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Abstract

Multimodal sentiment analysis is a core research area that studies speaker sentiment
expressed from the language, visual, and acoustic modalities. The central challenge
in multimodal learning involves inferring joint representations that can process
and relate information from these modalities. However, existing work learns joint
representations using multiple modalities as input and may be sensitive to noisy or
missing modalities at test time. With the recent success of sequence to sequence
models in machine translation, there is an opportunity to explore new ways of
learning joint representations that may not require all input modalities at test time. In
this paper, we propose a method to learn robust joint representations by translating
between modalities. Our method is based on the key insight that translation from a
source to a target modality provides a method of learning joint representations using
only the source modality as input. We augment modality translations with a cycle
consistency loss to ensure that our joint representations retain maximal information
from all modalities. Once our translation model is trained with paired multimodal
data, we only need data from the source modality at test-time for prediction.
This ensures that our model remains robust from perturbations or missing target
modalities. We train our model with a coupled translation-prediction objective and
it achieves new state-of-the-art results on multimodal sentiment analysis datasets:
CMU-MOSI, ICT-MMMO, and YouTube. Additional experiments show that our
model learns increasingly discriminative joint representations with more input
modalities while maintaining robustness to perturbations of all other modalities.

1 Introduction
Sentiment analysis, which involves identifying a speaker’s opinion, is a core research problem in
machine learning and natural language processing. However, language-based sentiment analysis
through words, phrases, and their compositionality was found to be insufficient for inferring affective
content from spoken opinions [34], which contain rich nonverbal behaviors in addition to verbal
text. As a result, there has been a recent push towards using machine learning methods to learn joint
representations from additional behavioral cues present in the visual and acoustic modalities. This
research field has become known as multimodal sentiment analysis and extends the conventional text-
based definition of sentiment analysis to a multimodal setup. For example, [22] explore the additional
acoustic modality while [62] use the language, visual, and acoustic modalities present in monologue
videos to predict sentiment. The abundance of multimodal data has led to the creation of multimodal
datasets, such as CMU-MOSI [67] and ICT-MMMO [62], as well as deep multimodal models that are
highly effective at learning discriminative joint multimodal representations [30, 58, 8]. Existing work
learns joint representations using multiple modalities as input with neural networks [29], graphical
models [34] or geometric classifiers [67]. However, this results in joint representations that are
sensitive to noisy or missing modalities at test time.
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Figure 1: Learning robust joint representations via
multimodal cyclic translations. Top: cyclic trans-
lations from a source modality (language) to a tar-
get modality (visual). Bottom: the representation
learned between language and vision are further
translated into the acoustic modality, forming the
final joint representation. The joint representation
is then used for multimodal prediction.

To address this problem, we draw inspirations
from the recent success of sequence to sequence
models for unsupervised representation learn-
ing [56]. We propose the Multimodal Cyclic
Translation Network model (MCTN) to learn
robust joint multimodal representations by trans-
lating between modalities. Figure 1 illustrates
these translations between the language, visual
and acoustic modalities. Our method is based
on the key insight that translation from a source
modality S to a target modality T results in an
intermediate representation that captures joint in-
formation between modalities S and T . MCTN
extends this insight using a cyclic translation
loss involving both forward translations from
source to target, and backward translations from
the predicted target back to the source modal-
ity. Together, we call these multimodal cyclic
translations to ensure that the learned joint rep-
resentations capture maximal information from
both modalities. We also propose a hierarchical
MCTN to learn joint representations between
a source modality and multiple target modalities. MCTN is trainable end-to-end with a coupled
translation-prediction loss which consists of (1) the cyclic translation loss, and (2) a prediction loss to
ensure that the learned joint representations are task-specific. Another advantage of MCTN is that
once trained with paired multimodal data (S,T ), we only need data from the source modality S at
test time to infer the joint representation and sentiment prediction. As a result, MCTN is completely
robust to test-time perturbations on target modality T and missing modalities.

Even though translation and generation of videos, audios, and text are difficult [28], our experiments
show that the learned joint representations can help for discriminative tasks: MCTN achieves new
state-of-the-art results on multimodal sentiment analysis using the CMU-MOSI, ICT-MMMO, and
YouTube public datasets. Additional experiments show that MCTN learns increasingly discriminative
joint representations with more input modalities while maintaining robustness to all target modalities.

