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ABSTRACT

We present a modern scalable reinforcement learning agent called SEED (Scal-
able, Efficient Deep-RL). By effectively utilizing modern accelerators, we show
that it is not only possible to train on millions of frames per second but also
to lower the cost of experiments compared to current methods. We achieve this
with a simple architecture that features centralized inference and an optimized
communication layer. SEED adopts two state of the art distributed algorithms,
IMPALA/V-trace (policy gradients) and R2D2 (Q-learning), and is evaluated on
Atari-57, DeepMind Lab and Google Research Football. We improve the state of
the art on Football and are able to reach state of the art on Atari-57 three times
faster in wall-time. For the scenarios we consider, a 40% to 80% cost reduction
for running experiments is achieved. The implementation along with experiments
is open-sourced so results can be reproduced and novel ideas tried out.

Github: http://github.com/google-research/seed_rl.

1 INTRODUCTION

The field of reinforcement learning (RL) has recently seen impressive results across a variety of
tasks. This has in part been fueled by the introduction of deep learning in RL and the introduction
of accelerators such as GPUs. In the very recent history, focus on massive scale has been key to
solve a number of complicated games such as AlphaGo (Silver et al., 2016), Dota (OpenAI, 2018)
and StarCraft 2 (Vinyals et al., 2017).

The sheer amount of environment data needed to solve tasks trivial to humans, makes distributed
machine learning unavoidable for fast experiment turnaround time. RL is inherently comprised of
heterogeneous tasks: running environments, model inference, model training, replay buffer, etc. and
current state-of-the-art distributed algorithms do not efficiently use compute resources for the tasks.
The amount of data and inefficient use of resources makes experiments unreasonably expensive. The
two main challenges addressed in this paper are scaling of reinforcement learning and optimizing
the use of modern accelerators, CPUs and other resources.

We introduce SEED (Scalable, Efficient, Deep-RL), a modern RL agent that scales well, is flexible
and efficiently utilizes available resources. It is a distributed agent where model inference is done
centrally combined with fast streaming RPCs to reduce the overhead of inference calls. We show
that with simple methods, one can achieve state-of-the-art results faster on a number of tasks. For
optimal performance, we use TPUs (cloud.google.com/tpu/) and TensorFlow 2 (Abadi et al., 2015)
to simplify the implementation. The cost of running SEED is analyzed against IMPALA (Espeholt
et al., 2018) which is a commonly used state-of-the-art distributed RL algorithm (Veeriah et al.
(2019); Li et al. (2019); Deverett et al. (2019); Omidshafiei et al. (2019); Vezhnevets et al. (2019);
Hansen et al. (2019); Schaarschmidt et al.; Tirumala et al. (2019), ...). We show cost reductions of
up to 80% while being significantly faster. When scaling SEED to many accelerators, it can train on
millions of frames per second. Finally, the implementation is open-sourced together with examples
of running it at scale on Google Cloud (see Appendix A.4 for details) making it easy to reproduce
results and try novel ideas.

∗Equal contribution
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2 RELATED WORK

For value-based methods, an early attempt for scaling DQN was Nair et al. (2015) that used asyn-
chronous SGD (Dean et al., 2012) together with a distributed setup consisting of actors, replay
buffers, parameter servers and learners. Since then, it has been shown that asynchronous SGD leads
to poor sample complexity while not being significantly faster (Chen et al., 2016; Espeholt et al.,
2018). Along with advances for Q-learning such as prioritized replay (Schaul et al., 2015), dueling
networks (Wang et al., 2016), and double-Q learning (van Hasselt, 2010; Van Hasselt et al., 2016)
the state-of-the-art distributed Q-learning was improved with Ape-X (Horgan et al., 2018). Recently,
R2D2 (Kapturowski et al., 2018) achieved impressive results across all the Arcade Learning Envi-
ronment (ALE) (Bellemare et al., 2013) games by incorporating value-function rescaling (Pohlen
et al., 2018) and LSTMs (Hochreiter & Schmidhuber, 1997) on top of the advancements of Ape-X.

There have also been many approaches for scaling policy gradients methods. A3C (Mnih et al.,
2016) introduced asynchronous single-machine training using asynchronous SGD and relied exclu-
sively on CPUs. GPUs were later introduced in GA3C (Mahmood, 2017) with improved speed
but poor convergence results due to an inherently on-policy method being used in an off-policy
setting. This was corrected by V-trace (Espeholt et al., 2018) in the IMPALA agent both for single-
machine training and also scaled using a simple actor-learner architecture to more than a thou-
sand machines. PPO (Schulman et al., 2017) serves a similar purpose to V-trace and was used in
OpenAI Rapid (Petrov et al., 2018) with the actor-learner architecture extended with Redis (redis.io),
an in-memory data store, and was scaled to 128,000 CPUs. For inexpensive environments like ALE,
a single machine with multiple accelerators can achieve results quickly (Stooke & Abbeel, 2018).
This approach was taken a step further by converting ALE to run on a GPU (Dalton et al., 2019).

