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Abstract

In this paper, we propose a new framework for designing fast parallel algorithms
for fundamental statistical subset selection tasks that include feature selection and
experimental design. Such tasks are known to be weakly submodular and are
amenable to optimization via the standard greedy algorithm. Despite its desirable
approximation guarantees, the greedy algorithm is inherently sequential and in
the worst case, its parallel runtime is linear in the size of the data. Recently, there
has been a surge of interest in a parallel optimization technique called adaptive
sampling which produces solutions with desirable approximation guarantees for
submodular maximization in exponentially faster parallel runtime. Unfortunately,
we show that for general weakly submodular functions such accelerations are
impossible. The major contribution in this paper is a novel relaxation of submod-
ularity which we call differential submodularity. We first prove that differential
submodularity characterizes objectives like feature selection and experimental de-
sign. We then design an adaptive sampling algorithm for differentially submodular
functions whose parallel runtime is logarithmic in the size of the data and achieves
strong approximation guarantees. Through experiments, we show the algorithm’s
performance is competitive with state-of-the-art methods and obtains dramatic
speedups for feature selection and experimental design problems.

1 Introduction

In fundamental statistics applications such as regression, classification and maximum likelihood
estimation, we are often interested in selecting a subset of elements to optimize an objective function.
In a series of recent works, both feature selection (selecting k out of n features) and experimental
design (choosing k out of n samples) were shown to be weakly submodular [DK11, EKD+18,
BBKT17]. The notion of weak submodularity was defined by Das and Kempe in [DK11] and
quantifies the deviance of an objective function from submodularity. Characterizations of weak
submodularity are important as they allow proving guarantees of greedy algorithms in terms of
the deviance of the objective function from submodularity. More precisely, for objectives that are
�-weakly submodular (for � that depends on the objective, see preliminaries Section 2), the greedy
algorithm is shown to return a 1� 1/e� approximation to the optimal subset.

Greedy is sequential and cannot be parallelized. For large data sets where one wishes to take ad-
vantage of parallelization, greedy algorithms are impractical. Greedy algorithms for feature selection
such as forward stepwise regression iteratively add the feature with the largest marginal contribution
to the objective which requires computing the contribution of each feature in every iteration. Thus,
the parallel runtime of the forward stepwise algorithm and greedy algorithms in general, scale linearly
with the number of features we want to select. In cases where the computation of the objective
function across all elements is expensive or the dataset is large, this can be computationally infeasible.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Adaptive sampling for fast parallel submodular maximization. In a recent line of work initiated
by [BS18a], adaptive sampling techniques have been used for maximizing submodular functions
under varying constraints [BS18b, CQ19b, CQ19a, BBS18, CFK19, ENV19, FMZ19a, BRS19b,
EN19, FMZ19b]. Intuitively, instead of growing the solution set element-wise, adaptive sampling
adds a large set of elements to the solution at each round which allows the algorithm to be highly
parallelizable. In particular, for canonical submodular maximization problems, one can obtain
approximation guarantees arbitrarily close to the one obtained by greedy (which is optimal for
polynomial time algorithms [NW78]) in exponentially faster parallel runtime.

In general, adaptive sampling fails for weakly submodular functions. Adaptive sampling tech-
niques add large sets of high valued elements in each round by filtering elements with low marginal
contributions. This enables these algorithms to terminate in a small number of rounds. For weak
submodularity, this approach renders arbitrarily poor approximations. In Appendix A.1, we use
an example of a weakly submodular function from [EDFK17] where adaptive sampling techniques
have an arbitrarily poor approximation guarantee. Thus, if we wish to utilize adaptive sampling to
parallelize algorithms for applications such as feature selection and experimental design, we need a
stronger characterization of these objectives which is amenable to parallelization.

1.1 Differential Submodularity

In this paper, we introduce an alternative measure to quantify the deviation from submodularity which
we call differential submodularity, defined below. We use fS(A) to denote f(S [A)� f(S).
Definition 1. A function f : 2

N ! R+ is ↵-differentially submodular for ↵ 2 [0, 1], if there exist
two submodular functions h, g s.t. for any S,A ✓ N , we have that gS(A) � ↵ · hS(A) and

gS(A)  fS(A)  hS(A)

A 1-differentially submodular function is submodular and a 0-differentially submodular function
can be arbitrarily far from submodularity. In Figure 1, we show a depiction of differential sub-
modularity (blue lines) calculated from the feature selection objective by fixing an element a and
randomly sampling sets S of size 100 to compute the marginal contribution fS(a) on a real dataset.
For a differentially submodular function (blue lines), the property of decreasing marginal contri-
butions does not hold but can be bounded by two submodular functions (red) with such property.

