
Published as a conference paper at ICLR 2020

SEED RL: SCALABLE AND EFFICIENT DEEP-RL WITH
ACCELERATED CENTRAL INFERENCE

Lasse Espeholt∗, Raphaël Marinier∗, Piotr Stanczyk∗, Ke Wang & Marcin Michalski
Brain Team
Google Research
{lespeholt, raphaelm, stanczyk, kewa, michalski}@google.com

ABSTRACT

We present a modern scalable reinforcement learning agent called SEED (Scal-
able, Efficient Deep-RL). By effectively utilizing modern accelerators, we show
that it is not only possible to train on millions of frames per second but also
to lower the cost of experiments compared to current methods. We achieve this
with a simple architecture that features centralized inference and an optimized
communication layer. SEED adopts two state of the art distributed algorithms,
IMPALA/V-trace (policy gradients) and R2D2 (Q-learning), and is evaluated on
Atari-57, DeepMind Lab and Google Research Football. We improve the state of
the art on Football and are able to reach state of the art on Atari-57 three times
faster in wall-time. For the scenarios we consider, a 40% to 80% cost reduction
for running experiments is achieved. The implementation along with experiments
is open-sourced so results can be reproduced and novel ideas tried out.

Github: http://github.com/google-research/seed_rl.

1 INTRODUCTION

The field of reinforcement learning (RL) has recently seen impressive results across a variety of
tasks. This has in part been fueled by the introduction of deep learning in RL and the introduction
of accelerators such as GPUs. In the very recent history, focus on massive scale has been key to
solve a number of complicated games such as AlphaGo (Silver et al., 2016), Dota (OpenAI, 2018)
and StarCraft 2 (Vinyals et al., 2017).

The sheer amount of environment data needed to solve tasks trivial to humans, makes distributed
machine learning unavoidable for fast experiment turnaround time. RL is inherently comprised of
heterogeneous tasks: running environments, model inference, model training, replay buffer, etc. and
current state-of-the-art distributed algorithms do not efficiently use compute resources for the tasks.
The amount of data and inefficient use of resources makes experiments unreasonably expensive. The
two main challenges addressed in this paper are scaling of reinforcement learning and optimizing
the use of modern accelerators, CPUs and other resources.

We introduce SEED (Scalable, Efficient, Deep-RL), a modern RL agent that scales well, is flexible
and efficiently utilizes available resources. It is a distributed agent where model inference is done
centrally combined with fast streaming RPCs to reduce the overhead of inference calls. We show
that with simple methods, one can achieve state-of-the-art results faster on a number of tasks. For
optimal performance, we use TPUs (cloud.google.com/tpu/) and TensorFlow 2 (Abadi et al., 2015)
to simplify the implementation. The cost of running SEED is analyzed against IMPALA (Espeholt
et al., 2018) which is a commonly used state-of-the-art distributed RL algorithm (Veeriah et al.
(2019); Li et al. (2019); Deverett et al. (2019); Omidshafiei et al. (2019); Vezhnevets et al. (2019);
Hansen et al. (2019); Schaarschmidt et al.; Tirumala et al. (2019), ...). We show cost reductions of
up to 80% while being significantly faster. When scaling SEED to many accelerators, it can train on
millions of frames per second. Finally, the implementation is open-sourced together with examples
of running it at scale on Google Cloud (see Appendix A.4 for details) making it easy to reproduce
results and try novel ideas.

∗Equal contribution

1

http://github.com/google-research/seed_rl
https://cloud.google.com/tpu/

Published as a conference paper at ICLR 2020

2 RELATED WORK

For value-based methods, an early attempt for scaling DQN was Nair et al. (2015) that used asyn-
chronous SGD (Dean et al., 2012) together with a distributed setup consisting of actors, replay
buffers, parameter servers and learners. Since then, it has been shown that asynchronous SGD leads
to poor sample complexity while not being significantly faster (Chen et al., 2016; Espeholt et al.,
2018). Along with advances for Q-learning such as prioritized replay (Schaul et al., 2015), dueling
networks (Wang et al., 2016), and double-Q learning (van Hasselt, 2010; Van Hasselt et al., 2016)
the state-of-the-art distributed Q-learning was improved with Ape-X (Horgan et al., 2018). Recently,
R2D2 (Kapturowski et al., 2018) achieved impressive results across all the Arcade Learning Envi-
ronment (ALE) (Bellemare et al., 2013) games by incorporating value-function rescaling (Pohlen
et al., 2018) and LSTMs (Hochreiter & Schmidhuber, 1997) on top of the advancements of Ape-X.

There have also been many approaches for scaling policy gradients methods. A3C (Mnih et al.,
2016) introduced asynchronous single-machine training using asynchronous SGD and relied exclu-
sively on CPUs. GPUs were later introduced in GA3C (Mahmood, 2017) with improved speed
but poor convergence results due to an inherently on-policy method being used in an off-policy
setting. This was corrected by V-trace (Espeholt et al., 2018) in the IMPALA agent both for single-
machine training and also scaled using a simple actor-learner architecture to more than a thou-
sand machines. PPO (Schulman et al., 2017) serves a similar purpose to V-trace and was used in
OpenAI Rapid (Petrov et al., 2018) with the actor-learner architecture extended with Redis (redis.io),
an in-memory data store, and was scaled to 128,000 CPUs. For inexpensive environments like ALE,
a single machine with multiple accelerators can achieve results quickly (Stooke & Abbeel, 2018).
This approach was taken a step further by converting ALE to run on a GPU (Dalton et al., 2019).

A third class of algorithms is evolutionary algorithms. With simplicity and massive scale, they have
achieved impressive results on a number of tasks (Salimans et al., 2017; Such et al., 2017).

Besides algorithms, there exist a number of useful libraries and frameworks for reinforcement learn-
ing. ELF (Tian et al., 2017) is a framework for efficiently interacting with environments, avoiding
Python global-interpreter-lock contention. Dopamine (Castro et al., 2018) is a flexible research
focused RL framework with a strong emphasis on reproducibility. It has state of the art agent imple-
mentations such as Rainbow (Hessel et al., 2017) but is single-threaded. TF-Agents (Guadarrama
et al., 2018) and rlpyt (Stooke & Abbeel, 2019) both have a broader focus with implementations
for several classes of algorithms but as of writing, they do not have distributed capability for large-
scale RL. RLLib (Liang et al., 2017) provides a number of composable distributed components
and a communication abstraction with a number of algorithm implementations such as IMPALA
and Ape-X. Concurrent with this work, TorchBeast (Küttler et al., 2019) was released which is an
implementation of single-machine IMPALA with remote environments.

SEED is closest related to IMPALA, but has a number of key differences that combine the benefits
of single-machine training with a scalable architecture. Inference is moved to the learner but envi-
ronments run remotely. This is combined with a fast communication layer to mitigate latency issues
from the increased number of remote calls. The result is significantly faster training at reduced costs
by as much as 80% for the scenarios we consider. Along with a policy gradients (V-trace) implemen-
tation we also provide an implementation of state of the art Q-learning (R2D2). In the work we use
TPUs but in principle, any modern accelerator could be used in their place. TPUs are particularly
well-suited given they high throughput for machine learning applications and the scalability. Up to
2048 cores are connected with a fast interconnect providing 100+ petaflops of compute.