A third class of algorithms is evolutionary algorithms. With simplicity and massive scale, they have
achieved impressive results on a number of tasks (Salimans et al., 2017; Such et al., 2017).

Besides algorithms, there exist a number of useful libraries and frameworks for reinforcement learn-
ing. ELF (Tian et al., 2017) is a framework for efficiently interacting with environments, avoiding
Python global-interpreter-lock contention. Dopamine (Castro et al., 2018) is a flexible research
focused RL framework with a strong emphasis on reproducibility. It has state of the art agent imple-
mentations such as Rainbow (Hessel et al., 2017) but is single-threaded. TF-Agents (Guadarrama
et al., 2018) and rlpyt (Stooke & Abbeel, 2019) both have a broader focus with implementations
for several classes of algorithms but as of writing, they do not have distributed capability for large-
scale RL. RLLib (Liang et al., 2017) provides a number of composable distributed components
and a communication abstraction with a number of algorithm implementations such as IMPALA
and Ape-X. Concurrent with this work, TorchBeast (Küttler et al., 2019) was released which is an
implementation of single-machine IMPALA with remote environments.

SEED is closest related to IMPALA, but has a number of key differences that combine the benefits
of single-machine training with a scalable architecture. Inference is moved to the learner but envi-
ronments run remotely. This is combined with a fast communication layer to mitigate latency issues
from the increased number of remote calls. The result is significantly faster training at reduced costs
by as much as 80% for the scenarios we consider. Along with a policy gradients (V-trace) implemen-
tation we also provide an implementation of state of the art Q-learning (R2D2). In the work we use
TPUs but in principle, any modern accelerator could be used in their place. TPUs are particularly
well-suited given they high throughput for machine learning applications and the scalability. Up to
2048 cores are connected with a fast interconnect providing 100+ petaflops of compute.

3 ARCHITECTURE

Before introducing the architecture of SEED, we first analyze the generic actor-learner architecture
used by IMPALA, which is also used in various forms in Ape-X, OpenAI Rapid and others. An
overview of the architecture is shown in Figure 1a.

A large number of actors repeatedly read model parameters from the learner (or parameter servers).
Each actor then proceeds the local model to sample actions and generate a full trajectory of observa-
tions, actions, policy logits/Q-values. Finally, this trajectory along with recurrent state is transferred
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Figure 1: Overview of architectures

to a shared queue or replay buffer. Asynchronously, the learner reads batches of trajectories from
the queue/replay buffer and optimizes the model.

There are a number of reasons for why this architecture falls short:

1. Using CPUs for neural network inference: The actor machines are usually CPU-based
(occasionally GPU-based for expensive environments). CPUs are known to be computa-
tionally inefficient for neural networks (Raina et al., 2009). When the computational needs
of a model increase, the time spent on inference starts to outweigh the environment step
computation. The solution is to increase the number of actors which increases the cost and
affects convergence (Espeholt et al., 2018).

2. Inefficient resource utilization: Actors alternate between two tasks: environment steps
and inference steps. The compute requirements for the two tasks are often not similar
which leads to poor utilization or slow actors. E.g. some environments are inherently
single-threading while neural networks are easily parallelizable.

3. Bandwidth requirements: Model parameters, recurrent state and observations are trans-
ferred between actors and learners. Relatively to model parameters, the size of the ob-
servation trajectory often only accounts for a few percents.1 Furthermore, memory-based
models send large states, increase bandwidth requirements.

While single-machine approaches such as GA3C (Mahmood, 2017) and single-machine IMPALA
avoid using CPU for inference (1) and do not have network bandwidth requirements (3), they are
restricted by resource usage (2) and the scale required for many types of environments.

The architecture used in SEED (Figure 1b) solves the problems mentioned above. Inference and
trajectory accumulation is moved to the learner which makes it conceptually a single-machine setup
with remote environments (besides handling failures). Moving the logic effectively makes the actors
a small loop around the environments. For every single environment step, the observations are sent
to the learner, which runs the inference and sends actions back to the actors. This introduces a new
problem: 4. Latency.

To minimize latency, we created a simple framework that uses gRPC (grpc.io) - a high performance
RPC library. Specifically, we employ streaming RPCs where the connection from actor to learner is
kept open and metadata sent only once. Furthermore, the framework includes a batching module that
efficiently batches multiple actor inference calls together. In cases where actors can fit on the same
machine as learners, gRPC uses unix domain sockets and thus reduces latency, CPU and syscall
overhead. Overall, the end-to-end latency, including network and inference, is faster for a number
of the models we consider (see Appendix A.7).

1With 100,000 observations send per second (96 x 72 x 3 bytes each), a trajectory length of 20 and a 30MB
model, the total bandwidth requirement is 148 GB/s. Transferring observations uses only 2 GB/s.
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Figure 3: Detailed Learner architecture in SEED (with an optional replay buffer).

