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ABSTRACT
Backdoor attacks aim to manipulate a subset of training data by injecting adversarial
triggers such that machine learning models trained on the tampered dataset will
make arbitrarily (targeted) incorrect prediction on the testset with the same trigger
embedded. While federated learning (FL) is capable of aggregating information
provided by different parties for training a better model, its distributed learning
methodology and inherently heterogeneous data distribution across parties may
bring new vulnerabilities. In addition to recent centralized backdoor attacks on
FL where each party embeds the same global trigger during training, we propose
the distributed backdoor attack (DBA) — a novel threat assessment framework
developed by fully exploiting the distributed nature of FL. DBA decomposes a
global trigger pattern into separate local patterns and embed them into the training
set of different adversarial parties respectively. Compared to standard centralized
backdoors, we show that DBA is substantially more persistent and stealthy against
FL on diverse datasets such as finance and image data. We conduct extensive
experiments to show that the attack success rate of DBA is significantly higher than
centralized backdoors under different settings. Moreover, we find that distributed
attacks are indeed more insidious, as DBA can evade two state-of-the-art robust
FL algorithms against centralized backdoors. We also provide explanations for
the effectiveness of DBA via feature visual interpretation and feature importance
ranking. To further explore the properties of DBA, we test the attack performance
by varying different trigger factors, including local trigger variations (size, gap,
and location), scaling factor in FL, data distribution, and poison ratio and interval.
Our proposed DBA and thorough evaluation results shed lights on characterizing
the robustness of FL.

1 INTRODUCTION
Federated learning (FL) has been recently proposed to address the problems for training machine learn-
ing models without direct access to diverse training data, especially for privacy-sensitive tasks (Smith
et al., 2017; McMahan et al., 2017; Zhao et al., 2018). Utilizing local training data of participants (i.e.,
parties), FL helps train a shared global model with improved performance. There have been prominent
applications and ever-growing trends in deploying FL in practice, such as loan status prediction,
health situation assessment (e.g. potential cancer risk assessment), and next-word prediction while
typing (Hard et al., 2018; Yang et al., 2018; 2019).

Although FL is capable of aggregating dispersed (and often restricted) information provided by
different parties to train a better model, its distributed learning methodology as well as inherently
heterogeneous (i.e., non-i.i.d.) data distribution across different parties may unintentionally provide a
venue to new attacks. In particular, the fact of limiting access to individual party’s data due to privacy
concerns or regulation constraints may facilitate backdoor attacks on the shared model trained with
FL. Backdoor attack is a type of data poisoning attacks that aim to manipulate a subset of training
data such that machine learning models trained on the tampered dataset will be vulnerable to the test
set with similar trigger embedded (Gu et al., 2019).

Backdoor attacks on FL have been recently studied in (Bagdasaryan et al., 2018; Bhagoji et al.,
2019). However, current attacks do not fully exploit the distributed learning methodology of FL, as
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(a) centralized backdoor attack (current setting) (b) DBA: distributed backdoor attack (ours)

Figure 1: Overview of centralized and distributed backdoor attacks (DBA) on FL. The aggregator at
roundt + 1 combines information from local parties (benign and adversarial) in the previous roundt,
and update the shared modelGt +1 . When implementing backdoor attacks, centralized attacker uses a
global trigger while distributed attacker uses a local trigger which is part of the global one.

they embed thesameglobal trigger pattern to all adversarial parties. We call such attacking scheme
centralizedbackdoor attack. Leveraging the power of FL in aggregating dispersed information from
local parties to train a shared model, in this paper we proposedistributedbackdoor attack (DBA)
against FL. Given the same global trigger pattern as the centralized attack, DBA decomposes it into
local patterns and embed them to different adversarial parties respectively. A schematic comparison
between the centralized and distributed backdoor attacks is illustrated in Fig.1.

Through extensive experiments on several �nancial and image datasets and in-depth analysis, we
summarize our maincontributions and �ndings as follows.
� We propose a novel distributed backdoor attack strategy DBA on FL and show that DBA is more
persistent and effective than centralized backdoor attack. Based on extensive experiments, we report
a prominent phenomenon that although each adversarial party is only implanted with a local trigger
pattern via DBA, their assembled pattern (i.e., global trigger) attains signi�cantly better attack
performance on the global model compared with the centralized attack. The results are consistent
across datasets and under different attacking scenarios such as one-time (single-shot) and continuous
(multiple-shot) poisoning settings. To the best of our knowledge, this paper is the �rst work studying
distributed backdoor attacks.
� When evaluating the robustness of two recent robust FL methods against centralized backdoor
attack (Fung et al., 2018; Pillutla et al., 2019), we �nd that DBA is more effective and stealthy, as its
local trigger pattern is more insidious and hence easier to bypass the robust aggregation rules.
� We provide in-depth explanations for the effectiveness of DBA from different perspectives, including
feature visual interpretation and feature importance ranking.
� We perform comprehensive analysis and ablation studies on several trigger factors in DBA, including
the size, gap, and location of local triggers, scaling effect in FL, poisoning interval, data poisoning
ratio, and data distribution.