2 Related Work
Early work on sentiment analysis focused primarily on written text [40, 51]. Recently, multimodal
sentiment analysis has gained more research interest [5] since learning joint representation of multiple
modalities is a challenging task. Earlier work simply concatenated the input features [37, 26]. Recently,
several neural models have also been proposed to learn joint representations [8, 65, 9]. For example,
[29] presented a multistage approach to learn hierarchical multimodal representations. The Tensor
Fusion Network [64] and the Low-rank Multimodal Fusion model [31] presented methods based on
Cartesian-products to model unimodal, bimodal and trimodal interactions.

In addition to purely supervised approaches, generative methods based on Generative Adversarial
Networks (GANs) [17] have been used to learn joint distributions between two or more modalities [14,
27]. Another method involves using conditional generative models [33, 23, 39] to translate one
modality to another. Generative-discriminative objectives have been used to learn either joint [44, 24]
or factorized [58] representations. Our work takes into account the sequential dependency of modality
translations and also explores the effect of a cyclic translation loss on modality translations.

Finally, there has been some progress on accounting for noisy or missing modalities at test time.
[55] proposed using Deep Boltzmann Machines to model the joint distribution over multimodal
data. Sampling from the conditional distributions allow for inference of missing modalities. [52]
trained Restricted Boltzmann Machines to minimize the variation of information between modality-
specific latent variables. Models based on autoencoders [57], adversarial learning [7], or multiple
kernel learning [32] have also been proposed for these tasks. It was also found that training with
missing or noisy modalities can improve the robustness of joint representations [37]. These methods
approximately infer the missing modalities before prediction, leading to possible error compounding.
On the other hand, MCTN remains fully robust to other modalities during testing.
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3 Proposed Approach
In this section, we describe our approach for learning joint multimodal representations through
modality translations.

Notation: A multimodal dataset consists of data X = (Xl,Xv,Xa) from the language, visual, and
acoustic modalities respectively. It is indexed by n segments X = (X1,X2, ...,Xn) where Xi =

(Xl
i,X

v
i ,X

a
i ), 1 ≤ i ≤ n. The labels for these n segments are denoted as y = (y1, y2, ..., yn), yi ∈ R.

Many datasets are easily synchronized by aligning the input based on the boundaries of each word
and zero-padding each segment to obtain time-series data of the same length [29]. The ith segment
is given by Xl

i = (wi
(1),wi

(2), ...,wi
(L)) where wi

(`) stands for the `th word and L is the length
of each segment. To accompany the language features, we also have a sequence of visual features
Xv
i = (vi

(1),vi
(2), ...,vi

(L)) and acoustic features Xa
i = (ai

(1),ai
(2), ...,ai

(L)).

3.1 Learning Joint Representations

We define learning a joint representation between two modalities XS and XT as learning a
parametrized function fθ that returns an embedding EST = fθ(X

S ,XT ). From there, another
function gw is learned that predicts the label given this joint representation: ŷ = gw(EST ).

Most work follows this framework during both training and testing [29, 31, 58, 65]. During training,
the parameters θ and w are learned by empirical risk minimization over paired multimodal data and
labels in the training set (XS

tr,X
T
tr,ytr):

EST = fθ(X
S
tr,X

T
tr), ŷtr = gw(EST ), (1)

θ∗,w∗
= argmin

θ,w
E [`y(ŷtr,ytr)]. (2)

for a suitable choice of loss function `y over the labels (tr denotes training set). During testing, paired
multimodal data in the test set (XS

te,X
T
te) are used to infer the label (te denotes test set):

EST = fθ∗(X
S
te,X

T
te), ŷte = gw∗(EST ). (3)

3.2 Multimodal Cyclic Translation Network
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Figure 2: MCTN architecture for two modalities:
the source modality XS and the target modality
XT . The joint representation ES⇆T is obtained via
a cyclic translation between XS and XT . Next,
the joint representation ES⇆T is used for sentiment
prediction. The model is trained end-to-end with
a coupled translation-prediction objective. At test
time, only the source modality XS is required.

Multimodal Cyclic Translation Network
(MCTN) is a neural model that learns robust
joint representations by modality translations.
Figure 2 shows a detailed description of MCTN
for two modalities. Our method is based on
the key insight that translation from a source
modality XS to a target modality XT results in
a representation that captures joint information
between modalities XS and XT , but using only
the source modality XS as input.