The IMPALA and SEED architectures differ in that for SEED, at any point in time, only one copy
of the model exists whereas for distributed IMPALA each actor has its own copy. This changes the
way the trajectories are off-policy. In IMPALA (Figure 2a), an actor uses the same policy πθt for
an entire trajectory. For SEED (Figure 2b), the policy during an unroll of a trajectory may change
multiple times with later steps using more recent policies closer to the one used at optimization time.

A detailed view of the learner in the SEED architecture is shown on Figure 3. Three types of threads
are running: 1. Inference 2. Data prefetching and 3. Training. Inference threads receive a batch
of observations, rewards and episode termination flags. They load the recurrent states and send the
data to the inference TPU core. The sampled actions and new recurrent states are received, and the
actions are sent back to the actors while the latest recurrent states are stored. When a trajectory is
fully unrolled it is added to a FIFO queue or replay buffer and later sampled by data prefetching
threads. Finally, the trajectories are pushed to a device buffer for each of the TPU cores taking part
in training. The training thread (the main Python thread) takes the prefetched trajectories, computes
gradients using the training TPU cores and applies the gradients on the models of all TPU cores
(inference and training) synchronously. The ratio of inference and training cores can be adjusted for
maximum throughput and utilization. The architecture scales to a TPU pod (2048 cores) by round-
robin assigning actors to TPU host machines, and having separate inference threads for each TPU
host. When actors wait for a response from the learner, they are idle so in order to fully utilize the
machines, we run multiple environments on a single actor.

To summarize, we solve the issues listed previously by:

1. Moving inference to the learner and thus eliminating any neural network related computa-
tions from the actors. Increasing the model size in this architecture will not increase the
need for more actors (in fact the opposite is true).

2. Batching inference on the learner and having multiple environments on the actor. This
fully utilize both the accelerators on the learner and CPUs on the actors. The number of
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TPU cores for inference and training is finely tuned to match the inference and training
workloads. All factors help reducing the cost of experiments.

3. Everything involving the model stays on the learner and only observations and actions are
sent between the actors and the learner. This reduces bandwidth requirements by as much
as 99%.

4. Using streaming gRPC that has minimal latency and minimal overhead and integrating
batching into the server module.

We provide the following two algorithms implemented in the SEED framework: V-trace and Q-
learning.

3.1 V-TRACE

One of the algorithms we adapt into the framework is V-trace (Espeholt et al., 2018). We do not
include any of the additions that have been proposed on top of IMPALA such as van den Oord et al.
(2018); Gregor et al. (2019). The additions can also be applied to SEED and since they are more
computational expensive, they would benefit from the SEED architecture.

3.2 Q-LEARNING

We show the versatility of SEED’s architecture by fully implementing R2D2 (Kapturowski et al.,
2018), a state of the art distributed value-based agent. R2D2 itself builds on a long list of improve-
ments over DQN (Mnih et al., 2015): double Q-learning (van Hasselt, 2010; Van Hasselt et al.,
2016), multi-step bootstrap targets (Sutton, 1988; Sutton & Barto, 1998; Mnih et al., 2016), du-
eling network architecture (Wang et al., 2016), prioritized distributed replay buffer (Schaul et al.,
2015; Horgan et al., 2018), value-function rescaling (Pohlen et al., 2018), LSTM’s (Hochreiter &
Schmidhuber, 1997) and burn-in (Kapturowski et al., 2018).

Instead of a distributed replay buffer, we show that it is possible to keep the replay buffer on the
learner with a straightforward flexible implementation. This reduces complexity by removing one
type of job in the setup. It has the drawback of being limited by the memory of the learner but it was
not a problem in our experiments by a large margin: a replay buffer of 105 trajectories of length 120
of 84× 84 uncompressed grayscale observations (following R2D2’s hyperparameters) takes 85GBs
of RAM, while Google Cloud machines can offer hundreds of GBs. However, nothing prevents the
use of a distributed replay buffer together with SEED’s central inference, in cases where a much
larger replay buffer is needed.

4 EXPERIMENTS

We evaluate SEED on a number of environments: DeepMind Lab (Beattie et al., 2016), Google
Research Football (Kurach et al., 2019) and Arcade Learning Environment (Bellemare et al., 2013).

4.1 DEEPMIND LAB AND V-TRACE

DeepMind Lab is a 3D environment based on the Quake 3 engine. It features mazes, laser tag and
memory tasks. We evaluate on four commonly used tasks. The action set used is from Espeholt
et al. (2018) although for some tasks, higher return can be achieved with bigger action sets such as
the one introduced in Hessel et al. (2018). For all experiments, we used an action repeat of 4 and
the number of frames in plots is listed as environment frames (equivalent to 4 times the number of
steps). The same set of 24 hyperparameter sets and the same model (ResNet from IMPALA) was
used for both agents. More details can be found in Appendix A.1.2.