Figure 1: Marginal contribution of dif-
ferentially submodular function.

As we prove in this paper, applications such as feature selection
for regression and classification as well as experimental de-
sign are all �2-differentially submodular, where � corresponds
to their weak submodularity ratios [EKD+18, BBKT17]. The
power of this characterization is that it allows for parallelization
with strong approximation guarantees. We do this by designing
an adaptive sampling algorithm that leverages the differential
submodularity structure and has bounded approximation guar-
antees in terms of the differential submodularity ratios.

1.2 Main results

Our main result is that for objectives such as feature selection for regression and classification
and Bayesian A-optimality experimental design which are all �-weakly submodular, there is an
approximation guarantee arbitrarily close to 1� 1/e�
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for maximization under cardinality constraints
in O(log n) adaptive rounds (see adaptivity definition in Section 2). Thus, while the approximation is
inferior to the 1�1/e� obtained by greedy, our algorithm has exponentially fewer rounds. Importantly,
using experiments we show that empirically it has comparable terminal values to the greedy algorithm,
greatly outperforms its theoretical lower bound, and obtains the result with two to eight-fold speedups.
We achieve our result by proving these objectives are ↵-differentially submodular and designing an
adaptive sampling algorithm that gives a 1�1/e↵2

approximation for maximizing any ↵-differentially
submodular function under a cardinality constraint.

Conceptual overview. For the past decade, fundamental problems in machine learning have been
analyzed through relaxed notions of submodularity (See details on different relaxations of submodu-
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larity and relationship to differential submodularity in Appendix B). Our main conceptual contribution
is the framework of differential submodularity which is purposefully designed to enable fast par-
allelization techniques that previously-studied relaxations of submodularity do not. Specifically,
although stronger than weak submodularity, we can prove direct relationships between objectives’
weak submodularity ratios and their differential submodularity ratios which allows getting strong ap-
proximations and exponentially faster parallel runtime. We note that differential submodularity is also
applicable to more recent parallel optimization techniques such as adaptive sequencing [BRS19b].

Technical overview. From a purely technical perspective, there are two major challenges addressed
in this work. The first pertains to the characterization of the objectives in terms of differential submod-
ularity and the second is the design of an adaptive sampling algorithm for differentially submodular
functions. Previous adaptive sampling algorithms are purposefully designed for submodular functions
and cannot be applied when the objective function is not submodular (example in Appendix A.2).
In these cases, the marginal contribution of individual elements is not necessarily subadditive to
the marginal contribution of the set of elements combined. Thus, the standard analysis of adaptive
sampling, where we attempt to add large sets of elements to the solution set by assessing the value of
individual elements, does not hold. By leveraging the fact that marginal contributions of differentially
submodular functions can be bounded by marginal contributions of submodular functions, we can
approximate the marginal contribution of a set by assessing the marginal contribution of its elements.
This framework allows us to leverage parallelizable algorithms to show a stronger approximation
guarantee in exponentially fewer rounds.

Paper organization. We first introduce preliminary definitions in Section 2 followed by intro-
ducing our main framework of differential submodularity and its reduction to feature selection and
experimental design objectives in Section 3. We then introduce an algorithm for selection problems
using adaptive sampling in Section 4 and conclude with experiments in Section 5. Due to space
constraints, most proofs of the analysis are deferred to the Appendix.

2 Preliminaries

For a positive integer n, we use [n] to denote the set {1, 2, . . . , n}. Boldface lower and upper case
letters denote vectors and matrices respectively: a,x,y represent vectors and A,X,Y represent
matrices. Unbolded lower and upper case letters present elements and sets respectively: a, x, y
represent elements and A,X, Y represent sets. For a matrix X 2 Rd⇥n and S ✓ [n], we denote
submatrices by column indices by XS . For vectors, we use xS to denote supports supp(x) ✓ S. To
connect the discrete function f(S) to a continuous function, we let f(S) = `(w(S)

), where w

(S)

denotes the w that maximizes `(·) subject to supp(w) ✓ S.