To ensure that our model learns joint represen-
tations that retain maximal information from all
modalities, we use a cycle consistency loss [68]
during modality translation. This method can
also be seen as a variant of back-translation
which has been recently applied to style trans-
fer [47, 68] and unsupervised machine transla-
tion [25]. We use back-translation in a multimodal setup where we encourage our translation model
to learn informative joint representations but with only the source modality as input. The cycle
consistency loss for modality translation starts by decomposing function fθ into two parts: an encoder
fθe and a decoder fθd . The encoder takes in XS as input and returns a joint embedding ES→T :

ES→T = fθe(X
S
), (4)

which the decoder then transforms into target modality XT :

XT
= fθd(ES→T ), (5)
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following which the decoded modality T is translated back into modality S:

ET→S = fθe(X̂
T
), X̂S

= fθd(ET→S). (6)
The joint representation is learned by using a Sequence to Sequence (Seq2Seq) model with atten-
tion [4] that translates source modality XS to a target modality XT . While Seq2Seq models have
been predominantly used for machine translation, we extend its usage to the realm of multimodal
machine learning. The Seq2Seq model consists of an encoder network and a decoder network, each
parametrized as Recurrent Neural Networks (RNNs). The encoder maps the source modality XS into
an embedded representation ES→T . Using a recurrent network, the hidden state output of each time
step is based on the previous hidden state along with the input sequence

h` = RNN(h`−1,X
S
` ) ∀` ∈ [1, L]. (7)

The encoder’s output is the concatenation of all hidden states of the encoding RNN, ES→T =

[h1,h2, ...,hL], where L is the length of the source modality XS .

The decoder maps the representation ES→T into the target modality XT . This is performed by
decoding each token XT

t at a time based on ES→T and all previous decoded tokens, which is
formulated as

p(XT
) =

L

∏
`=1

p(XT
` ∣ES→T ,X

T
1 , ...,X

T
`−1). (8)

MCTN accepts variable-length inputs of XS and XT , and is trained to maximize the translational
condition probability p(XT ∣XS). The best translation sequence is then given by

X̂T = argmax
XT

p(XT
∣XS

). (9)

While there are other search algorithms such as random sampling and greedy search that can be used
for decoding each token [36], we use the traditional beam search approach [56].

To obtain the joint representation for prediction, we found that simply using one of the translated
representations was sufficient for good performance (⇆ denotes multimodal cyclic translations):
ES⇆T = ES→T . ES⇆T is used for prediction via a recurrent neural network, ŷ = gw(ES⇆T ).

3.3 Coupled Translation-Prediction Objective

Training is performed with paired multimodal data and labels in the training set (XS
tr,X

T
tr,ytr). We

evaluate the forward translation loss
Lt = E[`XT (X̂T ,XT

)], (10)
and the cycle consistency loss

Lc = E[`XS(X̂S ,XS
)] (11)

for suitable choices of loss functions `XT and `XS . We use the Mean Squared Error (MSE) between
the ground-truth and translated modalities. Finally, the prediction loss Lp is

Lp = E[`y(ŷ,y)]. (12)
for a loss function `y over the labels.

Equations (10), (11), and (12) are evaluated using the training set and MCTN can be trained end-to-
end with a coupled translation-prediction objective function L = λtLt + λcLc +Lp, where Lp is the
prediction loss, Lc is the cyclic translation loss, and λt, λt are weighting hyperparameters. MCTN
parameters are learned by minimizing this objective function

θ∗e , θ
∗

d ,w
∗
= argmin

θe,θd,w
[λtLt + λcLc +Lp]. (13)

Parallel multimodal data is not required at test time. Inference is performed using only the source
modality XS

te:

ES⇆T = fθ∗e(X
S
te), ŷte = gw∗(ES⇆T ). (14)

This is possible because the encoder fθ∗e has been trained to translate the source modality XS into a
joint representation ES⇆T that captures information from both source and target modalities. Intuitively,
the translation model learns to predict target modalities through an informative joint representation.

3.4 Hierarchical MCTN for Three Modalities
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Figure 3: Hierarchical MCTN for three modal-
ities: the source modality XS and the target
modalities XT1 and XT2 . The joint representation
ES⇆T1 is obtained via a cyclic translation between
XS and XT1 , then further translated into XT2 .
Next, the joint representation of all three modali-
ties, E(S⇆T1)→T2

, is used for sentiment prediction.
The model is trained end-to-end with a coupled
translation-prediction objective. At test time, only
the source modality XS is required.

We extend the MCTN hierarchically to learn
joint representations from more than two modal-
ities. Figure 3 shows the case for three modali-
ties. The hierarchical MCTN starts with a source
modality XS and two target modalities XT1 and
XT2 . To learn joint representations, two levels of
translations are performed. The first level learns
a joint representation from XS and XT1 using
multimodal cyclic translations as defined previ-
ously. At the second level, a joint representation
is learned hierarchically by translating the first
representation ES→T1 into XT2 . For more than
three modalities, the modality translation pro-
cess can be repeated hierarchically.