4.1.1 STABILITY

The first experiment evaluates the effect of the change in off-policy behavior described in Figure 2.
Exactly the same hyperparameters are used for both IMPALA and SEED, including the number of
environments used. As is shown in Figure 4, the stability across hyperparameters of SEED is slightly
better than IMPALA, while achieving slightly higher final returns.
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Figure 4: Comparison of IMPALA and SEED under the exact same conditions (175 actors, same
hyperparameters, etc.) The plots show hyperparameter combinations sorted by the final performance
across different hyperparameter combinations.
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Figure 5: Training on 4 DeepMind Lab tasks. Each curve is the best of the 24 runs based on final
return following the evaluation procedure in Espeholt et al. (2018). Sample complexity is maintained
up to 8 TPU v3 cores, which leads to 11x faster training than the IMPALA baseline. Top Row: X-
axis is per frame (number of frames = 4x number of steps). Bottom Row: X-axis is hours.

4.1.2 SPEED

For evaluating performance, we compare IMPALA using an Nvidia P100 with SEED with multiple
accelerator setups. They are evaluated on the same set of hyperparameters. We find that SEED is
2.5x faster than IMPALA using 2 TPU v3 cores (see Table 1), while using only 77% more envi-
ronments and 41% less CPU (see section 4.4.1). Scaling from 2 to 8 cores results in an additional
4.4x speedup with sample complexity maintained (Figure 5). The speed-up is greater than 4x due to
using 6 cores for training and 2 for inference instead of 1 core for each, resulting in better utiliza-
tion. A 5.3x speed-up instead of 4.4x can be obtained by increasing the batch size linearly with the
number of training cores, but contrary to related research (You et al., 2017b; Goyal et al., 2017) we
found that increased batch size hurts sample complexity even with methods like warm-up and actor
de-correlation (Stooke & Abbeel, 2018). We hypothesize that this is due to the limited actor and
environment diversity in DeepMind Lab tasks. In McCandlish et al. (2018) they found that Pong
scales poorly with batch size but that Dota can be trained effectively with a batch size five orders of
magnitude larger. Note, for most models, the effective batch size is batch size · trajectory length.
In Figure 5, we include a run from a limited sweep on “explore_goal_locations_small” using 64
cores with an almost linear speed-up. Wall-time performance is improved but sample complexity is
heavily penalized.

When using an Nvidia P100, SEED is 1.58x slower than IMPALA. A slowdown is expected because
SEED performs inference on the accelerator. SEED does however use significantly fewer CPUs and
is lower cost (see Appendix A.6). The TPU version of SEED has been optimized but it is likely that
improvements can be found for SEED with P100.
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Architecture Accelerators Environments Actor CPUs Batch Size FPS Ratio

DeepMind Lab

IMPALA Nvidia P100 176 176 32 30K —
SEED Nvidia P100 176 44 32 19K 0.63x
SEED TPU v3, 2 cores 312 104 32 74K 2.5x
SEED TPU v3, 8 cores 1560 520 481 330K 11.0x
SEED TPU v3, 64 cores 12,480 4,160 3841 2.4M 80.0x

Google Research Football

IMPALA, Default 2 x Nvidia P100 400 400 128 11K —
SEED, Default TPU v3, 2 cores 624 416 128 18K 1.6x
SEED, Default TPU v3, 8 cores 2,496 1,664 1603 71K 6.5x

SEED, Medium TPU v3, 8 cores 1,550 1,032 1603 44K —

SEED, Large TPU v3, 8 cores 1,260 840 1603 29K —
SEED, Large TPU v3, 32 cores 5,040 3,360 6403 114K 3.9x

Arcade Learning Environment

R2D2 Nvidia V100 256 N/A 64 85K2 —
SEED Nvidia V100 256 55 64 67K 0.79x
SEED TPU v3, 8 cores 610 213 64 260K 3.1x
SEED TPU v3, 8 cores 1200 419 256 440K4 5.2x

1 6/8 cores used for training. 2 Each of the 256 R2D2 actors run at 335 FPS (information from the
R2D2 authors). 3 5/8 cores used for training. 4 No frame stacking.

Table 1: Performance of SEED, IMPALA and R2D2.

4.2 GOOGLE RESEARCH FOOTBALL AND V-TRACE

Google Research Football is an environment similar to FIFA video games (ea.com). We evaluate
SEED on the “Hard” task introduced in Kurach et al. (2019) where the baseline IMPALA agent
achieved a positive average score after 500M frames using the engineered “checkpoint” reward
function but a negative average score using only the score as a reward signal. In all experiments we
use the model from Kurach et al. (2019) and sweep over 40 hyperparameter sets with 3 seeds each.
See all hyperparameters in Appendix A.2.1.