3 ARCHITECTURE

Before introducing the architecture of SEED, we first analyze the generic actor-learner architecture
used by IMPALA, which is also used in various forms in Ape-X, OpenAI Rapid and others. An
overview of the architecture is shown in Figure 1a.

A large number of actors repeatedly read model parameters from the learner (or parameter servers).
Each actor then proceeds the local model to sample actions and generate a full trajectory of observa-
tions, actions, policy logits/Q-values. Finally, this trajectory along with recurrent state is transferred

2

https://redis.io/

Published as a conference paper at ICLR 2020

Actor Learner

Environment

Store

Model

Queue

1. Parameters

2. Observation3. Action

5.Trajectory (State and observations)

6. Batch of trajectories

7. Optimize

4. Collect
trajectory

Model

(a) IMPALA architecture (distributed version)

Actor
Learner

Store

Queue

B
at

ch
in

g
la

ye
r

1. Observation

2. Action

Model

3. Collect trajectory

4. Trajectory

5. Batch of trajectories

6. Optimize

EnvironmentEnvironmentEnvironmentEnvironment

(b) SEED architecture, see detailed replay architecture in Figure 3.

Figure 1: Overview of architectures

to a shared queue or replay buffer. Asynchronously, the learner reads batches of trajectories from
the queue/replay buffer and optimizes the model.

There are a number of reasons for why this architecture falls short:

1. Using CPUs for neural network inference: The actor machines are usually CPU-based
(occasionally GPU-based for expensive environments). CPUs are known to be computa-
tionally inefficient for neural networks (Raina et al., 2009). When the computational needs
of a model increase, the time spent on inference starts to outweigh the environment step
computation. The solution is to increase the number of actors which increases the cost and
affects convergence (Espeholt et al., 2018).

2. Inefficient resource utilization: Actors alternate between two tasks: environment steps
and inference steps. The compute requirements for the two tasks are often not similar
which leads to poor utilization or slow actors. E.g. some environments are inherently
single-threading while neural networks are easily parallelizable.

3. Bandwidth requirements: Model parameters, recurrent state and observations are trans-
ferred between actors and learners. Relatively to model parameters, the size of the ob-
servation trajectory often only accounts for a few percents.1 Furthermore, memory-based
models send large states, increase bandwidth requirements.

While single-machine approaches such as GA3C (Mahmood, 2017) and single-machine IMPALA
avoid using CPU for inference (1) and do not have network bandwidth requirements (3), they are
restricted by resource usage (2) and the scale required for many types of environments.

The architecture used in SEED (Figure 1b) solves the problems mentioned above. Inference and
trajectory accumulation is moved to the learner which makes it conceptually a single-machine setup
with remote environments (besides handling failures). Moving the logic effectively makes the actors
a small loop around the environments. For every single environment step, the observations are sent
to the learner, which runs the inference and sends actions back to the actors. This introduces a new
problem: 4. Latency.

To minimize latency, we created a simple framework that uses gRPC (grpc.io) - a high performance
RPC library. Specifically, we employ streaming RPCs where the connection from actor to learner is
kept open and metadata sent only once. Furthermore, the framework includes a batching module that
efficiently batches multiple actor inference calls together. In cases where actors can fit on the same
machine as learners, gRPC uses unix domain sockets and thus reduces latency, CPU and syscall
overhead. Overall, the end-to-end latency, including network and inference, is faster for a number
of the models we consider (see Appendix A.7).

1With 100,000 observations send per second (96 x 72 x 3 bytes each), a trajectory length of 20 and a 30MB
model, the total bandwidth requirement is 148 GB/s. Transferring observations uses only 2 GB/s.

3

https://grpc.io/

Published as a conference paper at ICLR 2020

Environment step Inference step

Optimization step

Q✓t ✓t+1 ✓t+2

⇡✓t
⇡✓t

⇡✓t
⇡✓t

⇡✓t

Learner

Actor

(a) Off-policy in IMPALA. For the entire trajectory the
policy stays the same. By the time the trajectory is sent
to the queue for optimization, the policy has changed
twice.

✓t+1 ✓t+2

⇡✓t+1
⇡✓t+2

✓t ✓t+1 ✓t+2

Q⇡✓t
⇡✓t+1

⇡✓t+2

Learner

Actor

(b) Off-policy in SEED. Optimizing a model has im-
mediate effect on the policy. Thus, the trajectory con-
sists of actions sampled from many different policies
(πθt , πθt+1 , ...).

Figure 2: Variants of “near on-policy” when evaluating a policy π while asynchronously optimizing
model parameters θ.

Learner

B
at

ch
in

g
la

ye
r

Inference TPUs

Device bu↵er

Incomplete

trajectories
store

Prioritized
replay
bu↵er

Complete

queue
trajectories

In
fe

re
n
ce

th
re

ad
s

1.

2.

Recurrent
states

1.

2.

3.

T
ra

in
in

g
th

re
ad

1.

Reporting and checkpointing

Apply gradients 2.

Training TPUs

Model

3.

D
at

a
p
re

fe
tc

h
in

g
th

re
ad

s

Figure 3: Detailed Learner architecture in SEED (with an optional replay buffer).

The IMPALA and SEED architectures differ in that for SEED, at any point in time, only one copy
of the model exists whereas for distributed IMPALA each actor has its own copy. This changes the
way the trajectories are off-policy. In IMPALA (Figure 2a), an actor uses the same policy πθt for
an entire trajectory. For SEED (Figure 2b), the policy during an unroll of a trajectory may change
multiple times with later steps using more recent policies closer to the one used at optimization time.

A detailed view of the learner in the SEED architecture is shown on Figure 3. Three types of threads
are running: 1. Inference 2. Data prefetching and 3. Training. Inference threads receive a batch
of observations, rewards and episode termination flags. They load the recurrent states and send the
data to the inference TPU core. The sampled actions and new recurrent states are received, and the
actions are sent back to the actors while the latest recurrent states are stored. When a trajectory is
fully unrolled it is added to a FIFO queue or replay buffer and later sampled by data prefetching
threads. Finally, the trajectories are pushed to a device buffer for each of the TPU cores taking part
in training. The training thread (the main Python thread) takes the prefetched trajectories, computes
gradients using the training TPU cores and applies the gradients on the models of all TPU cores
(inference and training) synchronously. The ratio of inference and training cores can be adjusted for
maximum throughput and utilization. The architecture scales to a TPU pod (2048 cores) by round-
robin assigning actors to TPU host machines, and having separate inference threads for each TPU
host. When actors wait for a response from the learner, they are idle so in order to fully utilize the
machines, we run multiple environments on a single actor.

To summarize, we solve the issues listed previously by:

1. Moving inference to the learner and thus eliminating any neural network related computa-
tions from the actors. Increasing the model size in this architecture will not increase the
need for more actors (in fact the opposite is true).

2. Batching inference on the learner and having multiple environments on the actor. This
fully utilize both the accelerators on the learner and CPUs on the actors. The number of

4

Published as a conference paper at ICLR 2020

TPU cores for inference and training is finely tuned to match the inference and training
workloads. All factors help reducing the cost of experiments.

3. Everything involving the model stays on the learner and only observations and actions are
sent between the actors and the learner. This reduces bandwidth requirements by as much
as 99%.

4. Using streaming gRPC that has minimal latency and minimal overhead and integrating
batching into the server module.

We provide the following two algorithms implemented in the SEED framework: V-trace and Q-
learning.