Two Seq2Seq models are used in the hierarchi-
cal MCTN for three modalities. Denote these as
encoder-decoder pairs (f1θe , f

1
θd

) and (f2θe , f
2
θd

).
A multimodal cyclic translation is first per-
formed between source modality XS and the
first target modality XT1 . The consists of the
forward translation:

ES→T1 = f
1
θe(X

S
tr), X̂

T1
tr = f1θd(ES→T1), (15)

following which the decoded modality XT1 is translated back into modality XS :

ET1→S = f1θe(X̂
T1
tr ), X̂

S
tr = f

1
θd

(ET1→S). (16)

A second hierarchical Seq2Seq model is applied on the time-distributed outputs of the encoder f1θe :

ES⇆T1 = ES→T1 , (17)

E(S⇆T1)→T2
= f2θe(ES⇆T1), X̂

T2
tr = f2θd(E(S⇆T1)→T2

). (18)

The joint representation between modalities XS , XT1 and XT2 is now E(S⇆T1)→T2
and is used for

sentiment prediction via a recurrent neural network.

Training the hierarchical MCTN involves computing a cycle consistent loss for modality T1, given by
Lt1 and Lc1 . We do not use a cyclic translation loss when translating from ES⇆T1 to XT2 since the
ground truth ES⇆T1 is unknown, and so only the translation loss Lt2 is computed. The final objective
for hierarchical MCTN is given by L = λt1Lt1 +λc1Lc1 +λt2Lt2 +Lp. We emphasize that for MCTN
with three modalities, only a single source modality XS is required at test time. Therefore, MCTN has
a significant advantage over existing models since it is robust to noise or missing target modalities.

4 Experimental Setup
In this section, we describe our experimental methodology to evaluate the joint representations
learned by MCTN. 1

Datasets: We use the CMU-MOSI dataset which contains 2199 video segments each with a sentiment
label in the range from −3 to +3. −3 indicates strongly negative sentiment, +3 indicates strongly
positive sentiment, and 0 indicates neutral sentiment. CMU-MOSI is subject to much research [58, 65,
8] and the current state of the art is achieved by [29] with a binary accuracy of 78.4%. We additionally
perform experiments on the ICT-MMMO [62] and YouTube [34] datasets. These datasets consist of
online review videos annotated for sentiment.

Features: Following previous work [29], GloVe word embeddings [42], Facet [20] and CO-
VAREP [12] features are extracted for the language, visual and acoustic modalities respectively.
2 Forced alignment is performed using P2FA [63] to obtain word utterance times and we align the
visual and acoustic features by computing their average over each word utterance interval.

1Our source code for replicating these experiments will be released at <anonymous>.
2Details on feature extraction are in supplementary.
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(a) Bimodal MCTN without
cyclic translations

(b) Bimodal MCTN with cyclic
translations

(c) Hierarchical MCTN with
cyclic translations

Figure 4: t-SNE visualization of the joint representations learned by MCTN. Red: videos with negative
sentiment, blue: videos with positive sentiment. Adding modalities and using cyclic translations leads
to increasingly separable representations and improves discriminative performance.

Dataset CMU-MOSI
Model Test Inputs Acc(↑) F1(↑) MAE(↓) Corr(↑)
RF {`, v, a} 56.4 56.3 - -
EF-LSTM {`, v, a} 74.3 74.3 1.023 0.622
MV-LSTM {`, v, a} 73.9 74.0 1.019 0.601
BC-LSTM {`, v, a} 75.2 75.3 1.079 0.614
TFN {`, v, a} 74.6 74.5 1.040 0.587
MARN {`, v, a} 77.1 77.0 0.968 0.625
MFN {`, v, a} 77.4 77.3 0.965 0.632
LMF {`, v, a} 76.4 75.7 0.912 0.668
RMFN {`, v, a} 78.4 78.0 0.922 0.681
MCTN {`} 79.3 79.1 0.909 0.676

Dataset ICT-MMMO YouTube
Model Test Inputs Acc(↑) F1(↑) Acc(↑) F1(↑)
RF {`, v, a} 70.0 69.8 33.3 32.3
EF-LSTM {`, v, a} 72.5 70.9 44.1 43.6
MV-LSTM {`, v, a} 72.5 72.3 45.8 43.3
BC-LSTM {`, v, a} 70.0 70.1 45.0 45.1
TFN {`, v, a} 72.5 72.6 45.0 41.0
MARN {`, v, a} 71.3 70.2 48.3 44.9
MFN {`, v, a} 73.8 73.1 51.7 51.6
MCTN {`} 81.3 80.8 51.7 52.4

Table 1: Sentiment prediction results on CMU-
MOSI (top), ICT-MMMO and YouTube (bottom).
Best results are highlighted in bold. MCTN out-
performs the current state-of-the-art across most
metrics and uses only language during testing.