4.2.1 SPEED

Compared to the baseline IMPALA using 2 Nvidia P100’s (and CPUs for inference) in Kurach
et al. (2019) we find that using 2 TPU v3 cores in SEED improves the speed by 1.6x (see Table 1).
Additionally, using 8 cores adds another 4.1x speed-up. A speed-up of 4.5x is achievable if the batch
size is increased linearly with the number of training cores (5). However, we found that increasing
the batch size, like with DeepMind Lab, hurts sample complexity.

4.2.2 INCREASED MAP SIZE

More compute power allows us to increase the size of the Super Mini Map (SMM) input state. By
default its size is 96 x 72 (x 4) and it represents players, opponents, ball and the active player as 2d
bit maps. We evaluated three sizes: (1) Default 96 x 72, (2) Medium 120 x 90 and (3) Large 144 x
108. As shown in Table 1, switching from Default to Large SMM results in 60% speed reduction.
However, increasing the map size improves the final score (Table 2). It may suggest that the bit map
representation is not granular enough for the task. For both reward functions, we improve upon the
results of Kurach et al. (2019). Finally, training on 4B frames improves the results by a significant
margin (an average score of 0.46 vs. 4.76 in case of the scoring reward function).

4.3 ARCADE LEARNING ENVIRONMENT AND Q-LEARNING
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Figure 6: Median human-normalized score on Atari-57 for SEED and related agents. SEED was
run with 1 seed for each game. All agents use up to 30 random no-ops for evaluation. Left: X-axis
is hours Right: X-axis is environment frames (a frame is 1/4th of an environment step due to action
repeat). SEED reaches state of the art performance 3.1x faster (wall-time) than R2D2.

We evaluate our implementation of R2D2 in SEED architecture on 57 Atari 2600 games from the
ALE benchmark. This benchmark has been the testbed for most recent deep reinforcement learning
agents because of the diversity of visuals and game mechanics.

Architecture Accelerators SMM Median Max
Scoring reward
IMPALA 2 x Nvidia P100 Default -0.74 0.06
SEED TPU v3, 2 cores Default -0.72 -0.12
SEED TPU v3, 8 cores Default -0.83 -0.02
SEED TPU v3, 8 cores Medium -0.74 0.12
SEED TPU v3, 8 cores Large -0.69 0.46
SEED TPU v3, 32 cores Large n/a 4.761

Checkpoint reward
IMPALA 2 x Nvidia P100 Default -0.27 1.63
SEED TPU v3, 2 cores Default -0.44 1.64
SEED TPU v3, 8 cores Default -0.68 1.55
SEED TPU v3, 8 cores Medium -0.52 1.76
SEED TPU v3, 8 cores Large -0.38 1.86
SEED TPU v3, 32 cores Large n/a 7.661

1 32 core experiments trained on 4B frames with a limited sweep.

Table 2: Google Research Football “Hard” using two kinds of
reward functions. For each reward function, 40 hyperparame-
ter sets ran with 3 seeds each which were averaged after 500M
frames of training. The table shows the median and maximum
of the 40 averaged values. This is a similar setup to Kurach
et al. (2019) although we ran 40 hyperparameter sets vs. 100
but did not rerun our best models using 5 seeds.

We follow the same evaluation pro-
cedure as R2D2. In particular, we
use the full action set, no loss-
of-life-as-episode-end heuristic and
start episodes with up to 30 ran-
dom no-ops. We use 8 TPU v3
cores and 610 actors to maximize
TPU utilization. This achieves
260K environment FPS and per-
forms 9.5 network updates per sec-
ond. Other hyperparameters are
taken from R2D2, and are fully re-
produced in appendix A.3.1.

Figure 6 shows the median human-
normalized scores for SEED,
R2D2, Ape-X and Rainbow. As
expected, SEED has similar sample
efficiency as R2D2, but it is 3.1x
faster (see Table 1). This allows
us to reach a median human-
normalized score of 1880% in just
1.8 days of training instead of 5,
establishing a new wall-time state
of the art on Atari-57.

With the number of actors in-
creased to 1200, a batch size in-
creased to 256 and without frame-
stacking, we can achieve 440K en-
vironment FPS and learn using 16
batches per second. However, this significantly degrades sample efficiency and limits the final me-
dian human-normalized score to approximately 1000%.

4.4 COST COMPARISONS

With growing complexity of environments as well as size of neural networks used in reinforcement
learning, the need of running big experiments increases, making cost reductions important. In this
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section we analyze how increasing complexity of the network impacts training cost for SEED and
IMPALA. In our experiments we use the pricing model of Google AI Platform, ML Engine.2

Resource Cost per hour

CPU core $0.0475
Nvidia Tesla P100 $1.46
TPU v3 core $1.00

Table 3: Cost of cloud resources as of
Sep. 2019.

Our main focus is on obtaining lowest possible cost per
step, while maintaining training speed. Distributed exper-
iments from Espeholt et al. (2018) (IMPALA) used be-
tween 150 and 500 CPUs, which translates into $7.125 -
$23.75 of actors’ cost per hour. The cost of single-GPU
learner is $1.46 per hour. Due to the relatively high ex-
pense of the actors, our main focus is to reduce number of
actors and to obtain high CPU utilization.

