|x)qφ(y|x) where qφ(y|x) is a discrimitive network for the unseen
labels. We follow the structure of SBVAE. Finally, the below are the objective functions to optimize
for the labeled and the unlabeled instances of the semi-supervised classification task, respectively:

log p(x,y) ≥ Llabeled(x,y) = Eqφ(z|x)
[log pθ(x|z,y)]−KL(qφ(z|x)||pθ(z))+log qφ(y|x) , (10)

log p(x) ≥ Lunlabeled(x) = Eqφ(z,y|x)
[log pθ(x|z,y) + H(qφ(y|x))]− KL(qφ(z|x)||pθ(z)) . (11)

In the above, H is an entropy function. The actual training on the semi-supervised learning optimizes
the weighted sum of Equation (10) and (11) with a ratio hyper-parameter 0 < λ < 1.

The datasets are divided into {train, valid, test} as the following: MNIST = {45, 000 : 5, 000 :
10, 000}, MNIST+rot = {70, 000 : 10, 000 : 20, 000}, and SVHN = {65, 000 : 8, 257 : 26, 032}.
For SVHN, dimension reduction into 500 dimensions by PCA is applied as preprocessing.

Fundamentally, we applied the same experimental settings to GVAE, SBVAE and DirVAE in this
experiment, as specified by the authors in Nalisnick & Smyth (2017).4,5 Specifically, the three
VAEs used the same network structures of 1) a hidden layer of 500 dimension for MNIST; and 2)
four hidden layers of 500 dimensions for MNIST+rot and SVHN with the residual network for the
last three hidden layers. The latent variables have 50 dimensions for all settings. The ratio parameter
λ is set to be 0.375 for the MNISTs, and 0.45 for SVHN. ReLU function is used as an activation
function in hidden layers, and the neural network parameters were initialized by sampling from
N (0, 0.001). The Adam optimizer is used with learning rate 3e-4 and the batch size was set to be
100. Finally, the DirVAE sets α = 0.98 · 150 by using Equation (5).

4https://github.com/enalisnick/stick-breaking dgms
5https://www.ics.uci.edu/∼enalisni/sb dgm supp mat.pdf
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Figure 6: The optimized dimension-wise α values from DirVAE-Learning with MNIST.

D.4 SUPERVISED CLASSIFICATION TASK WITH LATENT VALUES OF VAES

For the supervised classification task on the latent representation of the VAEs, we used exactly the
same experimental settings as in D.2. Since DLGMM is basically a Gaussian mixture model with
the SBVAE, DLGMM is a more complex model than the VAE alternatives. We only report the
authors’ result from Nalisnick et al. (2016) for the comparison purposes. Additionally, we omit
the comparison with the VaDE (Jiang et al., 2017) because the VaDE is more customized to be a
clustering model rather than the ordinary VAEs that we choose as baselines.

Table 6: The error rate of kNN with the latent representations of VAEs.

MNIST (K = 50) OMNIGLOT (K = 100)

k = 3 k = 5 k = 10 k = 3 k = 5 k = 10

GVAE (Nalisnick et al., 2016) 28.40 20.96 15.33 − − −
SBVAE (Nalisnick et al., 2016) 9.34 8.65 8.90 − − −
DLGMM (Nalisnick et al., 2016) 9.14 8.38 8.42 − − −
GVAE 27.16±0.48 20.20±0.93 14.89±0.40 92.34±0.25 91.21±0.18 88.79±0.35

GVAE-Softmax 25.68±2.64 21.79±2.17 18.75±2.06 94.76±0.20 94.22±0.37 92.98±0.42

GVAE-NF20 25.72±1.58 20.15±1.25 15.87±0.74 91.25±0.12 90.03±0.20 87.73±0.38

SBVAE 10.01±0.52 9.58±0.47 9.39±0.54 86.90±0.82 85.10±0.89 82.96±0.64

DirVAE 5.98±0.06 5.29±0.06 5.06±0.06 76.55±0.23 73.81±0.29 70.95±0.29

Raw Data 3.00 3.21 3.44 69.94 69.41 70.10

D.5 TOPIC MODEL AUGMENTATION WITH DIRVAE

For the topic model augmentation experiment, two popular performance measures in the topic
model fields, which are perplexity and topic coherence via normalized pointwise mutual information
(NPMI) (Lau et al., 2014), have been used with 20Newsgroups6 and RCV1-v27 datasets. 20News-
groups has 11, 258 train data and 7, 487 test data with vocabulary size 1, 995. For the RCV1-v2
dataset, due to the massive size of the whole data, we randomly sampled 20, 000 train data and
10, 000 test data with vocabulary size 10, 000. The lower is better for the perplexity, and the higher
is better for the NPMI.

