
Under review as a conference paper at ICLR 2020

Unknown-Aware Deep Neural Network

Anonymous authors
Paper under double-blind review

Abstract

An important property of image classification systems in the real world is that
they both accurately classify objects from target classes (“knowns”) and safely
reject unknown objects (“unknowns”) that belong to classes not present in
the training data. Unfortunately, although the strong generalization ability
of existing CNNs ensures their accuracy when classifying known objects, it
also causes them to often assign an unknown to a target class with high
confidence. As a result, simply using low-confidence detections as a way to
detect unknowns does not work well. In this work, we propose an Unknown-
aware Deep Neural Network (UDN for short) to solve this challenging
problem. The key idea of UDN is to enhance existing CNNs to support a
product operation that models the product relationship among the features
produced by convolutional layers. This way, missing a single key feature
of a target class will greatly reduce the probability of assigning an object
to this class. UDN uses a learned ensemble of these product operations,
which allows it to balance the contradictory requirements of accurately
classifying known objects and correctly rejecting unknowns. To further
improve the performance of UDN at detecting unknowns, we propose an
information-theoretic regularization strategy that incorporates the objective
of rejecting unknowns into the learning process of UDN. We experiment on
benchmark image datasets including MNIST, CIFAR-10, CIFAR-100, and
SVHN, adding unknowns by injecting one dataset into another. Our results
demonstrate that UDN consistently outperforms state-of-the-art methods at
rejecting unknowns – up to 20 point gains in accuracy, while still preserving
the classification accuracy.

1 Introduction

Motivation. In recent years, Convolutional Neural Networks (CNN) have been used with
great success for a rich variety of classification problems, particularly when dealing with high
dimensional, complex data such as images or time series (Goodfellow et al., 2016). A CNN
classifier (Krizhevsky et al., 2012) typically classifies test objects as one of the target classes
supplied in the training set. In this, state-of-the-art classifiers make the implicit assumption
that all testing objects belong to one of the target classes. However, this assumption is rarely
true in real-world deployments of CNN classifiers. Consider for example, an autonomous car
or healthcare system: it is extremely likely that the system will be exposed to objects that
were not in its training set. We call such objects “unknowns”.

Clearly, blindly assigning these unknowns into one of the target classes degrades the prediction
accuracy. Worst yet, it can lead to serious safety concerns. For example, in a collaboration
with a top hospital in the US (name removed due to anonymity), we have been developing a
seizure detector that classifies patients into different types of seizures based on EEG signals
collected during the clinical observation of 4,000 patients. The detector was trained based
on 6 types of seizures observed in the training data. However, when deployed, the CNN
classifier may encounter patients who have types of seizures that do not exist in the training
data because they are rare or even unknown by the medical community. Misclassifying these
patients into the existing types of seizures brings serious risks and potential harm due to the
potential for mistreatment of these patients. Ideally, in this case, the unknowns would be
recognized and rejected by the classifier.

1

Under review as a conference paper at ICLR 2020

In this work, we focus on this important problem, describing a deep neural network that not
only accurately classifies test objects into known target classes, but also correctly rejects
unknowns.

State-of-the-Art. In a typical CNN, the output of the last fully connected layer is fed into
a softmax layer to generate a class probability in [0, 1] for each target class. An object will
then be assigned to the class with the maximal probability. Intuitively, unknowns would be
detected by leveraging this confidence, as was done in Bendale & Boult (2016); Hendrycks &
Gimpel (2017); Liang et al. (2018). Since unknowns should not exhibit as many features
of a target class versus known objects, the CNN should report a lower confidence. In prior
work (Bendale & Boult, 2016; Hendrycks & Gimpel, 2017; Liang et al., 2018), the maximal
probability or the largest value in the input vector to the softmax layer (maximal weighted
sum) is used as a confidence to detect unknowns. In particular, an object will be rejected as
an unknown if its confidence is smaller than a predetermined cutoff threshold ct.

However, as shown in our experiments (Sec. 5), these state-of-the-art methods are not
particularly effective at rejecting unknowns. This is because CNNs achieve high classification
accuracy by providing a strong ability to generalize, allowing it to overcome the gap between
the training and testing data (Goodfellow et al., 2016). Unfortunately, this strength here
is also a weakness, because it increases the chance of erroneously assigning an unknown to
some target class even if it is quite different from the training objects in any target class.
More specifically, the maximal probability (or maximal weighted sum) in a CNN is computed
by the weighted sum operation on the multiple features produced by the convolutional layers.
Because of this sum operation, an unknown can be classified to a target class with high
confidence even if it matches some key features of a target class only by chance. Therefore,
the requirements of accurately classifying the knowns and correctly rejecting the unknowns
conflict with each other.

Proposed Approach and Contributions. In this work we propose an Unknown-aware
Deep Neural Network (UDN for short) to overcome this problem.