4.4.1 DEEPMIND LAB

Our DeepMind Lab experiment is based on the ResNet model from IMPALA. We evaluate increas-
ing the number of filters in the convolutional layers: (1) Default 1x (2) Medium 2x and (3) Large
4x. Experiments are performed on the “explore_goal_locations_small” task. IMPALA uses a single
Nvidia Tesla P100 GPU for training while inference is done on CPU by the actors. SEED uses one
TPU v3 core for training and one for inference.

For IMPALA, actor CPU utilization is close to 100% but in case of SEED, only the environment
runs on an actor making CPU idle while waiting for inference step. To improve utilization, a single
SEED actor runs multiple environments (between 12 and 16) on a 4-CPU machine.

Model Actors CPUs Envs. Speed Cost/1B Cost ratio

IMPALA

Default 176 176 176 30k $90 —
Medium 130 130 130 16.5k $128 —
Large 100 100 100 7.3k1 $236 —

SEED

Default 26 104 312 74k $25 3.60
Medium 12 48 156 34k $35 3.66
Large 6 24 84 16k $54 4.37

1 The batch size was lowered from 32 to 16 due to limited memory on Nvidia
P100.

Table 4: Training cost on DeepMind Lab for 1 billion frames.

As Table 4 shows, SEED turns out to be not only faster, but also cheaper to run. The cost ratio
between SEED and IMPALA is around 4. Due to high cost of inference on a CPU, IMPALA’s cost
increases with increasing complexity of the network. In the case of SEED, increased network size
has smaller impact on overall costs, as inference accounts for about 30% of the costs (see Table
A.5).

4.4.2 GOOGLE RESEARCH FOOTBALL

We evaluate cost of running experiments with Google Research Football with different sizes of
the Super Mini Map representation (the size has virtually no impact on environment’s speed.) For
IMPALA, two Nvidia P100 GPUs were used for training and SEED used one TPU v3 core for
training and one for inference.

For IMPALA, we use one core per actor while SEED’s actors run multiple environments per actor
for better CPU utilization (8 cores, 12 environments).

For the default size of the SMM, per experiment training cost differs by only 68%. As the Google
Research Football environment is more expensive than DeepMind Lab, training and inference costs

2TPU cores are sold in multiples of 8, by running many experiments at once we use as many cores per
experiment as needed. See cloud.google.com/ml-engine/docs/pricing.
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Model Actors CPUs Envs. Speed Cost/1B Cost ratio

IMPALA

Default 400 400 400 11k $553 —
Medium 300 300 300 7k $681 —
Large 300 300 300 5.3k $899 —

SEED

Default 52 416 624 17.5k $345 1.68
Medium 31 248 310 10.5k $365 1.87
Large 21 168 252 7.5k $369 2.70

Table 5: Training cost on Google Research Football for 1 billion frames.

have relatively smaller impact on the overall experiment cost. The difference increases when the
size of the SMM increases and SEED needing relatively fewer actors.

4.4.3 ARCADE LEARNING ENVIRONMENT

Due to lack of baseline implementation for R2D2, we do not include cost comparisons for this
environment. However, comparison of relative costs between ALE, DeepMind Lab and Football
suggests that savings should be even more significant. ALE is the fastest among the three environ-
ments making inference proportionally the most expensive. Appendix A.5 presents training cost
split between actors and the learner for different setups.

5 CONCLUSION

We introduced and analyzed a new reinforcement learning agent architecture that is faster and less
costly per environment frame than previous distributed architectures by better utilizing modern ac-
celerators. It achieved a 11x wall-time speedup on DeepMind Lab compared to a strong IMPALA
baseline while keeping the same sample efficiency, improved on state of the art scores on Google Re-
search Football, and achieved state of the art scores on Atari-57 3.1x faster (wall-time) than previous
research.

The agent is open-sourced and packaged to easily run on Google Cloud. We hope that this will
accelerate reinforcement learning research by allowing the community to replicate state-of-the-art
results and build on top of them.

As a demonstration of the potential of this new agent architecture, we were able to scale it to millions
of frames per second in some realistic scenarios (80x speedup compared to previous research).
However, this requires increasing the number of environments and using larger batch sizes which
hurts sample efficiency in the environments tested. Preserving sample efficiency with larger batch-
sizes has been studied to some extent in RL (Stooke & Abbeel, 2018; McCandlish et al., 2018) and
in the context of supervised learning (You et al., 2017b;a; 2019; Goyal et al., 2017). We believe it is
still an open and increasingly important area of research in order to scale up reinforcement learning.
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A APPENDIX

A.1 DEEPMIND LAB

A.1.1 LEVEL CACHE

We enable DeepMind Lab’s option for using a level cache for both SEED and IMPALA which
greatly reduces CPU usage and results in stable actor CPU usage at close to 100% for a single core.