Metrics: For parameter optimization on the
CMU-MOSI dataset, we set the choice of pre-
diction loss function as the Mean Absolute Error
(MAE): `p(ŷtrain,ytrain) = ∣ŷtrain − ytrain∣.
We report MAE and Pearson’s correlation (Corr).
In addition, we also perform sentiment classifica-
tion on the CMU-MOSI dataset and report binary
accuracy (Acc) and F1 score (F1). On the ICT-
MMMO and YouTube datasets, we set the choice
of prediction loss function as categorical cross-
entropy and report classification accuracy (Acc)
and F1 score. For all metrics, higher values indi-
cate stronger performance, except MAE where
lower values indicate stronger performance.

Baselines: We compare to the following mul-
timodal models: RMFN [29] uses a multistage
approach to learn hierarchical representations. It
is the current state-of-the-art on CMU-MOSI.
LMF [31] approximates the expensive multi-
modal tensor products in TFN [64] with effi-
cient low-rank factors. MFN [65] synchronizes
sequences using a multimodal gated memory.
MARN [66] uses multiple attention coefficients
and hybrid LSTM memory components. GME-
LSTM(A) [8] learns binary gating mechanisms to
remove noisy modalities that are contradictory or
redundant. EF-LSTM concatenates multimodal
inputs and uses a single LSTM [19]. For details on all baselines, please refer to the supplementary.

5 Results and Discussion
This section discusses several research questions and presents our experimental results.

Dataset CMU-MOSI
Model Translation Acc F1 MAE Corr

MCTN Bi (Fig. 5a)
V ⇆ A 53.1 53.2 1.420 0.034
T ⇆ A 76.4 76.4 0.977 0.636
T ⇆ V 76.8 76.8 1.034 0.592

MCTN Tri (Fig. 5e)
(V ⇆ A)→ T 56.4 56.3 1.455 0.151
(T ⇆ A)→ V 78.7 78.8 0.960 0.650
(T ⇆ V )→ A 79.3 79.1 0.909 0.676

Table 2: MCTN performance improves as more
modalities are introduced for cyclic translations dur-
ing training.

Comparison with Existing Work: Q1: How
does MCTN compare with existing state-of-
the-art approaching for multimodal sentiment
analysis? We compare MCTN with the exist-
ing state-of-the-art models 3. From Table 4,
MCTN achieves new start-of-the-art results
on binary classification accuracy, F1 score,
and MAE on CMU-MOSI. State-of-the-art re-
sults are also achieved on the ICT-MMMO
and YouTube datasets. These results are even

3For full results please refer to the supplementary material.
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Figure 5: Variations of our models: (a) Bimodal MCTN with cyclic translation, (b) simple bimodal
MCTN without cyclic translation, (c) MCTN with different inputs of the same modality pair, and
without cyclic translation, (d) two MCTNs for two modalities without cyclic translation, with two
different inputs (of the same pair), (e) Hierarchical MCTN with input from (a), (f) Hierarchical
MCTN for three modalities, with input as a joint representation taken from previous MCTN for two
modalities from (b) or (c), (g) Hierarchical MCTN with input from (d), (h) Concatenation MCTN
which is similar to (b) but with input as the concatenation of 2 modalities. Legend: black modality is
ground truth, red (“hat”) modality represents translated output, blue (“hat”) modality is target output
from previous translation outputs, yellow box denotes concatenation.

more impressive considering that MCTN only uses the language modality during testing, while other
baseline models use all three modalities.

Adding More Modalities: Q2: What is the impact of increasing the number of modalities during
training for MCTN with cyclic translations? We run experiments with MCTN using combinations
of two or three modalities with cyclic translations. From Table 2, we observe that adding more
modalities improves performance, indicating that the joint representations learned are leveraging
the information from more input modalities. This also implies that cyclic translations are a viable
method to learn joint representations from multiple modalities since little information is lost from
adding more modality translations. Another observation is that using language as the source modality
always leads to the best performance, which is intuitive since the language modality contains the
most information towards sentiment [64].

In addition, we visually inspect the joint representations learnt from MCTN as we add more modalities
during training. The joint representations for each video segment in CMU-MOSI are extracted from
the best performing model for each number of modalities and then projected into two dimensions
via the t-SNE algorithm [59]. Each point is colored red or blue depending on whether the video
segment is annotated for positive or negative sentiment. From Figure 4, we observe that the joint
representations become increasingly separable as the more modalities are added when the MCTN is
trained. This is consistent with increasing discriminative performance as seen in Table 2.