Submodularity and weak submodularity. A function f : 2

N ! R+ is submodular if fS(a) �
fT (a) for all a 2 N\T and S ✓ T ✓ N . It is monotone if f(S)  f(T ) for all S ✓ T . We assume
that f is normalized and non-negative, i.e., 0  f(S)  1 for all S ✓ N , and monotone. The concept
of weak submodularity is a relaxation of submodularity, defined via the submodularity ratio:
Definition 2. [DK11] The submodularity ratio of f : 2

N ! R+ is defined as, for all A ✓ N ,

�k = min

A✓N,S:|A|k

P
a2A fS(a)

fS(A)

.

Functions with submodularity ratios � = mink �k < 1 are �-weakly submodular.

Adaptivity. The adaptivity of algorithms refers to the number of sequential rounds of queries it
makes when polynomially-many queries can be executed in parallel in each round.
Definition 3. For a function f , an algorithm is r-adaptive if every query f(S) given a set S occurs
at a round i 2 [r] such that S is independent of the values f(S0

) of all other queries at round i.

Adaptivity is an information theoretic measure of parallel-runtime that can be translated to standard
parallel computation frameworks such as PRAM (See Appendix C). Therefore, like all previous work
on adaptivity on submodular maximization, we are interested in algorithms that have low adaptivity
since they are parallelizable and scalable for large datasets [BRS19a, BS18b, CQ19b, CQ19a, BBS18,
CFK19, ENV19, FMZ19a, BRS19b, EN19, FMZ19b].
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3 Feature Selection and A-Optimal Design are Differentially Submodular

We begin by characterizing differential submodularity in terms of restricted strong concavity and
restricted smoothness defined as follows.
Definition 4. [EKD+18] Let ⌦ be a subset of Rn ⇥ Rn and ` : Rn ! R be a continuously
differentiable function. A function ` is restricted strong concave (RSC) with parameter m⌦ and
restricted smooth (RSM) with parameter M⌦ if, for all (y,x) 2 ⌦,

�m⌦

2

ky � xk22 � `(y)� `(x)� hr`(x),y � xi � �M⌦

2

ky � xk22

Before connecting our notion of differential submodularity to RSC/RSM properties, we first define
concavity and smoothness parameters on subsets of ⌦. If ⌦0 ✓ ⌦, then M⌦0 M⌦ and m⌦0 � m⌦.
Definition 5. We define the domain of s-sparse vectors as ⌦s = {(x,y) : kxk0  s, kyk0 
s, kx� yk0  s}. If t � s, Ms Mt and ms � mt.
Theorem 6. Suppose `(·) is RSC/RSM on s-sparse subdomains ⌦s with parameters ms,Ms for
s  2k. Then, for t = |S|+k, s = |S|+1, the objective f(S) = `(w(S)

) is differentially submodular
s.t. for S,A ✓ N , |A|  k, m

s

M
t

˜fS(A)  fS(A)  M
s

m
t

˜fS(A), where ˜fS(A) =

P
a2A fS(a).

Proof. We first prove the lower bound of the inequality. We define x(S[A) =
1
M

t

r`(w(S)
)A +w

(S)

and use the strong concavity of `(·) to lower bound fS(A):

fS(A) � `(x(S[A))� `(w(S)
) � hr`(w(S)

),x(S[A) �w

(S)i � Mt

2

kx(S[A) �w

(S)k22
� 1

2Mt
kr`(w(S)

)Ak22 (1)

where the first inequality follows from the optimality of `(w(S[A)
) for vectors with support S [A

and the last inequality is by the definition of x(S[A).

We also can use smoothness of `(·) to upper bound the marginal contribution of each element in A to
S, fS(a). We define x(S[a) =

1
m

s

r`(w(S)
)a +w

(S). For a 2 A,

fS(a) = `(w(S[a)
)� `(w(S)

)  hr`(w(S)
),x(S[a) �w

(S)i � ms

2

kx(S[a) �w

(S)k22
 1

2ms
kr`(w(S)

)ak22 (2)

where the last inequality follows from the definition of x(S[a). Summing across all a 2 A, we get
X

a2A

fS(a) 
X

a2A

1

2ms
kr`(w(S)

)ak22 =

1

2ms
kr`(w(S)

)Ak22 (3)

By combining (1) and (3), we can get the desired lower bound of fS(A). To get the upper bound
on the marginals, we can use the lower bound of submodularity ratio �S,k of f from Elenberg et al.
[EKD+18], which is no less than m

t

M
s

. Then, by letting ˜fS(A) =

P
a2A fS(a), we can complete the

proof and show that the marginals can be bounded.