3.1 V-TRACE

One of the algorithms we adapt into the framework is V-trace (Espeholt et al., 2018). We do not
include any of the additions that have been proposed on top of IMPALA such as van den Oord et al.
(2018); Gregor et al. (2019). The additions can also be applied to SEED and since they are more
computational expensive, they would benefit from the SEED architecture.

3.2 Q-LEARNING

We show the versatility of SEED’s architecture by fully implementing R2D2 (Kapturowski et al.,
2018), a state of the art distributed value-based agent. R2D2 itself builds on a long list of improve-
ments over DQN (Mnih et al., 2015): double Q-learning (van Hasselt, 2010; Van Hasselt et al.,
2016), multi-step bootstrap targets (Sutton, 1988; Sutton & Barto, 1998; Mnih et al., 2016), du-
eling network architecture (Wang et al., 2016), prioritized distributed replay buffer (Schaul et al.,
2015; Horgan et al., 2018), value-function rescaling (Pohlen et al., 2018), LSTM’s (Hochreiter &
Schmidhuber, 1997) and burn-in (Kapturowski et al., 2018).

Instead of a distributed replay buffer, we show that it is possible to keep the replay buffer on the
learner with a straightforward flexible implementation. This reduces complexity by removing one
type of job in the setup. It has the drawback of being limited by the memory of the learner but it was
not a problem in our experiments by a large margin: a replay buffer of 105 trajectories of length 120
of 84× 84 uncompressed grayscale observations (following R2D2’s hyperparameters) takes 85GBs
of RAM, while Google Cloud machines can offer hundreds of GBs. However, nothing prevents the
use of a distributed replay buffer together with SEED’s central inference, in cases where a much
larger replay buffer is needed.

4 EXPERIMENTS

We evaluate SEED on a number of environments: DeepMind Lab (Beattie et al., 2016), Google
Research Football (Kurach et al., 2019) and Arcade Learning Environment (Bellemare et al., 2013).

4.1 DEEPMIND LAB AND V-TRACE

DeepMind Lab is a 3D environment based on the Quake 3 engine. It features mazes, laser tag and
memory tasks. We evaluate on four commonly used tasks. The action set used is from Espeholt
et al. (2018) although for some tasks, higher return can be achieved with bigger action sets such as
the one introduced in Hessel et al. (2018). For all experiments, we used an action repeat of 4 and
the number of frames in plots is listed as environment frames (equivalent to 4 times the number of
steps). The same set of 24 hyperparameter sets and the same model (ResNet from IMPALA) was
used for both agents. More details can be found in Appendix A.1.2.

4.1.1 STABILITY

The first experiment evaluates the effect of the change in off-policy behavior described in Figure 2.
Exactly the same hyperparameters are used for both IMPALA and SEED, including the number of
environments used. As is shown in Figure 4, the stability across hyperparameters of SEED is slightly
better than IMPALA, while achieving slightly higher final returns.

5

Published as a conference paper at ICLR 2020

IMPALA - P100, 175 envs. SEED - TPU v3 2 cores, 175 envs.

1 5 9 13 17 21 24
Hyperparameter Combination

0

20

40
Fi

na
l R

etu
rn

rooms_watermaze

1 5 9 13 17 21 24
Hyperparameter Combination

10

20

30

Fi
na

l R
etu

rn

rooms_keys_doors_puzzle

1 5 9 13 17 21 24
Hyperparameter Combination

0

20

40

Fi
na

l R
etu

rn

lasertag_three_opponents_small

1 5 9 13 17 21 24
Hyperparameter Combination

0

100

200

Fi
na

l R
etu

rn

explore_goal_locations_small

Figure 4: Comparison of IMPALA and SEED under the exact same conditions (175 actors, same
hyperparameters, etc.) The plots show hyperparameter combinations sorted by the final performance
across different hyperparameter combinations.

IMPALA - P100, 175 envs.
SEED - TPU v3 2 cores, 312 envs.

SEED - TPU v3 8 cores, 1560 envs.
SEED - TPU v3 64 cores, 12,480 envs.

0 2 4
Frame 1e9

0

100

200

300

Re
tu

rn

explore_goal_locations_small

0.0 2.5 5.0 7.5
Hours

0

100

200

300

Re
tu

rn

explore_goal_locations_small

0.00 0.25 0.50 0.75 1.00
Frame 1e9

0

20

40

Re
tu

rn

rooms_watermaze

0.0 2.5 5.0 7.5
Hours

0

20

40

Re
tu

rn

rooms_watermaze

0.25 0.50 0.75 1.00
Frame 1e9

10

20

30

Re
tu

rn

rooms_keys_doors_puzzle

0.0 2.5 5.0 7.5
Hours

10

20

30

Re
tu

rn

rooms_keys_doors_puzzle

0.25 0.50 0.75 1.00
Frame 1e9

0

20

40

Re
tu

rn

lasertag_three_opponents_small

0.0 2.5 5.0 7.5
Hours

0

20

40

Re
tu

rn

lasertag_three_opponents_small

Figure 5: Training on 4 DeepMind Lab tasks. Each curve is the best of the 24 runs based on final
return following the evaluation procedure in Espeholt et al. (2018). Sample complexity is maintained
up to 8 TPU v3 cores, which leads to 11x faster training than the IMPALA baseline. Top Row: X-
axis is per frame (number of frames = 4x number of steps). Bottom Row: X-axis is hours.

4.1.2 SPEED

For evaluating performance, we compare IMPALA using an Nvidia P100 with SEED with multiple
accelerator setups. They are evaluated on the same set of hyperparameters. We find that SEED is
2.5x faster than IMPALA using 2 TPU v3 cores (see Table 1), while using only 77% more envi-
ronments and 41% less CPU (see section 4.4.1). Scaling from 2 to 8 cores results in an additional
4.4x speedup with sample complexity maintained (Figure 5). The speed-up is greater than 4x due to
using 6 cores for training and 2 for inference instead of 1 core for each, resulting in better utiliza-
tion. A 5.3x speed-up instead of 4.4x can be obtained by increasing the batch size linearly with the
number of training cores, but contrary to related research (You et al., 2017b; Goyal et al., 2017) we
found that increased batch size hurts sample complexity even with methods like warm-up and actor
de-correlation (Stooke & Abbeel, 2018). We hypothesize that this is due to the limited actor and
environment diversity in DeepMind Lab tasks. In McCandlish et al. (2018) they found that Pong
scales poorly with batch size but that Dota can be trained effectively with a batch size five orders of
magnitude larger. Note, for most models, the effective batch size is batch size · trajectory length.
In Figure 5, we include a run from a limited sweep on “explore_goal_locations_small” using 64
cores with an almost linear speed-up. Wall-time performance is improved but sample complexity is
heavily penalized.

When using an Nvidia P100, SEED is 1.58x slower than IMPALA. A slowdown is expected because
SEED performs inference on the accelerator. SEED does however use significantly fewer CPUs and
is lower cost (see Appendix A.6). The TPU version of SEED has been optimized but it is likely that
improvements can be found for SEED with P100.