The key intuition of UDN is to modify the CNN to use a product operation which models
the product relationship among the features produced by the convolutional layers. This way,
similar to the product rule in probability theory (Stroock, 2010), if just one feature indicative
of a target class is not matched, the probability of assigning an object to this class is greatly
reduced. Since an unknown is unlikely to match most of the features of a target class, the
chance of assigning an unknown to a target class with high confidence is reduced. Therefore,
the confidence produced by UDN should more effectively detect unknowns than the typical
maximal probability/maximal weighted sum produced by classical CNNs. In UDN, the
product operations are learned as a set of product relationship (PR) subnets leveraging the
hierarchical nature of the binary tree structure. The strong bias of the classification decisions
made via the product operations and the generalization ability introduced by the ensemble
nature of multiple PR subsets together balance the contradictory requirements of accurately
classifying known objects and correctly rejecting unknowns.

In addition, we propose an information-theoretic regularization strategy that actively incor-
porates the objective of unknown rejection into the learning process of UDN. This further
improves the accuracy of UDN at rejecting unknowns by enlarging the confidence gap
between unknown and known objects. We then show that the final loss function of UDN is
fully differentiable. Therefore, UDN can be learned by following the common practice of
back-propagation in deep neural networks.

We demonstrate the effectiveness of UDN using a rich variety of benchmark datasets including
MNIST, CIFAR-10, CIFAR-100, and SVHN. UDN outperforms the state-of-the-art up to 20
points in the accuracy of unknown rejection – while preserving the accuracy of the underlying
CNN at classifying objects from the target classes.

2 Related Work

Out-of-Distribution Detection. In Bendale & Boult (2016), CNNs were adapted to
discover unknowns by adding one additional unknown class to the softmax layer. This

2

Under review as a conference paper at ICLR 2020

method, called OpenMax, measures the distance between the maximal weighted sum vector
produced for a test object and the mean maximal weighted sum vectors of the target classes
that this test object is most likely assigned to. This distance is translated to a probability
by the OpenMax layer. A testing object will be assigned to the unknown class if this
probability is larger than a pre-defined cutoff threshold. Similarly, Malinin & Gales (2018)
detects out-of-distribution objects by parameterizing a prior distribution over predictive
distributions, so called Prior Networks (PNs), while Hendrycks & Gimpel (2017) directly
uses softmax probabilities to detect out-of-distribution objects.

ODIN (Liang et al., 2018) detects unknowns using a two-pass inference strategy. That is,
each test image goes through the inference stage twice. During the second inference round,
each input is perturbed based on the gradient of its loss acquired in the first inference. The
goal is to make the maximal probability produced by softmax more effective at separating
unknowns. One problem with ODIN is that it introduces two extra hyper-parameters to
control the level of perturbation, which are hard to tune.

As shown in experiments, our UDN method significantly outperforms OpenMax and ODIN,
because UDN uses the maximal path probability as confidence measure, which as the product
of multiple probabilities w.r.t. a set of nodes, is more effective in rejecting unknowns than
using maximal weighted sum or maximal probability as a confidence measure.

MC-Dropout (Gal & Ghahramani, 2016) uses Bayesian model to reason about model
uncertainty by casting dropout training in deep neural networks as as approximate Bayesian
inference in deep Gaussian processes. It then rejects a testing object as unknown if the
uncertainty about this object is large. As shown in experiments, MC-Dropout in many cases
outperforms OpenMax and ODIN in rejecting unknowns, although is still worse than our
UDN. Further, it scarifies the accuracy of classifying the known classes.

In Liu et al. (2018) and Vyas et al. (2018), methods were proposed to detect the objects that
do not belong to known classes in a “clean” training dataset. However, these methods rely
on a “contaminated” training set that contains a fraction of unknowns, i.e., that were not in
the original clean training data. In other words, they solve the problem of rejecting “known
unknowns”, while our UDN instead focuses on the problem of rejecting “unknown unknowns”.
Our UDN does not require any labeled unknowns in training.

Deep Outlier Detection. Methods in Perera & Patel (2018); Erfani et al. (2016); Ruff
et al. (2018); Nguyen & Vien (2018); Schlegl et al. (2017); Zhai et al. (2016); Chen et al.
(2017); Zong et al. (2018); Hendrycks et al. (2019) use representation learning of deep neural
networks to enhance the classical unsupervised outlier detection methods such as one-class
classification (Schölkopf et al., 2001; Manevitz & Yousef, 2002; Tax & Duin, 2004) and
neighbor-based methods (Breunig et al., 2000; Knorr & Ng, 1998; Ramaswamy et al., 2000;
Bay & Schwabacher, 2003). However, unlike our work which focuses on enhancing the CNNs
to reject the unknown objects during the inference process, these outlier detection methods
do not take the classification objective into consideration. Instead, these methods detect
outliers from a given dataset as the objects that significantly deviate from the majority of
this dataset (Aggarwal, 2017), without using any labeled outliers or normal objects.