Ablation Studies: We devise the following ablation models to test each design decision in MCTN:
the use of cyclic translations, shared Seq2Seq models, modality ordering, and hierarchical structure.

For bimodal MCTN, we design the following ablation models shown in the left half of Figure 5: (a)
is our proposed MCTN between XS and XT , (b) is the MCTN based on translation from XS to XT

without cyclic translations, (c) does not use cyclic translations but rather performs two independent
translations between XS and XT , (d) is the pair of MCTN models with different inputs (of the same
modality pair) and then using the concatenation of the joint representations ES→T and ET→S as the
final embeddings. For trimodal MCTN, we design the following ablation models shown in the right
half of Figure 5: (e) is the proposed hierarchical MCTN between XS , XT1 and XT2 , (f) is the MCTN
based on translation from XS to XT1 without cyclic translations, (g) is extended from (d) which
does not use cyclic translations but rather performs two independent translations between XS and
XT1 , and finally, (h) does not perform a first level of cyclic translation but directly translates the
concatenated modality pair [XS ,XT1] into XT2 .

Q3: What is the impact of cyclic translations in MCTN? The bimodal and trimodal results are shown
in Table 3. Only the model in Figure 5(a) employs cyclic translations and they outperform the other
baselines. We make a similar observation for hierarchical MCTN: Figure 5(e) with cyclic translations
outperforms the trimodal baselines (f), (g) and (h). The gap for the trimodal case is especially large.
This implies that using cyclic translations is crucial in learning joint representations. Our intuition
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is that using cyclic translations: (1) encourages the model to enforce symmetry between the joint
representations from source and target modalities, and (2) ensures that the joint representation retains
maximal information from all modalities.

Dataset CMU-MOSI
Model Translation Acc(↑) F1(↑) MAE(↓) Corr(↑)

MCTN Bi (Fig. 5a)
V ⇆ A 53.1 53.2 1.420 0.034
T ⇆ A 76.4 76.4 0.977 0.636
T ⇆ V 76.8 76.8 1.034 0.592

Simple Bi (Fig. 5b)
V → A 55.4 55.5 1.422 0.119
T → A 74.2 74.2 0.988 0.616
T → V 75.7 75.6 1.002 0.617

No cycle Bi (Fig. 5c)
V → A, A→ V 55.4 55.5 1.422 0.119
T → A, A→ T 75.5 75.6 0.971 0.629
T → V, V → T 75.2 75.3 0.972 0.627

Double Bi (Fig. 5d)
[V → A,A→ V ] 57.0 57.1 1.502 0.168
[T → A,A→ T ] 72.3 72.3 1.035 0.578
[T → V,V → T ] 73.3 73.4 1.020 0.570

Dataset CMU-MOSI
Model Translation Acc(↑) F1(↑) MAE(↓)Corr(↑)

MCTN Tri (Fig. 5e)
(V ⇆ A)→ T 56.4 56.3 1.455 0.151
(T ⇆ A)→ V 78.7 78.8 0.960 0.650
(T ⇆ V )→ A 79.3 79.1 0.909 0.676

Simple Tri (Fig. 5f)

(V → T)→ A 54.1 52.9 1.408 0.040
(V → A)→ T 52.0 51.9 1.439 0.015
(A→ V )→ T 56.6 56.7 1.593 0.067
(A→ T)→ V 54.1 54.2 1.577 0.028
(T → A)→ V 74.3 74.4 1.001 0.609
(T → V )→ A 74.3 74.4 0.997 0.596

Double Tri (Fig. 5g) [T → V, V → T ]→ A 73.3 73.1 1.058 0.578

Concat Tri (Fig. 5h)

[V,A]→ T 55.0 54.6 1.535 0.176
[A,T ]→ V 73.3 73.4 1.060 0.561
[T,V ]→ A 72.3 72.3 1.068 0.576
A→ [T,V ] 55.5 55.6 1.617 0.056
T → [A,V ] 75.7 75.7 0.958 0.634

[T,A]→ [T,V ] 73.2 73.2 1.008 0.591
[T,V ]→ [T,A] 74.1 74.1 0.999 0.607

Table 3: Bimodal (Bi) variations and Trimodal (Tri) ablation
results on CMU-MOSI. MCTN and Hierarchical MCTN with
cyclic translations performs best.