6

Published as a conference paper at ICLR 2020

Architecture Accelerators Environments Actor CPUs Batch Size FPS Ratio

DeepMind Lab

IMPALA Nvidia P100 176 176 32 30K —
SEED Nvidia P100 176 44 32 19K 0.63x
SEED TPU v3, 2 cores 312 104 32 74K 2.5x
SEED TPU v3, 8 cores 1560 520 481 330K 11.0x
SEED TPU v3, 64 cores 12,480 4,160 3841 2.4M 80.0x

Google Research Football

IMPALA, Default 2 x Nvidia P100 400 400 128 11K —
SEED, Default TPU v3, 2 cores 624 416 128 18K 1.6x
SEED, Default TPU v3, 8 cores 2,496 1,664 1603 71K 6.5x

SEED, Medium TPU v3, 8 cores 1,550 1,032 1603 44K —

SEED, Large TPU v3, 8 cores 1,260 840 1603 29K —
SEED, Large TPU v3, 32 cores 5,040 3,360 6403 114K 3.9x

Arcade Learning Environment

R2D2 Nvidia V100 256 N/A 64 85K2 —
SEED Nvidia V100 256 55 64 67K 0.79x
SEED TPU v3, 8 cores 610 213 64 260K 3.1x
SEED TPU v3, 8 cores 1200 419 256 440K4 5.2x

1 6/8 cores used for training. 2 Each of the 256 R2D2 actors run at 335 FPS (information from the
R2D2 authors). 3 5/8 cores used for training. 4 No frame stacking.

Table 1: Performance of SEED, IMPALA and R2D2.

4.2 GOOGLE RESEARCH FOOTBALL AND V-TRACE

Google Research Football is an environment similar to FIFA video games (ea.com). We evaluate
SEED on the “Hard” task introduced in Kurach et al. (2019) where the baseline IMPALA agent
achieved a positive average score after 500M frames using the engineered “checkpoint” reward
function but a negative average score using only the score as a reward signal. In all experiments we
use the model from Kurach et al. (2019) and sweep over 40 hyperparameter sets with 3 seeds each.
See all hyperparameters in Appendix A.2.1.

4.2.1 SPEED

Compared to the baseline IMPALA using 2 Nvidia P100’s (and CPUs for inference) in Kurach
et al. (2019) we find that using 2 TPU v3 cores in SEED improves the speed by 1.6x (see Table 1).
Additionally, using 8 cores adds another 4.1x speed-up. A speed-up of 4.5x is achievable if the batch
size is increased linearly with the number of training cores (5). However, we found that increasing
the batch size, like with DeepMind Lab, hurts sample complexity.

4.2.2 INCREASED MAP SIZE

More compute power allows us to increase the size of the Super Mini Map (SMM) input state. By
default its size is 96 x 72 (x 4) and it represents players, opponents, ball and the active player as 2d
bit maps. We evaluated three sizes: (1) Default 96 x 72, (2) Medium 120 x 90 and (3) Large 144 x
108. As shown in Table 1, switching from Default to Large SMM results in 60% speed reduction.
However, increasing the map size improves the final score (Table 2). It may suggest that the bit map
representation is not granular enough for the task. For both reward functions, we improve upon the
results of Kurach et al. (2019). Finally, training on 4B frames improves the results by a significant
margin (an average score of 0.46 vs. 4.76 in case of the scoring reward function).

4.3 ARCADE LEARNING ENVIRONMENT AND Q-LEARNING

7

https://www.ea.com/games/fifa

Published as a conference paper at ICLR 2020

0 20 40 60 80 100 120
Training time (Hours)

0%

500%

1000%

1500%

2000%

Hu
m

an
-n

or
m

ali
ze

d
Sc

or
e

(M
ed

ian
 o

ve
r 5

7
ga

m
es

)

R2D2(12h)

R2D2(24h)

R2D2(48h)

R2D2(72h)

R2D2(120h)

Ape-X(20h) Ape-X(70h)
Ape-X(120h)

Rainbow(120h)

SEED 8 cores

0 1 2 3 4
Environment frames 1e10

0%

500%

1000%

1500%

2000%

Hu
m

an
-n

or
m

ali
ze

d
Sc

or
e

(M
ed

ian
 o

ve
r 5

7
ga

m
es

)

R2D2(12h)
R2D2(24h)

R2D2(48h)

R2D2(72h)

R2D2(120h)

Ape-X(20h) Ape-X(70h)
Ape-X(120h)

Rainbow(120h)

SEED 8 cores

Figure 6: Median human-normalized score on Atari-57 for SEED and related agents. SEED was
run with 1 seed for each game. All agents use up to 30 random no-ops for evaluation. Left: X-axis
is hours Right: X-axis is environment frames (a frame is 1/4th of an environment step due to action
repeat). SEED reaches state of the art performance 3.1x faster (wall-time) than R2D2.

We evaluate our implementation of R2D2 in SEED architecture on 57 Atari 2600 games from the
ALE benchmark. This benchmark has been the testbed for most recent deep reinforcement learning
agents because of the diversity of visuals and game mechanics.

Architecture Accelerators SMM Median Max
Scoring reward
IMPALA 2 x Nvidia P100 Default -0.74 0.06
SEED TPU v3, 2 cores Default -0.72 -0.12
SEED TPU v3, 8 cores Default -0.83 -0.02
SEED TPU v3, 8 cores Medium -0.74 0.12
SEED TPU v3, 8 cores Large -0.69 0.46
SEED TPU v3, 32 cores Large n/a 4.761

Checkpoint reward
IMPALA 2 x Nvidia P100 Default -0.27 1.63
SEED TPU v3, 2 cores Default -0.44 1.64
SEED TPU v3, 8 cores Default -0.68 1.55
SEED TPU v3, 8 cores Medium -0.52 1.76
SEED TPU v3, 8 cores Large -0.38 1.86
SEED TPU v3, 32 cores Large n/a 7.661

1 32 core experiments trained on 4B frames with a limited sweep.

Table 2: Google Research Football “Hard” using two kinds of
reward functions. For each reward function, 40 hyperparame-
ter sets ran with 3 seeds each which were averaged after 500M
frames of training. The table shows the median and maximum
of the 40 averaged values. This is a similar setup to Kurach
et al. (2019) although we ran 40 hyperparameter sets vs. 100
but did not rerun our best models using 5 seeds.

We follow the same evaluation pro-
cedure as R2D2. In particular, we
use the full action set, no loss-
of-life-as-episode-end heuristic and
start episodes with up to 30 ran-
dom no-ops. We use 8 TPU v3
cores and 610 actors to maximize
TPU utilization. This achieves
260K environment FPS and per-
forms 9.5 network updates per sec-
ond. Other hyperparameters are
taken from R2D2, and are fully re-
produced in appendix A.3.1.

Figure 6 shows the median human-
normalized scores for SEED,
R2D2, Ape-X and Rainbow. As
expected, SEED has similar sample
efficiency as R2D2, but it is 3.1x
faster (see Table 1). This allows
us to reach a median human-
normalized score of 1880% in just
1.8 days of training instead of 5,
establishing a new wall-time state
of the art on Atari-57.

With the number of actors in-
creased to 1200, a batch size in-
creased to 256 and without frame-
stacking, we can achieve 440K en-
vironment FPS and learn using 16
batches per second. However, this significantly degrades sample efficiency and limits the final me-
dian human-normalized score to approximately 1000%.

4.4 COST COMPARISONS

With growing complexity of environments as well as size of neural networks used in reinforcement
learning, the need of running big experiments increases, making cost reductions important. In this

8

Published as a conference paper at ICLR 2020

section we analyze how increasing complexity of the network impacts training cost for SEED and
IMPALA. In our experiments we use the pricing model of Google AI Platform, ML Engine.2

Resource Cost per hour

CPU core $0.0475
Nvidia Tesla P100 $1.46
TPU v3 core $1.00

Table 3: Cost of cloud resources as of
Sep. 2019.