Deep Neural Decision Forest. Similar to the deep neural decision forest (DNDF)
(Kontschieder et al., 2015), nodes in UDN at the final FC layers are connected to the split
nodes of multiple trees. However, UDN is different from DNDF in several important ways.
First, conceptually UDN corresponds to a variation of CNN model by replacing the softmax
layer with tree structures such that the CNN can model the product relationship among
the features learned by CNN, while DNDF instead enhances a random forest classifier
with the feature learning ability of a CNN. Second, UDN incorporates the objective of
unknown rejection into the learning process, while DNDF only considers the classification
of known classes. Third, DNDF estimates both the decision node parametrizations θ and
the leaf predictions π by using a two-step optimization strategy, where θ and π are updated
alternatively to minimize the log-loss, while UDN is fully differentiable and therefore can be
optimized in one step. Forth, in DNDF different trees share the FC layers (except the final
FC layer) of the CNNs, while UDN divides all FC layers into m independent components,

3

Under review as a conference paper at ICLR 2020

each of which is connected to one individual tree. This ensures independence among the trees
and improves the classification accuracy because of the excellent generalization capability.

3 An Unknown-aware Deep Neural Network

In this section, we first introduce the structure of unknown-aware deep neural network
(UDN). Next, we show how UDN distinguishes unknown from known objects. A regularization
strategy is introduced in Sec. 4 to further improve the accuracy of UDN at rejecting unknowns.

Deep CNN with
parameters 𝜣

Convolutional Modules

Fully Connected Layers 𝑃𝑅$

𝑓&& 𝑓&' 𝑓&(𝑓&)𝑓&* 𝑓&$ 𝑓&+

𝑛&&
𝑛&$ 𝑛&(

𝑛&* 𝑛&+ 𝑛&' 𝑛&)

𝑙&* 𝑙&+ 𝑙&' 𝑙&)𝑙&& 𝑙&$ 𝑙&(𝑙&.

𝑓$& 𝑓$' 𝑓$(𝑓$)𝑓$* 𝑓$$ 𝑓$+

𝑛$&
𝑛$$ 𝑛$(

𝑛$* 𝑛$+ 𝑛$' 𝑛$)

𝑙$* 𝑙$+ 𝑙$' 𝑙$)𝑙$& 𝑙$$ 𝑙$(𝑙$.

Fully Connected Layers𝑃𝑅&

𝑑&&𝑑&$

𝑑&+

{𝜋&(& ,𝜋&($,… , 𝜋&(4 }
Figure 1: UDN Architecture.

3.1 UDN: Network Structure

As depicted in Fig. 1, UDN is composed of the convolutional module and M independent
product relationship (PR) subnets, whereM corresponds to a user definable hyper-parameter.

PR Subnet. The PR subnet is designed to model the product relationship among the
features produced by the convolutional layers. Each PR subnet contains one fully connected
(FC) component connected to a binary tree structure. Within each individual tree T , each
split node of T is connected to one output node of the final layer of the FC component. The
mapping between the FC output nodes and the split nodes can be arbitrary. Any FC output
node can be connected to the root node of the tree. The set of split nodes of T is denoted
as N . The set of leaf nodes is denoted as L.
Each split node ni ∈ N converts the output xi of the FC node it consumes data from into a
value in the [0 , 1] range by applying the sigmoid function σ(xi), where σ(xi) = (1 + e−xi)−1.

Each leaf node l ∈ L is parameterized using a C-dimensional probability distribution πl,
where C denotes the number of classes. One element πil of πl w.r.t. the ith class is computed
as the softmax output of a to be learned parameter wil :

πil = softmax(wil) =
ew

i
l∑C

j=1 e
wj

l

(1)

Product Relationship. Next, we show how a PR subnet models the product relationship
using the path probability µl(x) defined in Eq. 2, where x denotes an input object and l
denotes a path from the root node to a leaf node l.

µl(x) =
∏
ni∈Nl

d(xi) (2)

In Eq. 2, Nl denotes the set of split nodes on the path from root to a leaf l. Given a node
ni ∈ Nl, d(xi) = σ(xi) if the left child of ni is included in this path. Otherwise, d(xi) =
1 − σ(xi). For example, as shown in Fig. 1, on the path of n11 → n12 → n15 → l13, d12 w.r.t.
n12 is set as 1 − σ(x12), because n12 is connected to its right child n15 on this path.

4

Under review as a conference paper at ICLR 2020

Therefore, d(xi) indicates the probability that input x will be routed from node ni down to
the next node on path l. Accordingly, µl(x) models the probability of input x reaching leaf
l, i.e., the probability of path l.

Since the d(xi) of each split ni corresponds to the output xi produced by the FC node w.r.t.
ni, essentially the path probability µl(x) is jointly determined by the output of multiple
FC nodes. Therefore, µl(x) successfully models the product relationship among the features
produced by CNN. The existence of one FC node that leads to small d(xi) will make the
probability of the whole path l small.

Prediction. At each leaf node l of T , a PR subnet produces a prediction for a given input
object x using Eq. 3.

PPR[y|x, π] =
∑
l∈L

πlyµl(x) (3)

In Eq. 3, π = {πl |l ∈ L}, and πly denotes the probability that leaf l believes an input sample
x belongs to class y. µl(x) denotes the path probability of l. Generally speaking, the
prediction is given by the probability produced at the leaf node l weighted by the probability
of input x reaching leaf l.

Finally, as an ensemble of a set of PR subnets PR = {PR1 , . . . ,PRM }, UDN produces a
prediction for an input x by averaging the output of each subnet, i.e.:

PPR[y|x] =
1

| PR |

|PR|∑
i=1

PPRi
[y|x, π] (4)

Similar to the typical ensemble structures like random forest (Ho, 1995), the ensemble of
multiple PR subnets results in good generalization performance in classifying objects from
target classes, even if each individual PR subnet could be overfit to the training examples.