A.1.2 HYPERPARAMETERS

Parameter Range
Action Repetitions 4
Discount Factor (γ) {.99, .993, .997, .999}
Entropy Coefficient Log-uniform (1e−5, 1e−3)
Learning Rate Log-uniform (1e−4, 1e−3)
Optimizer Adam
Adam Epsilon {1e−1, 1e−3, 1e−5, 1e−7}
Unroll Length/n-step 32
Value Function Coefficient .5
V-trace λ {.9, .95, .99, 1.}

Table 6: Hyperparameter ranges used in the stability experiments.
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A.2 GOOGLE RESEARCH FOOTBALL

A.2.1 HYPERPARAMETERS

Parameter Range
Action Repetitions 1
Discount Factor (γ) {.99, .993, .997, .999}
Entropy Coefficient Log-uniform (1e−7, 1e−3)
Learning Rate Log-uniform (1e−5, 1e−3)
Optimizer Adam
Unroll Length/n-step 32
Value Function Coefficient .5
V-trace λ {.9, .95, .99, 1.}

Table 7: Hyperparameter ranges used for experiments with scoring and checkpoint rewards.

A.3 ALE

A.3.1 HYPERPARAMETERS

We use the same hyperparameters as R2D2 (Kapturowski et al., 2018), except that we use more
actors in order to best utilize 8 TPU v3 cores. For completeness, agent hyperparameters are in table 8
and environment processing parameters in table 9. We use the same neural network architecture as
R2D2, namely 3 convolutional layers with filter sizes [32, 64, 64] , kernel sizes [8× 8, 4× 4, 3× 3]
and strides [4, 2, 1], ReLU activations and “valid" padding. They feed into a linear layer with 512
units, feeding into an LSTM layer with 512 hidden units (that also uses the one-hot encoded previous
action and the previous environment reward as input), feeding into dueling heads with 512 hidden
units. We use Glorot uniform (Glorot & Bengio, 2010) initialization.

Parameter Value
Number of actors 610
Replay ratio 0.75
Sequence length 120 incl. prefix of 40 burn-in transitions
Replay buffer size 105 part-overlapping sequences
Minimum replay buffer size 5000 part-overlapping sequences
Priority exponent 0.9
Importance sampling exponent 0.6
Discount γ 0.997
Training batch size 64
Inference batch size 64
Optimizer Adam (lr = 10−4, ε = 10−3) (Kingma & Ba, 2014)
Target network update interval 2500 updates
Value function rescaling x 7→ sign(x)(

√
|x|+ 1− 1) + εx, ε = 10−3

Gradient norm clipping 80
n-steps 5
Epsilon-greedy Training: i-th actor ∈ [0, N) uses εi = 0.41+

7i
N−1

Evaluation: ε = 10−3

Sequence priority p = ηmaxi δi + (1− η)δ̄ where η = 0.9,
δi are per-step absolute TD errors.

Table 8: SEED agent hyperparameters for Atari-57.

15



Published as a conference paper at ICLR 2020

Parameter Value
Observation size 84× 84
Resizing method Bilinear
Random no-ops uniform in [1, 30]. Applied before action repetition.
Frame stacking 4
Action repetition 4
Frame pooling 2
Color mode grayscale
Terminal on loss of life False
Max frames per episode 108K (30 minutes)
Reward clipping No
Action set Full (18 actions)
Sticky actions No

Table 9: Atari-57 environment processing parameters.
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A.3.2 FULL RESULTS ON ATARI-57