Our main focus is on obtaining lowest possible cost per
step, while maintaining training speed. Distributed exper-
iments from Espeholt et al. (2018) (IMPALA) used be-
tween 150 and 500 CPUs, which translates into $7.125 -
$23.75 of actors’ cost per hour. The cost of single-GPU
learner is $1.46 per hour. Due to the relatively high ex-
pense of the actors, our main focus is to reduce number of
actors and to obtain high CPU utilization.

4.4.1 DEEPMIND LAB

Our DeepMind Lab experiment is based on the ResNet model from IMPALA. We evaluate increas-
ing the number of filters in the convolutional layers: (1) Default 1x (2) Medium 2x and (3) Large
4x. Experiments are performed on the “explore_goal_locations_small” task. IMPALA uses a single
Nvidia Tesla P100 GPU for training while inference is done on CPU by the actors. SEED uses one
TPU v3 core for training and one for inference.

For IMPALA, actor CPU utilization is close to 100% but in case of SEED, only the environment
runs on an actor making CPU idle while waiting for inference step. To improve utilization, a single
SEED actor runs multiple environments (between 12 and 16) on a 4-CPU machine.

Model Actors CPUs Envs. Speed Cost/1B Cost ratio

IMPALA

Default 176 176 176 30k $90 —
Medium 130 130 130 16.5k $128 —
Large 100 100 100 7.3k1 $236 —

SEED

Default 26 104 312 74k $25 3.60
Medium 12 48 156 34k $35 3.66
Large 6 24 84 16k $54 4.37

1 The batch size was lowered from 32 to 16 due to limited memory on Nvidia
P100.

Table 4: Training cost on DeepMind Lab for 1 billion frames.

As Table 4 shows, SEED turns out to be not only faster, but also cheaper to run. The cost ratio
between SEED and IMPALA is around 4. Due to high cost of inference on a CPU, IMPALA’s cost
increases with increasing complexity of the network. In the case of SEED, increased network size
has smaller impact on overall costs, as inference accounts for about 30% of the costs (see Table
A.5).

4.4.2 GOOGLE RESEARCH FOOTBALL

We evaluate cost of running experiments with Google Research Football with different sizes of
the Super Mini Map representation (the size has virtually no impact on environment’s speed.) For
IMPALA, two Nvidia P100 GPUs were used for training and SEED used one TPU v3 core for
training and one for inference.

For IMPALA, we use one core per actor while SEED’s actors run multiple environments per actor
for better CPU utilization (8 cores, 12 environments).

For the default size of the SMM, per experiment training cost differs by only 68%. As the Google
Research Football environment is more expensive than DeepMind Lab, training and inference costs

2TPU cores are sold in multiples of 8, by running many experiments at once we use as many cores per
experiment as needed. See cloud.google.com/ml-engine/docs/pricing.

9

https://cloud.google.com/ml-engine/docs/pricing

Published as a conference paper at ICLR 2020

Model Actors CPUs Envs. Speed Cost/1B Cost ratio

IMPALA

Default 400 400 400 11k $553 —
Medium 300 300 300 7k $681 —
Large 300 300 300 5.3k $899 —

SEED

Default 52 416 624 17.5k $345 1.68
Medium 31 248 310 10.5k $365 1.87
Large 21 168 252 7.5k $369 2.70

Table 5: Training cost on Google Research Football for 1 billion frames.

have relatively smaller impact on the overall experiment cost. The difference increases when the
size of the SMM increases and SEED needing relatively fewer actors.

4.4.3 ARCADE LEARNING ENVIRONMENT

Due to lack of baseline implementation for R2D2, we do not include cost comparisons for this
environment. However, comparison of relative costs between ALE, DeepMind Lab and Football
suggests that savings should be even more significant. ALE is the fastest among the three environ-
ments making inference proportionally the most expensive. Appendix A.5 presents training cost
split between actors and the learner for different setups.

5 CONCLUSION

We introduced and analyzed a new reinforcement learning agent architecture that is faster and less
costly per environment frame than previous distributed architectures by better utilizing modern ac-
celerators. It achieved a 11x wall-time speedup on DeepMind Lab compared to a strong IMPALA
baseline while keeping the same sample efficiency, improved on state of the art scores on Google Re-
search Football, and achieved state of the art scores on Atari-57 3.1x faster (wall-time) than previous
research.

The agent is open-sourced and packaged to easily run on Google Cloud. We hope that this will
accelerate reinforcement learning research by allowing the community to replicate state-of-the-art
results and build on top of them.

As a demonstration of the potential of this new agent architecture, we were able to scale it to millions
of frames per second in some realistic scenarios (80x speedup compared to previous research).
However, this requires increasing the number of environments and using larger batch sizes which
hurts sample efficiency in the environments tested. Preserving sample efficiency with larger batch-
sizes has been studied to some extent in RL (Stooke & Abbeel, 2018; McCandlish et al., 2018) and
in the context of supervised learning (You et al., 2017b;a; 2019; Goyal et al., 2017). We believe it is
still an open and increasingly important area of research in order to scale up reinforcement learning.

ACKNOWLEDGMENTS

We would like to thank Steven Kapturowski, Georg Ostrovski, Tim Salimans, Aidan Clark, Manuel
Kroiss, Matthieu Geist, Leonard Hussenot, Alexandre Passos, Marvin Ritter, Neil Zeghidour, Marc
G. Bellemare and Sylvain Gelly for comments and insightful discussions and Marcin Andrychow-
icz, Dan Abolafia, Damien Vincent, Dehao Chen, Eugene Brevdo and Ruoxin Sang for their code
contributions.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew

10

Published as a conference paper at ICLR 2020

Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Ander-
son, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis
Hassabis, Shane Legg, and Stig Petersen. Deepmind lab. CoRR, abs/1612.03801, 2016. URL
http://arxiv.org/abs/1612.03801.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. J. Artif. Intell. Res. (JAIR), 47:253–279,
2013.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.
Dopamine: A Research Framework for Deep Reinforcement Learning. 2018. URL http:
//arxiv.org/abs/1812.06110.

Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Józefowicz. Revisiting distributed syn-
chronous SGD. CoRR, abs/1604.00981, 2016. URL http://arxiv.org/abs/1604.
00981.

Steven Dalton, Iuri Frosio, and Michael Garland. Gpu-accelerated atari emulation for reinforcement
learning. CoRR, abs/1907.08467, 2019. URL http://arxiv.org/abs/1907.08467.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and Andrew Y. Ng.
Large scale distributed deep networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 25, pp.
1223–1231. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4687-large-scale-distributed-deep-networks.pdf.

Ben Deverett, Ryan Faulkner, Meire Fortunato, Greg Wayne, and Joel Z Leibo. Interval timing in
deep reinforcement learning agents. arXiv preprint arXiv:1905.13469, 2019.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-
PALA: scalable distributed deep-rl with importance weighted actor-learner architectures. In
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 1406–1415, 2018. URL http:
//proceedings.mlr.press/v80/espeholt18a.html.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training im-
agenet in 1 hour. CoRR, abs/1706.02677, 2017. URL http://arxiv.org/abs/1706.
02677.

Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and Aäron van den
Oord. Shaping belief states with generative environment models for RL. CoRR, abs/1906.09237,
2019. URL http://arxiv.org/abs/1906.09237.

Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro, Ethan Holly, Sam Fishman,
Ke Wang, Ekaterina Gonina, Neal Wu, Chris Harris, Vincent Vanhoucke, and Eugene Brevdo.
TF-Agents: A library for reinforcement learning in tensorflow. https://github.com/
tensorflow/agents, 2018. URL https://github.com/tensorflow/agents.
[Online; accessed 25-June-2019].

11

https://www.tensorflow.org/
http://arxiv.org/abs/1612.03801
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1907.08467
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1906.09237
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents

Published as a conference paper at ICLR 2020

Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. arXiv preprint
arXiv:1906.05030, 2019.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Daniel Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. CoRR, abs/1710.02298, 2017. URL http://
arxiv.org/abs/1710.02298.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado van
Hasselt. Multi-task deep reinforcement learning with popart. CoRR, abs/1809.04474, 2018. URL
http://arxiv.org/abs/1809.04474.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt,
and David Silver. Distributed prioritized experience replay. In ICLR, 2018.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent expe-
rience replay in distributed reinforcement learning. 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR), 2014.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt, Car-
los Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research
football: A novel reinforcement learning environment. arXiv preprint arXiv:1907.11180, 2019.

Heinrich Küttler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath Sivakumar,
Tim Rocktäschel, and Edward Grefenstette. TorchBeast: A PyTorch Platform for Dis-
tributed RL. arXiv preprint arXiv:1910.03552, 2019. URL https://github.com/
facebookresearch/torchbeast.

Ang Li, Huiyi Hu, Piotr Mirowski, and Mehrdad Farajtabar. Cross-view policy learning for street
navigation. arXiv preprint arXiv:1906.05930, 2019.

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E
Gonzalez, Michael I Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. arXiv preprint arXiv:1712.09381, 2017.

Ashique Mahmood. Incremental Off-policy Reinforcement Learning Algorithms. PhD thesis, Uni-
versity of Alberta, 2017.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. CoRR, abs/1812.06162, 2018. URL http://arxiv.org/abs/1812.
06162.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria,
Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, Shane Legg,
Volodymyr Mnih, Koray Kavukcuoglu, and David Silver. Massively parallel methods for deep
reinforcement learning. arXiv preprint arXiv:1507.04296, 2015.

Shayegan Omidshafiei, Daniel Hennes, Dustin Morrill, Rémi Munos, Julien Pérolat, Marc Lanctot,
Audrunas Gruslys, Jean-Baptiste Lespiau, and Karl Tuyls. Neural replicator dynamics. CoRR,
abs/1906.00190, 2019. URL http://arxiv.org/abs/1906.00190.

12

http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1809.04474
https://github.com/facebookresearch/torchbeast
https://github.com/facebookresearch/torchbeast
http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1906.00190

Published as a conference paper at ICLR 2020

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

Michael Petrov, Szymon Sidor, Susan Zhang, Jakub Pachocki, Przemysław Dębiak, Filip Wolski,
Christy Dennison, Henrique Pondé, Greg Brockman, Jie Tang, David Farhi, Brooke Chan, and
Jonathan Raiman. Openai rapid. https://openai.com/blog/openai-five/, 2018.
Accessed: 2019-09-14.

Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Budden,
Gabriel Barth-Maron, Hado Van Hasselt, John Quan, Mel Večerík, et al. Observe and look further:
Achieving consistent performance on atari. arXiv preprint arXiv:1805.11593, 2018.

Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-scale deep unsupervised learning using
graphics processors. In Proceedings of the 26th annual international conference on machine
learning, pp. 873–880. ACM, 2009.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Michael Schaarschmidt, Sven Mika, Kai Fricke, and Eiko Yoneki. Rlgraph: Modular computation
graphs for deep reinforcement learning.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
Proc. of ICLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement learning. CoRR,
abs/1803.02811, 2018. URL http://arxiv.org/abs/1803.02811.

Adam Stooke and Pieter Abbeel. rlpyt: A research code base for deep reinforcement learning in
pytorch. arXiv preprint arXiv:1909.01500, 2019.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and
Jeff Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. CoRR, abs/1712.06567, 2017. URL http:
//arxiv.org/abs/1712.06567.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: an introduction mit press. Cam-
bridge, MA, 1998.

Yuandong Tian, Qucheng Gong, Wenling Shang, Yuxin Wu, and C. Lawrence Zitnick. Elf: An
extensive, lightweight and flexible research platform for real-time strategy games. Advances in
Neural Information Processing Systems (NIPS), 2017.

Dhruva Tirumala, Hyeonwoo Noh, Alexandre Galashov, Leonard Hasenclever, Arun Ahuja, Greg
Wayne, Razvan Pascanu, Yee Whye Teh, and Nicolas Heess. Exploiting hierarchy for learning
and transfer in kl-regularized RL. CoRR, abs/1903.07438, 2019. URL http://arxiv.org/
abs/1903.07438.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. CoRR, abs/1807.03748, 2018. URL http://arxiv.org/abs/1807.03748.

Hado van Hasselt. Double Q-learning. In Advances in Neural Information Processing Systems 23,
pp. 2613–2621, 2010.

13

https://blog.openai.com/openai-five/
https://openai.com/blog/openai-five/
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1803.02811
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1903.07438
http://arxiv.org/abs/1903.07438
http://arxiv.org/abs/1807.03748

Published as a conference paper at ICLR 2020

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Richard Lewis, Janarthanan Rajendran, Junhyuk Oh,
Hado van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions as auxiliary
tasks. arXiv preprint arXiv:1909.04607, 2019.

Alexander Sasha Vezhnevets, Yuhuai Wu, Remi Leblond, and Joel Leibo. Options as responses:
Grounding behavioural hierarchies in multi-agent rl. arXiv preprint arXiv:1906.01470, 2019.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.
Dueling network architectures for deep reinforcement learning. In Proceedings of The 33rd In-
ternational Conference on Machine Learning, pp. 1995–2003, 2016.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017a.

Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to 32k for imagenet training.
arXiv preprint arXiv:1708.03888, 6, 2017b.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training
bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

A APPENDIX

A.1 DEEPMIND LAB

A.1.1 LEVEL CACHE

We enable DeepMind Lab’s option for using a level cache for both SEED and IMPALA which
greatly reduces CPU usage and results in stable actor CPU usage at close to 100% for a single core.

A.1.2 HYPERPARAMETERS

Parameter Range
Action Repetitions 4
Discount Factor (γ) {.99, .993, .997, .999}
Entropy Coefficient Log-uniform (1e−5, 1e−3)
Learning Rate Log-uniform (1e−4, 1e−3)
Optimizer Adam
Adam Epsilon {1e−1, 1e−3, 1e−5, 1e−7}
Unroll Length/n-step 32
Value Function Coefficient .5
V-trace λ {.9, .95, .99, 1.}

Table 6: Hyperparameter ranges used in the stability experiments.

14

Published as a conference paper at ICLR 2020

A.2 GOOGLE RESEARCH FOOTBALL

A.2.1 HYPERPARAMETERS

Parameter Range
Action Repetitions 1
Discount Factor (γ) {.99, .993, .997, .999}
Entropy Coefficient Log-uniform (1e−7, 1e−3)
Learning Rate Log-uniform (1e−5, 1e−3)
Optimizer Adam
Unroll Length/n-step 32
Value Function Coefficient .5
V-trace λ {.9, .95, .99, 1.}

Table 7: Hyperparameter ranges used for experiments with scoring and checkpoint rewards.