Note when we setup the network structure of UDN, the mapping between the FC output
nodes and the split nodes of the binary tree is arbitrary. The parameters w.r.t. each node
is learned in an end-to-end fashion through back propagation. In the training process that
minimizes the loss, the important features for a known class will be automatically learned
and mapped to the split nodes on the same path. In other words, we do not have to group
features explicitly. Instead, the grouping of the features is learned automatically. Fig. 1
shows the final results of the training. For example, since nodes f11, f12, and f16 are not on
the same path, these nodes are not considered to correspond to the key features of any class.

3.2 UDN: Unknown Rejection

Max Path. Based on the above architecture, given a testing object x, each PR subnet in
UDN produces a probability distribution µl(x) over each path from the root to a leaf l. As
shown in Eq. 2, the probability of a path is computed as the product of the probabilities
(d(xn)) produced by all split nodes on that path. Given an object x, a given path will have
an extremely small probability if x does not fit the features represented by the split nodes
on this path (hence small d(xn)), because the product of multiple small probabilities will
diminish quickly. One path will stand out when all its split nodes produce large probabilities
on x, marked as bold line in Figure 1. We call this path the max path, because it has the
maximal probability among all paths.

Since the learned πl on each leaf is invariant w.r.t. input x, essentially it is the max path
that determines the class of x by Eq. 3. Therefore, the probability of the max path µl(x)
(or max path probability) can be used to measure how confident the classifier is about its
classification decision of object x. The larger the max path probability is, the more confident

5

Under review as a conference paper at ICLR 2020

the classifier is about the object. More specially, given an object x and a PR subnet PR,
the confidence is measured as:

CFPR(x; Θ) = max{µl(x)|l ∈ L} (5)

where max{µl(x)|l ∈ L} denotes the max path probability of subnet PR for the given object
x. Since UDN is an ensemble of a set of PR subnets, the final confidence of object x is
measured as:

CFPR(x) =
1

| PR |

|PR|∑
i=1

CFPRi
(x; Θi) (6)

Effectiveness of Using Max Path to Reject Unknowns. Intuitively this max path
probability can be expected to be more effective at detecting unknowns than the maximal
weighted sum in CNN. Typically an unknown will not get large probability on every split node
on the max path, and one low probability node will limit the max path probability because
of the product operation used in the computation. In contrast, the maximal weighted sum
in CNN tends to fall off much more slowly because the score is computed based on the sum
operation (with weights) on multiple features, such that a single matching feature can make
the score high. This is confirmed in our experiments (Sec. 5.2, Appendix B, Appendix C).

4 Incorporating Unknown Rejection into the Learning Process

4.1 Information Theory-based Regularization

To ensure the effectiveness of using the max path probability to reject unknowns, we
further incorporate the objective of unknown rejection into the learning process of UDN by
introducing a regularization. The key idea is to use an information theory-based approach
to prevent the generation of a PR subnet whose paths show uniform probability distribution.
This ensures that the max path probability of each subnet will be generally much larger
than the probabilities of other paths, making it more effective at rejecting unknowns. To
achieve this, we penalize the paths whose probability distribution has a large entropy and
hence is close to uniform (Pereyra et al., 2017).

Given a subnet PR with |L| paths, each input x ∈ X can use any of |L| paths to reach leaf
nodes. The entropy of the path probability distribution of input x is given by:

H(µ(x)) = −
∑
l∈L

µl(x)log(µl(x)) (7)

We then apply a softmax function on the probability distribution as a normalization. The
revised entropy of the path probability distribution is given by:

H(µ′(x)) = −
∑
l∈L

µ′l(x)log(µ′l(x)) (8)

where µ′l(x) = softmax (µl(x)) = exp(µl (x))∑
li∈L exp(µli

(x)) is the softmax transformation of µl(x).

To penalize the subnet whose path probability distribution is close to uniform, we add the
entropy w.r.t. each training sample to the log-loss term. Given the training set X and the
output Y, the penalized log-loss term of one subnet PR is represented as:

L(PR;X ,Y) =
∑

(x,y)∈X×Y

−log(PPR[y|x,Θ, π]) + βH(µ′(x|Θ)) (9)

where β controls the strength of the penalty and PPR[y |x ,Θ, π] is defined in Eq. 3. Θ
represents the learned parameters at the convolutional layers and FC layers.

6

Under review as a conference paper at ICLR 2020

The total log-loss for the UDN composed of |PR| subnets is then defined as:

L(PR;X ,Y) =
1

| PR |

|PR|∑
i=1

L(PRi;X ,Y) (10)

4.2 Training a UDN

Training a UDN requires finding a set of parameters Θ and π that minimize the total log
loss defined in Eq. 10. To minimize Eq. 10, we can independently minimize the penalized
loss (Eq. 9) of each individual subnet. In Appendix A, we show that the loss function is fully
differentiable. As a result, we are able to employ SGD to minimize the loss w.r.t. Θ and π,
following the common practice of back-propagation in deep neural networks.