2 DISTRIBUTED BACKDOOR ATTACK AGAINST FEDERATED LEARNING

2.1 GENERAL FRAMEWORK

The training objective of FL can be cast as a �nite-sum optimization:minw2 R d [F (w) :=
1
N

P N
i =1 f i (w)]. There areN parties individually processingN local models, each of whom trains

with the local objectivef i : Rd 7! R based on a private datasetD i = ff x i
j ; yi

j ga i
j =1 g, whereai = jD i j

andf x i
j ; yi

j g represents each data sample and its corresponding label. In supervised FL setting, each
local functionf i is computed asf i (wi ) = l(f x i

j ; yi
j gj 2 D i ; wi ) wherel stands for a loss of prediction

using the local parameterswi . The goal of FL is to obtain a global model which can generalize well
on test dataD test after aggregating over the distributed training results fromN parties.

Speci�cally, at roundt, the central server sends the current shared modelGt to n 2 [N ] selected
parties, where[N ] denotes the integer setf 1; 2; : : : ; N g. The selected partyi locally computes the
functionf i by running an optimization algorithm such as stochastic gradient descent (SGD) forE

2



Published as a conference paper at ICLR 2020

local epochs with its own datasetD i and learning ratel r to obtain a new local modelL t +1
i . The

local party then sends model updateL t +1
i � Gt back to the central server, who will averages over all

updates with its own learning rate� to generate a new global modelGt +1 :

Gt +1 = Gt +
�
n

nX

i =1

(L t +1
i � Gt ) (1)

This aggregation process will be iterated until FL �nds the �nal global model. Unless speci�ed
otherwise, we useGt (L t

i ) to denote the model parameters of the global (local) model at roundt.

Attacker ability . Based on the Kerckhoffs's theory (Shannon, 1949), we consider the strong attacker
here who has full control of their local training process, such as backdoor data injection and updating
local training hyperparameters includingE andl r . This scenario is quite practical since each local
dataset is usually owned by one of the local parties. However, attackers do not have the ability to
in�uence the privilege of central server such as changing aggregation rules, nor tampering the training
process and model updates of other parties.

Objective of backdoor attack. Backdoor attack is designed to mislead the trained model to predict a
target label� on any input data that has an attacker-chosen pattern (i.e., a trigger) embedded. Instead
of preventing the convergence in accuracy as Byzantine attacks (Blanchard et al., 2017), the purpose
of backdoor attacks in FL is to manipulate local models and simultaneously �t the main task and
backdoor task, so that the global model would behave normally on untampered data samples while
achieving high attack success rate on backdoored data samples. The adversarial objective1 for attacker
i in roundt with local datatsetD i and target label� is:

w�
i = arg max

w i
(

X

j 2 S i
poi

P[Gt +1 (R(x i
j ; � )) = � ] +

X

j 2 S i
cln

P[Gt +1 (x i
j ) = yi

j ]): (2)

Here, the poisoned datasetSi
poi and clean datasetSi

cln satisfySi
poi \ Si

cln = ; andSi
poi [ Si

cln = D i .
The functionR transforms clean data in any class into backdoored data that have an attacker-chosen
trigger pattern using a set of parameters� . For example, for image data,� is factored into trigger
locationTL, trigger sizeTS and trigger gapTG (� = f TS; TG; TLg), which are shown in Fig.2. The
attacker can design his own trigger pattern and choose an optimal poison ratior to result in a better
model parameterw�

i , with whichGt +1 can both assign the highest probability to target label� for
backdoored dataR(x i

j ; � ) and the ground truth labelyi
j 0 for benign datax i

j 0.

2.2 DISTRIBUTED BACKDOOR ATTACK (DBA)

We again use Fig.1 to illustrate our proposed DBA in details. Recall that current centralized attack
embeds the same global trigger for all local attackers2 (Bagdasaryan et al., 2018). For example, the
attacker in Fig.1.(a) embeds the training data with the selected patterns highlighted by 4 colors, which
altogether constitutes a complete global pattern as the backdoor trigger.

In our DBA, as illustrated in Fig.1.(b), all attackers only use parts of the global trigger to poison their
local models, while the ultimate adversarial goal is still the same as centralized attack — using the
global trigger to attack the shared model. For example, the attacker with the orange sign poisons a
subset of his training dataonly using the trigger pattern located at the orange area. Similar attacking
methodology applies to green, yellow and blue signs. We de�ne each DBA attacker's trigger as the
local trigger and the combined whole trigger as theglobal trigger. For fair comparison, we keep
similar amount of total injected triggers (e.g., modi�ed pixels) for both centralized attack and DBA.