A.3 ALE

A.3.1 HYPERPARAMETERS

We use the same hyperparameters as R2D2 (Kapturowski et al., 2018), except that we use more
actors in order to best utilize 8 TPU v3 cores. For completeness, agent hyperparameters are in table 8
and environment processing parameters in table 9. We use the same neural network architecture as
R2D2, namely 3 convolutional layers with filter sizes [32, 64, 64] , kernel sizes [8× 8, 4× 4, 3× 3]
and strides [4, 2, 1], ReLU activations and “valid" padding. They feed into a linear layer with 512
units, feeding into an LSTM layer with 512 hidden units (that also uses the one-hot encoded previous
action and the previous environment reward as input), feeding into dueling heads with 512 hidden
units. We use Glorot uniform (Glorot & Bengio, 2010) initialization.

Parameter Value
Number of actors 610
Replay ratio 0.75
Sequence length 120 incl. prefix of 40 burn-in transitions
Replay buffer size 105 part-overlapping sequences
Minimum replay buffer size 5000 part-overlapping sequences
Priority exponent 0.9
Importance sampling exponent 0.6
Discount γ 0.997
Training batch size 64
Inference batch size 64
Optimizer Adam (lr = 10−4, ε = 10−3) (Kingma & Ba, 2014)
Target network update interval 2500 updates
Value function rescaling x 7→ sign(x)(

√
|x|+ 1− 1) + εx, ε = 10−3

Gradient norm clipping 80
n-steps 5
Epsilon-greedy Training: i-th actor ∈ [0, N) uses εi = 0.41+

7i
N−1

Evaluation: ε = 10−3

Sequence priority p = ηmaxi δi + (1− η)δ̄ where η = 0.9,
δi are per-step absolute TD errors.

Table 8: SEED agent hyperparameters for Atari-57.

15

Published as a conference paper at ICLR 2020

Parameter Value
Observation size 84× 84
Resizing method Bilinear
Random no-ops uniform in [1, 30]. Applied before action repetition.
Frame stacking 4
Action repetition 4
Frame pooling 2
Color mode grayscale
Terminal on loss of life False
Max frames per episode 108K (30 minutes)
Reward clipping No
Action set Full (18 actions)
Sticky actions No

Table 9: Atari-57 environment processing parameters.

16

Published as a conference paper at ICLR 2020

A.3.2 FULL RESULTS ON ATARI-57

Game Human R2D2 SEED 8 TPU v3 cores
Alien 7127.7 229496.9 262197.4
Amidar 1719.5 29321.4 28976.4
Assault 742.0 108197.0 102954.7
Asterix 8503.3 999153.3 983821.0
Asteroids 47388.7 357867.7 296783.0
Atlantis 29028.1 1620764.0 1612438.0
BankHeist 753.1 24235.9 47080.6
BattleZone 37187.5 751880.0 777200.0
BeamRider 16926.5 188257.4 173505.3
Berzerk 2630.4 53318.7 57530.4
Bowling 160.7 219.5 204.2
Boxing 12.1 98.5 100.0
Breakout 30.5 837.7 854.1
Centipede 12017.0 599140.3 574373.1
ChopperCommand 7387.8 986652.0 994991.0
CrazyClimber 35829.4 366690.7 337756.0
Defender 18688.9 665792.0 555427.2
DemonAttack 1971.0 140002.3 143748.6
DoubleDunk -16.4 23.7 24.0
Enduro 860.5 2372.7 2369.3
FishingDerby -38.7 85.8 75.0
Freeway 29.6 32.5 33.0
Frostbite 4334.7 315456.4 101726.8
Gopher 2412.5 124776.3 117650.4
Gravitar 3351.4 15680.7 7813.8
Hero 30826.4 39537.1 37223.1
IceHockey 0.9 79.3 79.2
Jamesbond 302.8 25354.0 25987.0
Kangaroo 3035.0 14130.7 13862.0
Krull 2665.5 218448.1 113224.8
KungFuMaster 22736.3 233413.3 239713.0
MontezumaRevenge 4753.3 2061.3 900.0
MsPacman 6951.6 42281.7 43115.4
NameThisGame 8049.0 58182.7 68836.2
Phoenix 7242.6 864020.0 915929.6
Pitfall 6463.7 0.0 -0.1
Pong 14.6 21.0 21.0
PrivateEye 69571.3 5322.7 198.0
Qbert 13455.0 408850.0 546857.5
Riverraid 17118.0 45632.1 36906.4
RoadRunner 7845.0 599246.7 601220.0
Robotank 11.9 100.4 104.8
Seaquest 42054.7 999996.7 999990.2
Skiing -4336.9 -30021.7 -29973.6
Solaris 12326.7 3787.2 861.6
SpaceInvaders 1668.7 43223.4 62957.8
StarGunner 10250.0 717344.0 448480.0
Surround 6.5 9.9 9.8
Tennis -8.3 -0.1 23.9
TimePilot 5229.2 445377.3 444527.0
Tutankham 167.6 395.3 376.5
UpNDown 11693.2 589226.9 549355.4
Venture 1187.5 1970.7 2005.5
VideoPinball 17667.9 999383.2 979432.1
WizardOfWor 4756.5 144362.7 136352.5
YarsRevenge 54576.9 995048.4 973319.0
Zaxxon 9173.3 224910.7 168816.5

Table 10: Final performance of SEED 8 TPU v3 cores, 610 actors (1 seed) compared to R2D2
(averaged over 3 seeds) and Human, using up to 30 random no-op steps at the beginning of each
episode. SEED was evaluated by averaging returns over 200 episodes for each game after training
on 40e9 environment frames.