5 Experimental Evaluation

5.1 Overview of Experimental Setting

Datasets. We demonstrate the effectiveness of UDN on several benchmark image
datasets. Specifically, we train models on CIFAR-10 (Krizhevsky & Hinton, 2009), CIFAR-
100 (Krizhevsky, 2009), and SVHN (Netzer et al., 2011) datasets. Given a trained model on
one dataset, we consider examples from other datasets as unknowns when testing the model.
In addition, we also sample some classes from the training data as unknowns and test these
samples on the model trained for the rest of the classes. Due to the lenght constraints we
present the results on the CIFAR-100 and SVHN models in Appendix B and Appendix C.

Methodology. We evaluate: (1) CNNs with Weighted-Sum as a baseline. The weighted
sum score is utilized as the confidence measure; (2) OpenMax (Bendale & Boult, 2016),
(3) ODIN (Liang et al., 2018), (4) Softmax (Hendrycks & Gimpel, 2017), and (5) MC-
Dropout (Gal & Ghahramani, 2016): the state-of-the-art unknown rejection methods de-
scribed in related work (Sec. 2); (6) our UDN model without the regularization term applied
to the loss function and (7) UDN-Penalty : our UDN with the regularization term (Eq. 9).

The results show that our UDN and UDN-Penalty significantly outperform OpenMax, ODIN,
MC-Dropout and Softmax through a variety of unknown rejection experiments, while still
preserving the accuracy of classifying objects from target classes.

Experimental Setup. We ran experiments on 4 P100 GPU instances on Google cloud. All
models are implemented in Pytorch (Paszke et al., 2017).

Hyper-parameter Settings. All networks are trained using mini-batches of size 128.
The momentum is set to 0.9 for all models. The weighted decays are set to 0.0001. When
testing MNIST on models trained for other datasets, we increase its color channel from 1 to
3 by copying the original gray images 3 times.

Evaluation Metric. Following the literature of unknown rejection, we use two metrics to
measure the effectiveness of UDN at distinguishing known and unknown images, namely true
negative rate (TNR) at 95% true positive rate (TPR) and AUROC. TNR at 95% TPR can
be interpreted as the probability that an unknown image (negative) is correctly recognized
when the TPR is 95%. True positive rate can be computed by TPR = TP /(TP + FN),
where TP and FN denote true positives (knowns are correctly classified as knowns) and
false negatives (known images are misclassified as unknowns) respectively. The true negative
rate (TNR) can be computed by TNR = TN/(FP+TN), where FP and TN denote false
positives (unknowns are misclassified as knowns) and true negatives (unknowns are correctly
recognized) respectively.

AUROC corresponds to the Area Under the Receiver Operating Characteristic curve, which
is a threshold independent metric (Davis & Goadrich, 2006). It can be interpreted as the
probability that a positive example is assigned a higher detection score than a negative
example. In addition, we also measure the accuracy of these methods at classifying the
knowns into target classes.

7

Under review as a conference paper at ICLR 2020

5.2 CIFAR-10

We tested all approaches on DenseNet (Huang et al., 2017). All methods use the same
DenseNet architecture to ODIN (Liang et al., 2018). For our UDN and UDN-Penalty, the
output is connected to 10 depth-5 trees. Specifically, the output of the convolutional layer
is broadcast to 10 different sets of FC layers. Each set contains 3 FC layers. The final FC
layer with 63 (2 (5+1) − 1) hidden nodes is connected to a tree. The training time of UDN
is 9.4 hours, slightly slower than training a DenseNet model (9.1 hour). For the evaluation
of ODIN, we directly use the model published by the authors. The temperature parameter
T and the perturbation magnitude η used by ODIN are set to 1000 and 0.0014. We set the
drop rate of MC-Dropout as 0.2 and the number of forward passes as 100. We set these
parameters by the suggestion of the authors or parameter tuning.

Table 1: CIFAR-10 Results (DenseNet).

Methods TNR (95% TPR) AUROC Classification
AccuracyCIFAR-

100 SVHN MNIST CIFAR-
100 SVHN MNIST

Weighted-Sum
(Baseline) 52.25% 54.96% 98.96% 90.33% 91.80% 99.51% 94.26%

Softmax (Hendrycks &
Gimpel, 2017) 40.35% 41.64% 76.38% 89.03% 90.54% 96.92% 94.26%

OpenMax (Bendale &
Boult, 2016) 51.97% 63.67% 49.56% 90.54% 93.28% 89.73% 94.26%

ODIN (Liang et al.,
2018) 50.8% 49.57% 99.14% 89.80% 91.24% 99.86% 95.19%

MC-Dropout (Gal &
Ghahramani, 2016) 51.86% 78.73% 99.82% 78.91% 89.5% 99.94% 93.95%

UDN 54.22% 84.64% 98.98% 92.93% 97.59% 98.82% 95.30%
UDN-Penalty 56.55% 88.09% 99.07% 93.47% 98.71% 99.77% 94.27%

As shown in Table 1, in almost all cases UDN and UDN-Penalty outperform Softmax,
Weighted-sum, OpenMax, ODIN, and MC-Dropout in rejecting unknowns, without giving up
our ability to correctly classify the CIFAR-10 images. Specifically, UDN and UDN-Penalty
outperforms other methods up to 10 points in TNR. UDN and UDN-Penalty also significantly
outperform other methods in AUROC. In particular, UDN and UDN-Penalty achieve about
98% AUROC when detecting SVHN as unknowns. This indicates that our methods can
effectively separate knowns and unknowns under a wide range of parameter settings.