We can further generalize the previous lemma to all sets S,A ✓ N , by using the general RSC/RSM
parameters m,M associated with ⌦n, where n � t, s. From Definition 5, since ⌦s ✓ ⌦t ✓ ⌦n,
Ms  Mt  M and ms � mt � m. Thus, we can weaken the bounds from Lemma 6 to get
m
M

˜fS(A)  fS(A)  M
m

˜fS(A) which is a �2-differentially submodular function for � =

m
M .

3.1 Differential submodularity bounds for statistical subset selection problems

We now connect differential submodularity to feature selection and experimental design objectives.
We also show that even when adding diversity-promoting terms d(S) as in [DDK12] the functions
remain differentially submodular. Due to space limitations, proofs are deferred to Appendix E.
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Feature selection for regression. For a response variable y 2 Rd and feature matrix X 2 Rd⇥n,
the objective is the maximization of the `2-utility function that represents the variance reduction of y
given the feature set S:

`reg(y,w
(S)

) = kyk22 � ky �XSwk22
We can bound the marginals by eigenvalues of the feature covariance matrix. We denote the minimum
and maximum eigenvalues of the k-sparse feature covariance matrix by �min(k) and �max(k).

Corollary 7. Let � =

�
min

(2k)
�
max

(2k) and d : 2

N ! R+ be a submodular diversity function. Then

f(S) = `
reg

(w

(S)
) and f

div

(S) = `
reg

(w

(S)
) + d(S) are �2-differentially submodular.

We note that [DK11] use a different objective function to measure the goodness of fit R2. In
Appendix F, we show an analogous bound for the objective used in [DK11]. Our lower bound is
consistent with the result in Lemma 2.4 from Das and Kempe [DK11].

Feature selection for classification. For classification, we wish to select the best k columns from
X 2 Rd⇥n to predict a categorical variable y 2 Rd. We use the following log-likelihood objective in
logistic regression to select features. For a categorical variable y 2 Rd, the objective in selecting the
elements to form a solution set is the maximization of the log-likelihood function for a given S:

`class(y,w
(S)

) =

dX

i=1

yi(XSw)� log(1 + eXS

w
)

We denote m and M to be the RSC/RSM parameters on the feature matrix X. For � =

m
M [EKD+18]

show that the feature selection objective for classification is �-weakly submodular.
Corollary 8. Let � =

m
M and d : 2

N ! R+ be a submodular diversity function. Then f(S) =

`
class

(w

(S)
) and f

div

(S) = `
class

(w

(S)
) + d(S) are �2-differentially submodular.

Bayesian A-optimality for experimental design. In experimental design, we wish to select the set
of experimental samples xi from X 2 Rd⇥n to maximally reduce variance in the parameter posterior
distribution. We now show that the objective for selecting diverse experiments using Bayesian
A-optimality criterion is differentially submodular. We denote ⇤ = �2

I as the prior that takes the
form of an isotropic Gaussian and �2 as variance (See Appendix D for more details).

Corollary 9. Let � =

�2

kXk2(�2+��2kXk2) and d : 2

N ! R+ be a submodular diversity function, then
the objectives of Bayesian A-optimality defined by f

A-opt

(S) = Tr(⇤

�1
)�Tr((⇤+��2

XSX
T
S )

�1
)

and the diverse analog defined by f
A-div

(S) = f
A-opt

(S) + d(S) are �2-differentially submodular.

4 The Algorithm

We now present the DASH (DIFFERENTIALLY-ADAPTIVE-SHAMPLING) algorithm for maximizing
differentially submodular objectives with logarithmic adaptivity. Similar to recent works on low adap-
tivity algorithms [BRS19a, BS18b, CQ19b, CQ19a, BBS18, CFK19, ENV19, FMZ19a, BRS19b,
EN19], this algorithm is a variant of the adaptive sampling technique introduced in [BS18a]. The
adaptive sampling algorithm for submodular functions, where ↵ = 1, is not guaranteed to terminate
for non-submodular functions (See Appendix A.2). Thus, we design a variant to specifically address
differential submodularity to parallelize the maximization of non-submodular objectives.