17

Published as a conference paper at ICLR 2020

0 20 40
Hours

0

50000

100000

150000

200000

250000

Re
tu

rn

Alien

0 20 40
Hours

0

10000

20000

30000

Re
tu

rn

Amidar

0 20 40
Hours

0

20000

40000

60000

80000

100000

Re
tu

rn

Assault

0 20 40
Hours

0

200000

400000

600000

800000

1000000

Re
tu

rn

Asterix

0 20 40
Hours

0

100000

200000

300000

Re
tu

rn

Asteroids

0 20 40
Hours

0

500000

1000000

1500000

Re
tu

rn

Atlantis

0 20 40
Hours

0

10000

20000

30000

40000

50000

Re
tu

rn

BankHeist

0 20 40
Hours

0

200000

400000

600000

800000

Re
tu

rn

BattleZone

0 20 40
Hours

0

50000

100000

150000

Re
tu

rn

BeamRider

0 20 40
Hours

0

20000

40000

60000

Re
tu

rn

Berzerk

20 40
Hours

50

100

150

200

Re
tu

rn

Bowling

20 40
Hours

80

85

90

95

100

Re
tu

rn

Boxing

0 20 40
Hours

0

200

400

600

800

Re
tu

rn

Breakout

0 20 40
Hours

0

200000

400000

600000

Re
tu

rn

Centipede

0 20 40
Hours

0

200000

400000

600000

800000

1000000

Re
tu

rn

ChopperCommand

0 20 40
Hours

100000

200000

300000

Re
tu

rn

CrazyClimber

0 20 40
Hours

0

200000

400000

Re
tu

rn

Defender

0 20 40
Hours

0

50000

100000

150000

Re
tu

rn

DemonAttack

20 40
Hours

5

10

15

20

25

Re
tu

rn

DoubleDunk

0 20 40
Hours

0

500

1000

1500

2000

Re
tu

rn

Enduro

20 40
Hours

50

0

50

Re
tu

rn

FishingDerby

20 40
Hours

0

10

20

30

Re
tu

rn

Freeway

0 20 40
Hours

0

20000

40000

60000

80000

100000

Re
tu

rn

Frostbite

0 20 40
Hours

0

25000

50000

75000

100000

125000

Re
tu

rn

Gopher

20 40
Hours

0

2000

4000

6000

8000

Re
tu

rn

Gravitar

0 20 40
Hours

0

10000

20000

30000

Re
tu

rn

Hero

20 40
Hours

20

0

20

40

60

80

Re
tu

rn

IceHockey

0 20 40
Hours

0

5000

10000

15000

20000

25000

Re
tu

rn

Jamesbond

0 20 40
Hours

0

5000

10000

Re
tu

rn

Kangaroo

0 20 40
Hours

0

25000

50000

75000

100000

125000

Re
tu

rn

Krull

0 20 40
Hours

0

50000

100000

150000

200000

250000

Re
tu

rn

KungFuMaster

0 20 40
Hours

0

200

400

600

800

Re
tu

rn

MontezumaRevenge

0 20 40
Hours

0

10000

20000

30000

40000

Re
tu

rn

MsPacman

0 20 40
Hours

0

20000

40000

60000

Re
tu

rn

NameThisGame

0 20 40
Hours

0

200000

400000

600000

800000

Re
tu

rn

Phoenix

20 40
Hours

0.3

0.2

0.1

0.0

Re
tu

rn

Pitfall

20 40
Hours

20

10

0

10

20

Re
tu

rn

Pong

20 40
Hours

50

100

150

200

250

Re
tu

rn

PrivateEye

0 20 40
Hours

0

200000

400000

Re
tu

rn

Qbert

0 20 40
Hours

0

10000

20000

30000

Re
tu

rn

Riverraid

0 20 40
Hours

0

200000

400000

600000

Re
tu

rn

RoadRunner

0 20 40
Hours

0

20

40

60

80

100
Re

tu
rn

Robotank

0 20 40
Hours

0

200000

400000

600000

800000

1000000

Re
tu

rn

Seaquest

20 40
Hours

30300

30200

30100

30000

Re
tu

rn

Skiing

20 40
Hours

0

2000

4000

6000

Re
tu

rn

Solaris

0 20 40
Hours

0

20000

40000

60000

Re
tu

rn

SpaceInvaders

0 20 40
Hours

0

100000

200000

300000

400000

Re
tu

rn

StarGunner

0 20 40
Hours

10

5

0

5

10

Re
tu

rn

Surround

20 40
Hours

20

10

0

10

20

Re
tu

rn

Tennis

0 20 40
Hours

0

100000

200000

300000

400000

Re
tu

rn

TimePilot

20 40
Hours

100

200

300

400

Re
tu

rn

Tutankham

0 20 40
Hours

0

200000

400000

Re
tu

rn

UpNDown

20 40
Hours

0

500

1000

1500

2000

Re
tu

rn

Venture

0 20 40
Hours

0

200000

400000

600000

800000

1000000

Re
tu

rn

VideoPinball

0 20 40
Hours

0

25000

50000

75000

100000

125000

Re
tu

rn

WizardOfWor

0 20 40
Hours

0

200000

400000

600000

800000

1000000

Re
tu

rn

YarsRevenge

0 20 40
Hours

0

50000

100000

150000

Re
tu

rn

Zaxxon

SEED - TPU v3 8 cores, 610 actors.

Figure 7: Learning curves on 57 Atari 2600 games for SEED (8 TPUv3 cores, 610 actors, evaluated
with 1 seed). Each point of each curve averages returns over 200 episodes. No curve smoothing was
performed. Curves end at approximately 43 hours of training, corresponding to 40e9 environment
frames.

18

Published as a conference paper at ICLR 2020

A.4 SEED LOCALLY AND ON CLOUD

SEED is open-sourced together with an example of running it both on a local machine and with
scale using AI Platform, part of Google Cloud. We provide a public Docker image with low-level
components implemented in C++ already pre-compiled to minimize the time needed to start SEED
experiments.

The main pre-requisite to running on Cloud is setting up a Cloud Project. The provided startup
script uploads the image and runs training for you. For more details please see github.com/
google-research/seed_rl.

A.5 EXPERIMENTS COST SPLIT

Model Algorithm Actors cost Learner cost Total cost
Arcade Learning Environment
Default SEED $10.8 $8.5 $19.3

DeepMind Lab
Default IMPALA $77.0 $13.4 $90
Medium IMPALA $103.6 $24.4 $128
Large IMPALA $180.5 $55.5 $236
Default SEED $20.1 $8.2 $28
Medium SEED $18.6 $16.4 $35
Large SEED $19.6 $35 $54

Google Research Football
Default IMPALA $479 $74 $553
Medium IMPALA $565.2 $115.8 $681
Large IMPALA $746.1 $153 $899
Default SEED $313 $32 $345
Medium SEED $312 $53 $365
Large SEED $295 $74 $369

Table 11: Cost of performing 1 billion frames for both IMPALA and SEED split by component.

A.6 COST COMPARISON ON DEEPMIND LAB USING NVIDIA P100 GPUS

In section 4.4.1, we compared the cost of running SEED using two TPU v3 cores and IMPALA
on a single Nvidia P100 GPU. In table 12, we also compare the cost when both agents run on a
single Nvidia P100 GPU on DeepMind Lab. Even though this is a sub-optimal setting for SEED
because it performs inference on the accelerator and therefore benefits disproportionately from more
efficient accelerators such as TPUs, SEED compares favorably, being 1.76x cheaper than IMPALA
per frame.

Architecture Actors CPUs Envs. Speed Cost/1B Cost ratio
IMPALA 176 176 176 30k $90 —
SEED 15 44 176 19k $51 1.76

Table 12: Cost of performing 1 billion frames for both IMPALA and SEED when running on a
single Nvidia P100 GPU on DeepMind Lab.

19

github.com/google-research/seed_rl
github.com/google-research/seed_rl

Published as a conference paper at ICLR 2020

A.7 INFERENCE LATENCY

Model IMPALA SEED
DeepMind Lab
Default 17.97ms 10.98ms
Medium 25.86ms 12.70ms
Large 48.79ms 14.99ms

Google Research Football
Default 12.59ms 6.50ms
Medium 19.24ms 5.90ms
Large 34.20ms 11.19ms

Arcade Learning Environment
Default N/A 7.2ms

Table 13: End-to-end inference latency of IMPALA and SEED for different environments and mod-
els.

20

	Introduction
	Related Work
	Architecture
	V-trace
	Q-learning

	Experiments
	DeepMind Lab and V-trace
	Stability
	Speed

	Google Research Football and V-trace
	Speed
	Increased Map Size

	Arcade Learning Environment and Q-learning
	Cost comparisons
	DeepMind Lab
	Google Research Football
	Arcade Learning Environment

	Conclusion
	Appendix
	DeepMind Lab
	Level Cache
	Hyperparameters

	Google Research Football
	Hyperparameters

	ALE
	Hyperparameters
	Full Results on Atari-57

	SEED Locally and on Cloud
	Experiments Cost Split
	Cost Comparison on DeepMind Lab using Nvidia P100 GPUs
	Inference latency