The performance gain results from our UDN architecture, where the confidence of each image
is computed as the product of the probabilities produced at the split nodes on the path. This
multiplication of probabilities enlarges the confidence gap, making it able to better reject
unknowns than alternate approaches. The only exception is that MC-Dropout performs
the best on rejecting MNIST as unknowns, showing that MC-Dropout is probably good at
separating unknowns which are simplistic yet very different from known objects.

In addition, UDN achieves slightly better classification accuracy compared to Softmax,
Weighted-Sum, OpenMax, and ODIN that use the classical DenseNet. The classification
accuracy of MC-Dropout is worse than other methods because of the Bayesian inference.

Our UDN-Penalty outperforms UDN in rejecting unknowns in all cases. This is because
by introducing regularization to penalize path probability distributions that have a large
entropy, UDN-Penalty leads to larger maximal path probabilities for inliers. At the same
time, its classification accuracy decreases slightly, because the regularization introduces
overfitting (Szegedy et al., 2016). However, this is effectively alleviated because of the
ensemble of the PR subnets. Therefore, the drop in classification accuracy is very small.

6 Conclusion

In this work, we proposed an augmentation to CNNs, UDN, which effectively rejects unknown
objects that do not belong to any class seen in the training data. UDN achieves this by
replacing softmax layer in traditional CNNs with a novel tree ensemble that takes the product
of feature values, balancing the contradictory requirements of accurately classifying knowns
and correctly rejecting unknowns in one network structure. A regularization strategy is
proposed for UDN to further enhance its unknown rejection capacity.

8

Under review as a conference paper at ICLR 2020

References
Charu C. Aggarwal. Outlier Analysis: Second Edition. Springer, 2017.

Stephen D. Bay and Mark Schwabacher. Mining distance-based outliers in near linear time
with randomization and a simple pruning rule. In KDD, pp. 29–38, 2003.

Abhijit Bendale and Terrance E. Boult. Towards open set deep networks. In CVPR, pp.
1563–1572, 2016.

Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. LOF: identifying
density-based local outliers. In SIGMOD, pp. 93–104, 2000.

Jinghui Chen, Saket Sathe, Charu C. Aggarwal, and Deepak S. Turaga. Outlier detection
with autoencoder ensembles. In SDM, 2017.

Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In
Proceedings of the 23rd international conference on Machine learning, pp. 233–240. ACM,
2006.

Sarah M. Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher Leckie.
High-dimensional and large-scale anomaly detection using a linear one-class SVM with
deep learning. Pattern Recognition, 58:121–134, 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In ICML, pp. 1050–1059, 2016.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. ICLR, 2017.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with
outlier exposure. In ICLR, 2019. URL https://openreview.net/forum?id=HyxCxhRcY7.

Tin Kam Ho. Random decision forests. ICDAR ’95, pp. 278–, Washington, DC, USA, 1995.
IEEE Computer Society.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In CVPR, pp. 2261–2269, 2017.

Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distance-based outliers in
large datasets. In VLDB, pp. 392–403, 1998.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulò. Deep
neural decision forests. In ICCV, pp. 1467–1475, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, pp. 1106–1114, 2012.

Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=H1VGkIxRZ.

Si Liu, Risheek Garrepalli, Thomas G. Dietterich, Alan Fern, and Dan Hendrycks. Open
category detection with PAC guarantees. In ICML, pp. 3175–3184, 2018.

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. In
NeurIPS, NIPS’18, pp. 7047–7058, 2018.

9

http://www.deeplearningbook.org
https://openreview.net/forum?id=HyxCxhRcY7
https://openreview.net/forum?id=H1VGkIxRZ

Under review as a conference paper at ICLR 2020

Larry M. Manevitz and Malik Yousef. One-class svms for document classification. J. Mach.
Learn. Res., 2:139–154, March 2002. ISSN 1532-4435.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop
on deep learning and unsupervised feature learning, volume 2011, pp. 5, 2011.

Minh-Nghia Nguyen and Ngo Anh Vien. Scalable and interpretable one-class svms with
deep learning and random fourier features. CoRR, abs/1804.04888, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

Pramuditha Perera and Vishal M. Patel. Learning deep features for one-class classification.
CoRR, abs/1801.05365, 2018.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton.
Regularizing neural networks by penalizing confident output distributions. arXiv preprint
arXiv:1701.06548, 2017.

Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for mining
outliers from large data sets. In ACM SIGMOD Record, volume 29, pp. 427–438. ACM,
2000.

Lukas Ruff, Nico Görnitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Robert A. Vandermeulen,
Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In
ICML, pp. 4390–4399, 2018.

Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-Erfurth, and
Georg Langs. Unsupervised anomaly detection with generative adversarial networks to
guide marker discovery. In IPMI, pp. 146–157, 2017.