Algorithm overview. At each round, the DASH algorithm selects good elements determined by
their individual marginal contributions and attempts to add a set of k/r elements to the solution set S.
The decision to label elements as "good" or "bad" depends on the threshold t which quantifies the
distance between the elements that have been selected and OPT. This elimination step takes place in
the while loop and effectively filters out elements with low marginal contributions. The algorithm
terminates when k elements have been selected or when the value of f(S) is sufficiently close to OPT.

The algorithm presented is an idealized version because we cannot exactly calculate expectations, and
OPT and differential submodularity parameter ↵ are unknown. We can estimate the expectations by
increasing sampling of the oracle and we can guess OPT and ↵ through parallelizing multiple guesses
(See Appendix G for more details).
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Algorithm 1 DASH (N, r,↵)

1: Input Ground set N , number of outer-iterations r, differential submodularity parameter ↵
2: S  ;, X  N
3: for r iterations do
4: t := (1� ✏)(f(O)� f(S))
5: while ER⇠U(X)[fS(R)] < ↵2 t

r do
6: X  X\{a : ER⇠U(X)[fS[(R\{a})(a)] < ↵(1 + ✏

2 )t/k}
7: end while
8: S  S [R where R ⇠ U(X)

9: end for
10: return S

Algorithm analysis. We now outline the proof sketch of the approximation guarantee of f(S) using
DASH. In our analysis, we denote the optimal solution as OPT = f(O) where O = argmax|S|kf(S)
and k is a cardinality constraint parameter. Proof details can be found in Appendix H.
Theorem 10. Let f be a monotone, ↵-differentially submodular function where ↵ 2 [0, 1], then, for
any ✏ > 0, DASH is a log1+✏/2(n) adaptive algorithm that obtains the following approximation for
the set S that is returned by the algorithm

f(S) � (1� 1/e↵
2 � ✏)f(O).

The key adaptation for ↵-differential submodular functions appears in the thresholds of the algorithm,
one to filter out elements and another to lower bound the marginal contribution of the set added in
each round. The additional ↵ factor in the while condition compared to the single element marginal
contribution threshold is a result of differential submodularity properties and guarantees termination.

To prove the theorem, we lower bound the marginal contribution of selected elements X⇢ at each
iteration ⇢: fS(X⇢) � ↵2

r (1� ✏)(f(O)� f(S)) (Lemma 19 in Appendix H.1).

We can show that the algorithm terminates in log1+✏/2(n) rounds (Lemma 21 in Appendix H.1).
Then, using the lower bound of the marginal contribution of a set at each round fS(X⇢) in conjunction
with an inductive proof, we get the desired result.

We have seen in Corollary 7, 8 and 9 that the feature selection and Bayesian experimental design
problems are differentially submodular. Thus, we can apply DASH to these problems to obtain the
f(S) � (1� 1/e↵

2 � ✏)f(O) guarantee from Theorem 10.

(a) (b) (c)

(d) (e) (f)

Figure 2: Linear regression feature selection results comparing DASH (blue) to baselines on synthetic (top row)
and clinical datasets (bottom row). Dashed line represents LASSO extrapolated across �.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Logistic regression feature selection results comparing DASH (blue) to baselines on synthetic (top
row) and gene datasets (bottom row). The X denotes manual termination of the algorithm due to running time
constraints. Dashed line represents approximation for LASSO extrapolated across �.

5 Experiments

To empirically evaluate the performance of DASH, we conducted several experiments on feature
selection and Bayesian experimental design. While the 1 � 1/e�

4

approximation guarantee of
DASH is weaker than the 1 � 1/e� of the greedy algorithm (SDSMA), we observe that DASH
performs comparably to SDSMA and outperforms other benchmarks. Most importantly, in all
experiments, DASH achieves a two to eight-fold speedup of parallelized greedy implementations,
even for moderate values of k. This shows the incredible potential of other parallelizable algorithms,
such as adaptive sampling and adaptive sequencing, under the differential submodularity framework.

Datasets. We conducted experiments for linear and logistic regression using the `reg and `class
objectives, and Bayesian experimental design using fA-opt. We generated the synthetic feature space
from a multivariate normal distribution. To generate the response variable y, we sample coefficients
uniformly (D1) and map to probabilities for classification (D3) and attempt to select important
features and samples. We also select features on a clinical dataset n = 385 (D2) and classify location
of cancer in a biological dataset n = 2500 (D4). We use D1, D2 for linear regression and Bayesian
experimental design, and D3, D4 for logistic regression experiments. (See Appendix I.2 for details.)