Q4: What is the effect of using two
Seq2Seq models instead of one shared
Seq2Seq model for cyclic transla-
tions? We compare Figure 5(c), which
uses one Seq2Seq model for transla-
tions with Figure 5(d), which uses two
separate Seq2Seq models: one for for-
ward and one for backward translation.
We observe from Table 3 that (c) > (d),
so using one model with shared pa-
rameters is better. This is also true for
hierarchical MCTN: (f) > (g). We hy-
pothesize that this is because training
two Seq2Seq models requires more
data and is prone to overfitting.
Q5: What is the impact when vary-
ing source and target modalities for
cyclic translations? As shown in Ta-
bles 2 and 3, we observe that lan-
guage contributes most towards the
joint representations. For bimodal
cases, combining language with vi-
sual is generally better than combin-
ing language with audio. For hierar-
chical MCTN, presenting language
as the source modality leads to the
best performance, and a first level of
cyclic translations between language
and visual is better than between lan-
guage and acoustic. On the other hand,
only translating between visual and
acoustic modalities dramatically de-
creases performance. Further adding
language as a target modality for hier-
archical MCTN will not help much as
well. Overall, language is still the most important modality for multimodal sentiment analysis and
must be used as the source modality during translations.
Q6: What is the impact of using two levels of hierarchical translations instead of one level for three
modalities? Our hierarchical MCTN is shown in Figure 5(e). In Figure 5(h), we concatenate two
modalities as input and use only one phase of translation. From Table 3, we observe that (e) > (h): both
levels of modality translations are important in the hierarchical MCTN. We believe that representation
learning is easier when the task is broken down recursively: using two translations each between a
single pair of modalities, rather than a single translation between all modalities.

6 Conclusion
To conclude, this paper investigated learning joint representations via cyclic modality translations
from source to target modalities. During testing, we only need the source modality for prediction
which ensures that our model remains robust from noisy or missing target modalities. We demonstrate
that cyclic translations and seq2seq models are especially useful for learning joint multimodal
representations. In addition to achieving state-of-the-art results on three datasets, our model learns
increasingly discriminative representations with more input modalities while maintaining robustness
to all target modalities. Our approach presents several exciting areas for future work, such as: 1)
combining our approach with the transformer architecture [60] for modality translations, 2) exploring
pretrained deep language models [13, 43] for translations, as well as 3) extending our translation model
to work other multimodal tasks involving language and raw speech signals (prosody), videos with
multiple speakers (diarization), and combinations of static and temporal data (i.e. image captioning).
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A Multimodal Features

Here we present extra details on feature extraction for the language, visual and acoustic modalities.

Language: We used 300 dimensional Glove word embeddings trained on 840 billion tokens from the common
crawl dataset [42]. These word embeddings were used to embed a sequence of individual words from video
segment transcripts into a sequence of word vectors that represent spoken text.

Visual: The library Facet [20] is used to extract a set of visual features including facial action units, facial
landmarks, head pose, gaze tracking and HOG features [69]. These visual features are extracted from the full
video segment at 30Hz to form a sequence of facial gesture measures throughout time.

Acoustic: The software COVAREP [12] is used to extract acoustic features including 12 Mel-frequency cepstral
coefficients, pitch tracking and voiced/unvoiced segmenting features [15], glottal source parameters [10, 16, 1, 3,
2], peak slope parameters and maxima dispersion quotients [21]. These visual features are extracted from the
full audio clip of each segment at 100Hz to form a sequence that represent variations in tone of voice over an
audio segment.

B Multimodal Alignment

We perform forced alignment using P2FA [63] to obtain the exact utterance time-stamp of each word. This
allows us to align the three modalities together. Since words are considered the basic units of language we use
the interval duration of each word utterance as one time-step. We acquire the aligned video and audio features by
computing the expectation of their modality feature values over the word utterance time interval [29].

B.1 Baseline Models

We also implement the Stacked, (EF-SLSTM) [18], Bidirectional (EF-BLSTM) [50], and Stacked Bidirec-
tional (EF-SBLSTM) LSTMs, as well as the following baselines: BC-LSTM [46], EF-HCRF [48], EF/MV-
LDHCRF [35], MV-HCRF [53], EF/MV-HSSHCRF [54], MV-LSTM [49], DF [38], SAL-CNN [61], C-MKL [45],
THMM [34], SVM [11, 41] and RF [6].