Bernhard Schölkopf, John C. Platt, John C. Shawe-Taylor, Alex J. Smola, and Robert C.
Williamson. Estimating the support of a high-dimensional distribution. Neural Comput.,
13(7):1443–1471, July 2001. ISSN 0899-7667.

Daniel W. Stroock. Probability Theory: An Analytic View. Cambridge University Press,
New York, NY, USA, 2nd edition, 2010.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2818–2826, 2016.

David M. J. Tax and Robert P. W. Duin. Support vector data description. Mach. Learn., 54
(1):45–66, January 2004. ISSN 0885-6125.

Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar Das, Bharat Kaul, and
Theodore L. Willke. Out-of-distribution detection using an ensemble of self supervised
leave-out classifiers. In ECCV, pp. 560–574, 2018.

Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei Zhang. Deep structured energy based
models for anomaly detection. In ICML, pp. 1100–1109, 2016.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and
Haifeng Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly
detection. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=BJJLHbb0-.

10

https://openreview.net/forum?id=BJJLHbb0-
https://openreview.net/forum?id=BJJLHbb0-

Under review as a conference paper at ICLR 2020

A Learning of UDN

Learning Decision Nodes by Back-Propagation

Given a decision tree, the gradient of the loss L with respect to Θ can be decomposed by
the chain rule as follows:

∂L

∂Θ
(Θ, π;x, y) =

∑
n∈N

∂L(Θ, π;x, y)

∂fn(x; Θ)

∂fn(x; Θ)

∂Θ
(11)

Here, the derivative of the second part ∂fn(x ;Θ)
∂Θ is identical to the back-propagation process

of traditional CNN modules and thus is omit here. Now let’s show how to compute the first
part:

∂L(Θ, π;x, y)

∂fn(x; Θ)
=
∂(−log(PT [y|x,Θ, π]) + βH(µ′(x|Θ)))

∂fn(x; Θ)

=
∂(−log(PT [y|x,Θ, π])

∂fn(x; Θ)
+ β

∂(H(µ′(x|Θ)))

∂fn(x; Θ))

(12)

where
∂(−log(PT [y|x,Θ, π])

∂fn(x; Θ)
= −

∑
l∈L

πly
PT [y|x,Θ, π]

∂µl(x|Θ)

∂fn(x; Θ) (13)

and ∑
l∈L

∂µl(x|Θ)

∂fn(x; Θ)
= −

∑
l∈L

µl(x|Θ)
∂log(µl(x|Θ))

∂fn(x; Θ)

= −
∑
l∈L

µl(x|Θ)(1l↙nd̄n(x; Θ)− 1l↘ndn(x; Θ))

= −
∑
l∈Lnl

µl(x|Θ)d̄n(x; Θ) +
∑
l∈Lnr

µl(x|Θ)dn(x; Θ)

(14)

By using the chain rule, we get:

∂(H(µ′(x|Θ)))

∂fn(x; Θ))
=
∑
l∈L

∂(H(µ′(x|Θ)))

∂(µ′l(x|Θ))

∂(µ′l(x|Θ))

∂(µl(x|Θ))

∂(µl(x|Θ))

∂fn(x; Θ)) (15)

where ∑
l∈L

∂(H(µ′(x|Θ)))

∂(µ′l(x|Θ))
=
∑
l∈L

∂(µ′l(x|Θ)log(µ′l(x|Θ)))

∂(µ′l(x|Θ))

=
∑
l∈L

(1 + log(µ′l(x|Θ)))
(16)

and ∑
l∈L

∂(µ′l(x|Θ))

∂(µl(x|Θ))
=
∑
l∈L

(sl(1− sl) +
∑
k 6=l

slsk)

where

sl =
eµl(x|Θ)∑
k∈L e

µk(x|Θ)

Learning Prediction Nodes by Back-Propagation

11

Under review as a conference paper at ICLR 2020

Given a decision tree, the gradient of the Loss L w.r.t. the weights w of the prediction nodes
(defined in Eq. 1) can be decomposed by the chain rule as follows:

∂L

∂w
(Θ, π;x, y) =

∑
l∈L

∂L(Θ, π;x, y)

∂πl

∂πl
∂wl

(17)

where

∂L(Θ, π;x, y)

∂πly
= − µl(x|Θ)

PT [y|x,Θ, π])
(18)

and

∂πly
∂wli

=

{
πly(1− πly) y = i
−πlyπli y 6= i

(19)

Therefore,

∂L(Θ, π;x, y)

∂wli
=
∑
y∈Y

∂L(Θ, π;x, y)

∂πly

∂πly
∂wli

=
∂L(Θ, π;x, i)

∂πli

∂πli
∂wli

+
∑
y 6=i

∂L(Θ, π;x, y)

∂πly

∂πly
∂wli

= −µl(x|Θ)(πli(1− πli))
PT [i|x,Θ, π])

+
∑
y 6=i

µl(x|Θ)πlyπli
PT [y|x,Θ, π])

(20)

Table 2: CIFAR-100 Results (DenseNet).