Benchmarks. We compared DASH to RANDOM (selecting k elements randomly in one round),
TOP-k (selecting k elements of largest marginal contribution), SDSMA [KC10] and Parallel SDSMA,
and LASSO, a popular algorithm for regression with an `1 regularization term. (See Appendix I.3.)

Experimental Setup. We run DASH and baselines for different k for two sets of experiments.

• Accuracy vs. rounds. In this set of experiments, for each dataset we fixed one value of k
(k = 150 for D1, k = 100 for D2, D3 and k = 200 for D4) and ran algorithms to compare
accuracy of the solution (R2 for linear regression, classification rate for logistic regression
and Bayesian A-optimality for experimental design) as a function of the number of parallel
rounds. The results are plotted in Figures 2a, 2d, Figures 3a, 3d and Figures 4a, 4d;

• Accuracy and time vs. features. In these experiments, we ran the same benchmarks for
varying values of k (in D1 the maximum is k = 150, D2, D3 the maximum is k = 100 and
in D4 the maximum is k = 200) and measure both accuracy (Figures 2b, 2e, 3b, 3e, 4b, 4e)
and time (Figures 2c, 2f, 3c, 3f, 4c, 4f). When measuring accuracy, we also ran LASSO by
manually varying the regularization parameter � to select approximately k features. Since
each k represents a different run of the algorithm, the output (accuracy or time) is not
necessarily monotonic with respect to k.
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We implemented DASH with 5 samples at every round. Even with this small number of samples,
the terminal value outperforms greedy throughout all experiments. The advantage of using fewer
samples is that it allows parallelizing over fewer cores. In general, given more cores one can reduce
the variance in estimating marginal contributions which improves the performance of the algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 4: Bayesian experimental design results comparing DASH (blue) to baselines on synthetic (top row) and
clinical datasets (bottom row).

Results on general performance. We first analyze the performance of DASH . For all applications,
Figures 2a, 2d, 3a, 3d, 4a and 4d show that the final objective value of DASH is comparable to SDSMA,
outperforms TOP-k and RANDOM, and is able to achieve the solution in much fewer rounds. In
Figures 2b, 2e, 3b, 3e, 4b and 4e, we show DASH can be very practical in finding a comparable
solution set to SDSMA especially for larger values of k. In the synthetic linear regression experiment,
DASH significantly outperforms LASSO and has comparable performance in other experiments. While
DASH outperforms the simple baseline of RANDOM, we note that the performance of RANDOM
varies widely depending on properties of the dataset. In cases where a small number of features
can give high accuracy, RANDOM can perform well by randomly selecting well-performing features
when k is large (Figure 2e). However, in more interesting cases where the value does not immediately
saturate, both DASH and SDSMA significantly outperform RANDOM (Figure 2b, 4b).

We can also see in Figures 2c, 2f, 3c, 3f, 4c and 4f that DASH is computationally efficient compared
to the other baselines. In some cases, for smaller values of k, SDSMA is faster (Figure 3c). This is
mainly due to the sampling done by DASH to estimate the marginals, which can be computationally
intensive. However, in most experiments, DASH terminates more quickly even for small values of k.
For larger values, DASH shows a two to eight-fold speedup compared to the fastest baseline.

Effect of oracle queries. Across our experiments, the cost for oracle queries vary widely. When
the calculation of the marginal contribution is computationally cheap, parallelization of SDSMA has a
longer running time than its sequential analog due to the cost of merging parallelized results (Figures
2c, 3c). However, in the logistic regression gene selection experiment, calculating the marginal
contribution of an element to the solution set can span more than 1 minute. In this setting, using
sequential SDSMA to select 100 elements would take several days for the algorithm to terminate
(Figure 3f). Parallelization of SDSMA drastically improves the algorithm running time, but DASH is
still much faster and can find a comparable solution set in under half the time of parallelized SDSMA.

In both cases of cheap and computationally intensive oracle queries, DASH terminates more quickly
than the sequential and parallelized version of SDSMA for larger values of k. This can be seen
in Figures 2c, 3c and 4c where calculation of marginal contribution on synthetic data is fast and
in Figures 2f, 3f and 4f where oracle queries on larger datasets are much slower. This shows the
incredible potential of using DASH across a wide array of different applications to drastically cut
down on computation time in selecting a large number elements across different objective functions.
Given access to more processors, we expect even a larger increase in speedup for DASH.
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