Game Human R2D2 SEED 8 TPU v3 cores
Alien 7127.7 229496.9 262197.4
Amidar 1719.5 29321.4 28976.4
Assault 742.0 108197.0 102954.7
Asterix 8503.3 999153.3 983821.0
Asteroids 47388.7 357867.7 296783.0
Atlantis 29028.1 1620764.0 1612438.0
BankHeist 753.1 24235.9 47080.6
BattleZone 37187.5 751880.0 777200.0
BeamRider 16926.5 188257.4 173505.3
Berzerk 2630.4 53318.7 57530.4
Bowling 160.7 219.5 204.2
Boxing 12.1 98.5 100.0
Breakout 30.5 837.7 854.1
Centipede 12017.0 599140.3 574373.1
ChopperCommand 7387.8 986652.0 994991.0
CrazyClimber 35829.4 366690.7 337756.0
Defender 18688.9 665792.0 555427.2
DemonAttack 1971.0 140002.3 143748.6
DoubleDunk -16.4 23.7 24.0
Enduro 860.5 2372.7 2369.3
FishingDerby -38.7 85.8 75.0
Freeway 29.6 32.5 33.0
Frostbite 4334.7 315456.4 101726.8
Gopher 2412.5 124776.3 117650.4
Gravitar 3351.4 15680.7 7813.8
Hero 30826.4 39537.1 37223.1
IceHockey 0.9 79.3 79.2
Jamesbond 302.8 25354.0 25987.0
Kangaroo 3035.0 14130.7 13862.0
Krull 2665.5 218448.1 113224.8
KungFuMaster 22736.3 233413.3 239713.0
MontezumaRevenge 4753.3 2061.3 900.0
MsPacman 6951.6 42281.7 43115.4
NameThisGame 8049.0 58182.7 68836.2
Phoenix 7242.6 864020.0 915929.6
Pitfall 6463.7 0.0 -0.1
Pong 14.6 21.0 21.0
PrivateEye 69571.3 5322.7 198.0
Qbert 13455.0 408850.0 546857.5
Riverraid 17118.0 45632.1 36906.4
RoadRunner 7845.0 599246.7 601220.0
Robotank 11.9 100.4 104.8
Seaquest 42054.7 999996.7 999990.2
Skiing -4336.9 -30021.7 -29973.6
Solaris 12326.7 3787.2 861.6
SpaceInvaders 1668.7 43223.4 62957.8
StarGunner 10250.0 717344.0 448480.0
Surround 6.5 9.9 9.8
Tennis -8.3 -0.1 23.9
TimePilot 5229.2 445377.3 444527.0
Tutankham 167.6 395.3 376.5
UpNDown 11693.2 589226.9 549355.4
Venture 1187.5 1970.7 2005.5
VideoPinball 17667.9 999383.2 979432.1
WizardOfWor 4756.5 144362.7 136352.5
YarsRevenge 54576.9 995048.4 973319.0
Zaxxon 9173.3 224910.7 168816.5

Table 10: Final performance of SEED 8 TPU v3 cores, 610 actors (1 seed) compared to R2D2
(averaged over 3 seeds) and Human, using up to 30 random no-op steps at the beginning of each
episode. SEED was evaluated by averaging returns over 200 episodes for each game after training
on 40e9 environment frames.
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SEED - TPU v3 8 cores, 610 actors.

Figure 7: Learning curves on 57 Atari 2600 games for SEED (8 TPUv3 cores, 610 actors, evaluated
with 1 seed). Each point of each curve averages returns over 200 episodes. No curve smoothing was
performed. Curves end at approximately 43 hours of training, corresponding to 40e9 environment
frames.
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A.4 SEED LOCALLY AND ON CLOUD

SEED is open-sourced together with an example of running it both on a local machine and with
scale using AI Platform, part of Google Cloud. We provide a public Docker image with low-level
components implemented in C++ already pre-compiled to minimize the time needed to start SEED
experiments.

The main pre-requisite to running on Cloud is setting up a Cloud Project. The provided startup
script uploads the image and runs training for you. For more details please see github.com/
google-research/seed_rl.

A.5 EXPERIMENTS COST SPLIT

Model Algorithm Actors cost Learner cost Total cost
Arcade Learning Environment
Default SEED $10.8 $8.5 $19.3

DeepMind Lab
Default IMPALA $77.0 $13.4 $90
Medium IMPALA $103.6 $24.4 $128
Large IMPALA $180.5 $55.5 $236
Default SEED $20.1 $8.2 $28
Medium SEED $18.6 $16.4 $35
Large SEED $19.6 $35 $54

Google Research Football
Default IMPALA $479 $74 $553
Medium IMPALA $565.2 $115.8 $681
Large IMPALA $746.1 $153 $899
Default SEED $313 $32 $345
Medium SEED $312 $53 $365
Large SEED $295 $74 $369

Table 11: Cost of performing 1 billion frames for both IMPALA and SEED split by component.

A.6 COST COMPARISON ON DEEPMIND LAB USING NVIDIA P100 GPUS

In section 4.4.1, we compared the cost of running SEED using two TPU v3 cores and IMPALA
on a single Nvidia P100 GPU. In table 12, we also compare the cost when both agents run on a
single Nvidia P100 GPU on DeepMind Lab. Even though this is a sub-optimal setting for SEED
because it performs inference on the accelerator and therefore benefits disproportionately from more
efficient accelerators such as TPUs, SEED compares favorably, being 1.76x cheaper than IMPALA
per frame.

Architecture Actors CPUs Envs. Speed Cost/1B Cost ratio
IMPALA 176 176 176 30k $90 —
SEED 15 44 176 19k $51 1.76

Table 12: Cost of performing 1 billion frames for both IMPALA and SEED when running on a
single Nvidia P100 GPU on DeepMind Lab.
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A.7 INFERENCE LATENCY

Model IMPALA SEED
DeepMind Lab
Default 17.97ms 10.98ms
Medium 25.86ms 12.70ms
Large 48.79ms 14.99ms

Google Research Football
Default 12.59ms 6.50ms
Medium 19.24ms 5.90ms
Large 34.20ms 11.19ms

Arcade Learning Environment
Default N/A 7.2ms

Table 13: End-to-end inference latency of IMPALA and SEED for different environments and mod-
els.
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