Methods TNR (80% TPR) AUROC Classification
AccuracyCIFAR-

10 SVHN CIFAR-100
Classes

CIFAR-
10 SVHN CIFAR-100

Class
Weighted-Sum
(Baseline) 53.70% 74.84% 50.65% 74.54% 81.61% 74.22% 77.1%

Softmax (Hendrycks
& Gimpel, 2017) 49.95% 60.44% 48.38% 75.61% 81.4% 74.16% 77.1%

OpenMax (Bendale
& Boult, 2016) 32.86% 57.23% 30.06% 58.46% 71.59% 57.74% 77.1%

ODIN (Liang et al.,
2018) 50.29% 64.99% 49.01% 73.06% 82% 72.89% 77.1%

MC-Dropout (Gal &
Ghahramani, 2016) 33.64% 59.57% 31.28% 59.43% 73.09% 58.37% 73.74%

UDN 59.59% 83.52% 59.21% 79.93% 87.42% 79.67% 76.92%
UDN-Penalty 59.92% 84.55% 59.67% 82.03% 87.59% 81.81% 76.77%

B CIFAR-100 Experiments

Similar to the CIFAR-10 experiments, all methods use the same DenseNet (Huang et al.,
2017) architecture to ODIN (Liang et al., 2018). For our UDN and UDN-Penalty, the output
is connected to 10 trees. The depth of each tree is 6. Again, for the evaluation of ODIN,
we directly use the model published by the authors. The temperature parameter T and the
perturbation magnitude η used by ODIN are set to 1000 and 0.0014, as recommended by
the authors. We set the drop rate of MC-Dropout as 0.2 after parameter tuning and set the
number of forward passes as 100 as suggested by the authors.

In this set of experiments we use the images in CIFAR-10 and SVHN as the unknowns.
Moreover, we also randomly pick 10 classes from the CIFAR-100 training data. We then
use these samples as unknowns and test them on the model trained using the rest of the

12

Under review as a conference paper at ICLR 2020

CIFAR-100 training data. We run this process for 10 times and report the average TNR and
AUROC.

As shown in Table 2, our UDN significantly outperform other methods in all cases by at
least 9 points in TNR and 5 points in AUROC.

C SVHN Experiments

Table 3: SVHN Results (DenseNet).

Methods TNR (95% TPR) AUROC Classification
AccuracyCIFAR-

10
CIFAR-
100

SVHN-
Classes

CIFAR-
10

CIFAR-
100

SVHN-
Class

Weighted-Sum
(Baseline) 80.76% 77.83% 60.92% 95.70% 94.64% 92.22% 96.42%

Softmax (Hendrycks
& Gimpel, 2017) 70.08% 68.82% 49.13% 95.06% 94.51% 90.24% 96.42%

OpenMax (Bendale
& Boult, 2016) 62.66% 62.845% 33.32% 86.78% 85.65% 59.78% 96.42%

ODIN (Liang et al.,
2018) 79.32% 76.01% 61.56% 94.87% 93.52% 92.11% 96.42%

MC-Dropout (Gal &
Ghahramani, 2016) 57.41% 55.25% 58.62% 78.19% 77.24% 79.15% 92.94%

UDN 96.33% 92.10% 74.06% 98.96% 98.15% 94.82% 96.577%
UDN-Penalty 96.50% 92.66% 74.08% 98.94% 98.22% 95.10% 96.543%

Same to the CIFAR-100 experiments above, we tested all approaches based on the same
DenseNet architecture. For our UDN and UDN-Penalty, the output is connected to 10 trees.
The depth of each tree is 4. For ODIN, the temperature parameter T and the perturbation
magnitude η used by ODIN are set to 1000 and 0.0014 after parameter tuning. We set the
drop rate of MC-Dropout as 0.5 and the number of forward passes as 100 as suggested by
the authors.

We use the images in CIFAR-10 and CIFAR-100 as the unknowns. At the same time we also
randomly pick 1 classes from the SVHN training data and use these samples as unknowns.
We then test them on the model trained using the rest of the SVHN training data. We run
this process for 10 times and report the average TNR and AUROC.

As shown in Table 3, in all cases our UDN outperform other methods in both TNR and
AUROC. In particular, UDN outperforms all other methods by at least 12 points in TNR.

D Parameter Tuning

In our UDN, The key hyper-parameters are the number of PR subnets and the depth of the
binary tree. In general, the depth of the tree depends on the number of the classes. The
more classes the dataset has, the higher the tree should be. In our experiments, when the
depth of the tree is no smaller than 6 and the number of PR subnet is above 10, our method
works well in general. When the number of classes in the training data is small such as
MINIST and CIFAR-10, setting the depth of the three as a smaller value such as 4 also
works. But a larger depth of the tree or more subnets does not harm the effectiveness of our
UDN method. Therefore, these parameters are easy to tune.

13

	Introduction
	Related Work
	An Unknown-aware Deep Neural Network
	UDN: Network Structure
	UDN: Unknown Rejection

	Incorporating Unknown Rejection into the Learning Process
	Information Theory-based Regularization
	Training a UDN

	Experimental Evaluation
	Overview of Experimental Setting
	CIFAR-10

	Conclusion
	Learning of UDN
	CIFAR-100 Experiments
	SVHN Experiments
	Parameter Tuning