The specific model structures can be found in the original papers, Srivastava & Sutton (2017); Miao
et al. (2016; 2017). We replace the model prior to that of DirVAE to each model and search the
hyper-parameter as Table 7 with 1, 000 randomly selected test data. We use 500-dimension hidden
layers and 50 topics for 20Newsgroups, and 1, 000-dimension hidden layers and 100 topics for
RCV1-v2.

Table 8 shows top-10 high probability words per topic by activating single latent dimensions in the
case of 20Newsgroups. Also, we visualized the latent embeddings of documents by t-SNE in Figure
7,8, and 9.

6https://github.com/akashgit/autoencoding vi for topic models
7http://scikit-learn.org/stable/datasets/rcv1.html
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Table 7: Hyper-parameter selections for DirVAE augmentations.

20Newsgroups (K = 50) RCV1-v2 (K = 100)

ProdLDA NVDM GSM ProdLDA NVDM GSM

Add DirVAE 0.98 · 150 0.95 · 150 0.20 · 150 0.99 · 1100 0.90 · 1100 0.01 · 1100

Table 8: Sample of learned per topic top-10 high probability words from 20Newsgroups with
DirVAE augmentation by activating single latent dimensions.

ProdLDA+DirVAE

Topic 1 turks turkish armenian genocide village armenia armenians muslims turkey greece
Topic 2 doctrine jesus god faith christ scripture belief eternal holy bible
Topic 3 season defensive puck playoff coach score flyers nhl team ice
Topic 4 pitcher braves hitter coach pen defensive injury roger pitch player
Topic 5 ide scsi scsus controller motherboard isa cache mb floppy ram
Topic 6 toolkit widget workstation xlib jpeg xt vendor colormap interface pixel
Topic 7 spacecraft satellite solar shuttle nasa mission professor lunar orbit rocket
Topic 8 knife handgun assault homicide batf criminal gun firearm police apartment
Topic 9 enforcement privacy encrypt encryption ripem wiretap rsa cipher cryptography escrow
Topic 10 min detroit tor det calgary rangers leafs montreal philadelphia cal

(a) DirVAE augmentation to ProdLDA

NVDM+DirVAE

Topic 1 armenian azerbaijan armenia genocide armenians turkish militia massacre village turks
Topic 2 arab arabs israeli palestinian jews soldier turks nazi massacre jew
Topic 3 resurrection bible christianity doctrine scripture eternal belief christian faith jesus
Topic 4 hitter season braves pitcher baseball pitch game player defensive team
Topic 5 directory file compile variable update ftp version site copy host
Topic 6 performance speed faster mhz rate clock processor average twice fast
Topic 7 windows microsoft driver dos nt graphic vga card virtual upgrade
Topic 8 seat gear rear tire honda oil front mile wheel engine
Topic 9 patient disease doctor treatment symptom medical health hospital pain medicine
Topic 10 pt la det tor pit pp vs van cal nj

(b) DirVAE augmentation to NVDM

GSM+DirVAE

Topic 1 turkish armenian armenians people one turkey armenia turks greek history
Topic 2 israel israeli jews attack world jewish article arab peace land
Topic 3 god jesus christian religion truth believe bible church christ belief
Topic 4 team play game hockey nhl score first division go win
Topic 5 drive video mac card port pc system modem memory speed
Topic 6 image software file version server program system ftp package support
Topic 7 space launch orbit earth nasa moon satellite mission project center
Topic 8 law state gun government right rights case court police crime
Topic 9 price sell new sale offer pay buy good condition money
Topic 10 internet mail computer send list fax phone email address information

(c) DirVAE augmentation to GSM
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Figure 7: 20Newsgroups latent document embedding visulaization with t-SNE by replacing the
model prior to the Dirichlet. (Left) ProdLDA+DirVAE, (Middle) NVDM+DirVAE, (Right)
GSM+DirVAE.

Figure 8: 20Newsgroups latent document embedding visulaization with t-SNE by replacing the
model prior to the Stick-Breaking. (Left) ProdLDA+SBVAE, (Middle) NVDM+SBVAE, (Right)
GSM+SBVAE.

Figure 9: 20Newsgroups latent document embedding visulaization with t-SNE of original models.
(Left) ProdLDA, (Middle) NVDM, (Right) GSM.
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