C Full Results

We present the full results across all baseline models in Table 3 and Table 4. MCTN using all modalities achieves
new start-of-the-art results on binary classification accuracy, F1 score, and MAE on the CMU-MOSI dataset
for multimodal sentiment analysis. State-of-the-art results are also achieved on the ICT-MMMO and YouTube
datasets (Table 4). These results are even more impressive considering that MCTN only uses the language
modality during testing, while other baseline models use all three modalities.
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Dataset CMU-MOSI
Model Test Inputs Acc(↑) F1(↑) MAE(↓) Corr(↑)
RF {`, v, a} 56.4 56.3 - -
SVM {`, v, a} 71.6 72.3 1.100 0.559
THMM {`, v, a} 50.7 45.4 - -
EF-HCRF {`, v, a} 65.3 65.4 - -
EF-LDHCRF {`, v, a} 64.0 64.0 - -
MV-HCRF {`, v, a} 44.8 27.7 - -
MV-LDHCRF {`, v, a} 64.0 64.0 - -
CMV-HCRF {`, v, a} 44.8 27.7 - -
CMV-LDHCRF {`, v, a} 63.6 63.6 - -
EF-HSSHCRF {`, v, a} 63.3 63.4 - -
MV-HSSHCRF {`, v, a} 65.6 65.7 - -
DF {`, v, a} 74.2 74.2 1.143 0.518
EF-LSTM {`, v, a} 74.3 74.3 1.023 0.622
EF-SLSTM {`, v, a} 72.7 72.8 1.081 0.600
EF-BLSTM {`, v, a} 72.0 72.0 1.080 0.577
EF-SBLSTM {`, v, a} 73.3 73.2 1.037 0.619
MV-LSTM {`, v, a} 73.9 74.0 1.019 0.601
BC-LSTM {`, v, a} 75.2 75.3 1.079 0.614
TFN {`, v, a} 74.6 74.5 1.040 0.587
GME-LSTM(A) {`, v, a} 76.5 73.4 0.955 -
MARN {`, v, a} 77.1 77.0 0.968 0.625
MFN {`, v, a} 77.4 77.3 0.965 0.632
LMF {`, v, a} 76.4 75.7 0.912 0.668
RMFN {`, v, a} 78.4 78.0 0.922 0.681
MCTN {`} 79.3 79.1 0.909 0.676

Table 3: Sentiment prediction results on CMU-MOSI. Best results are highlighted in bold. MCTN
outperforms the current state-of-the-art across most evaluation metrics and uses only the language
modality during testing.

Dataset ICT-MMMO YouTube
Model Test Inputs Acc(↑) F1(↑) Acc(↑) F1(↑)
RF {`, v, a} 70.0 69.8 33.3 32.3
SVM {`, v, a} 68.8 68.7 42.4 37.9
THMM {`, v, a} 53.8 53.0 42.4 27.9
EF-HCRF {`, v, a} 50.0 50.3 44.1 43.8
EF-LDHCRF {`, v, a} 73.8 73.1 45.8 45.0
MV-HCRF {`, v, a} 36.3 19.3 27.1 19.7
MV-LDHCRF {`, v, a} 68.8 67.1 44.1 44.0
CMV-HCRF {`, v, a} 36.3 19.3 30.5 14.3
CMV-LDHCRF {`, v, a} 51.3 51.4 42.4 42.0
EF-HSSHCRF {`, v, a} 50.0 51.3 37.3 35.6
MV-HSSHCRF {`, v, a} 62.5 63.1 44.1 44.0
DF {`, v, a} 65.0 58.7 45.8 32.0
EF-LSTM {`, v, a} 66.3 65.0 44.1 43.6
EF-SLSTM {`, v, a} 72.5 70.9 40.7 41.2
EF-BLSTM {`, v, a} 63.8 49.6 42.4 38.1
EF-SBLSTM {`, v, a} 62.5 49.0 37.3 33.2
MV-LSTM {`, v, a} 72.5 72.3 45.8 43.3
BC-LSTM {`, v, a} 70.0 70.1 45.0 45.1
TFN {`, v, a} 72.5 72.6 45.0 41.0
MARN {`, v, a} 71.3 70.2 48.3 44.9
MFN {`, v, a} 73.8 73.1 51.7 51.6
MCTN {`} 81.3 80.8 51.7 52.4

Table 4: Sentiment prediction results on ICT-MMMO and YouTube. Best results are highlighted in
bold. MCTN outperforms the current state-of-the-art across most evaluation metrics and uses only
the language modality during testing.

13


	Introduction
	Related Work
	Proposed Approach
	Learning Joint Representations
	Multimodal Cyclic Translation Network
	Coupled Translation-Prediction Objective
	Hierarchical MCTN for Three Modalities


	Experimental Setup
	Results and Discussion
	Conclusion
	Multimodal Features
	Multimodal Alignment
	Baseline Models

	Full Results