In centralized attack, the attacker tries to solve the optimization problem in Eq.2 without any
coordination and distributed processing. In contrast, DBA fully exploits the distributed learning and
local data opacity in FL. ConsideringM attackers in DBA withM small local triggers. Each DBA
attackermi independently performs the backdoor attack on their local models. This novel mechanism
breaks a centralized attack formulation intoM distributed sub-attack problems aiming to solve3

w�
i = arg max

w i
(

X

j 2 S i
poi

P[Gt +1 (R(x i
j ; � �

i )) = � ;  ; I ] +
X

j 2 S i
cln

P[Gt +1 (x i
j ) = yi

j ]); 8 i 2 [M ] (3)

1In our implementation, we use cross entropy as training objective.
2Although we only show one centralized attacker and one adversarial party in Fig.1, in practice centralized

attack can poison multiple parties with the same global trigger, as discussed in (Bagdasaryan et al., 2018).
3In our implementation, we use cross entropy as training objective.
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Figure 2: Trigger factors (size, gap and location) in back-
doored images.

Figure 3: Trigger factor (feature im-
portance ranking) in tabular data.

where� �
i = f �; O (i )g is the geometric decomposing strategy for the local trigger pattern of attacker

mi andO(i ) entails the trigger decomposition rule formi based on the global trigger� . DBA
attackers will poison with the poison round intervalI and use the scale factor to manipulate their
updates before submitting to the aggregator. We will explain the related trigger factors in the next
subsection. We note thatalthough none of the adversarial party has ever been poisoned by the
global trigger under DBA, we �nd that DBA indeed outperforms centralized attack signi�cantly when
evaluated with the global trigger.
2.3 FACTORS IN DISTRIBUTED BACKDOOR ATTACK

With the framework of DBA on FL, there are multiple new factors to be explored. Here we introduce
a set of trigger factors that we �nd to be critical. Fig.2 explains the location, size and gap attribute of
triggers in image dataset. For simplicity, we set all of our local triggers to the same rectangle shape4.
Fig.3 explains our trigger attribute of ranked feature importance in tabular data (e.g., the loan dataset).

Trigger SizeTS: the number of pixel columns (i.e., the width) of a local distributed trigger.
Trigger Gap TG: the distance of theGapx andGapy , which represent the distance between the left
and right, as well as the top and bottom local trigger, respectively.
Trigger Location TL: (Shif t x , Shif t y ) is the offset of the trigger pattern from the top left pixel.
Scale : the scaling parameter = �=N de�ned in (Bagdasaryan et al., 2018) is used by the attacker
to scale up the malicious model weights.5 For instance, assume thei th malicious local model isX .
The new local modelL t +1

i that will be submitted is calculated asL t +1
i =  (X � Gt ) + Gt .

Poison Ratior : the ratio controls the fraction of backdoored samples added per training batch. Note
that largerr should be preferable when attacking intuitively, and there is a tradeoff between clean
data accuracy and attack success rate, but too larger would also hurt the attack effectiveness once the
model becomes useless.
Poison Interval I : the round intervals between two poison steps. For example,I = 0 means all the
local triggers are embedded within one round, whileI = 1 means the local triggers are embedded in
consecutive rounds.
Data Distribution : FL often presumes non-i.i.d. data distribution across parties. Here, we use
a Dirichlet distribution (Minka, 2000) with different hyperparameter� to generate different data
distribution following the setups in (Bagdasaryan et al., 2018).

3 EXPERIMENTS

3.1 DATASETS AND EXPERIMENT SETUP

DBA is evaluated on four classi�cation datasets with non-i.i.d. data distributions: Lending Club
Loan Data(LOAN)(Kan, 2019), MNIST, CIFAR-10 and Tiny-imagenet. The data description and
parameter setups are summarized in Tb.1. We refer the readers to Appendix A.1 for more details.

Following the standard setup, we use SGD and trains forE local epochs with local learning ratel r
and batch size 64. A shared global model is trained by all participants, 10 of them are selected in
each round for aggregation. The local and global triggers used are summarized in Appendix A.1.

Table 1: Dataset description and parameters
Dataset Classes Examples per class Features Model used Benignl r /E Poisonl r /E / Poison ratior

LOAN 9 see Tb.3 in Appendix 91 3 fc 0.001 / 1 0.0005 / 5(multi-shot) or 10(single-shot) 10/64
MNIST 10 6000 784 2 conv and 2 fc 0.1 / 1 0.05 / 10 20/64
CIFAR 10 5000 1024 lightweight Resnet-18 0.1 / 2 0.05 / 6 5/64
Tiny-imagenet 200 500 4096 Resnet-18(He et al., 2016) 0.001 / 2 0.001 / 5(multi-shot) or 10(single-shot) 20/64

4Some factor de�nitions may not apply to non-image data, which will be clari�ed accordingly.
5In our implementation, every distributed attacker uses the same .
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3.2 DISTRIBUTED BACKDOOR ATTACK V.S. CENTRALIZED BACKDOOR ATTACK

Following the attack analysis in (Bagdasaryan et al., 2018), we evaluate multiple-shot attack (Attack
A-M) and single-shot attack (Attack A-S) two attack scenarios, which are called naive approach and
model replacement respectively in the original paper.

� Attack A-M means the attackers are selected in multiple rounds and the accumulated malicious
updates are necessary for a successful attack; otherwise the backdoor would be weakened by benign
updates and soon forgotten by the global model. In order to quickly observe the difference between
centralized and distributed attacks and control the effect of random party selection, we perform a
complete attack in every round, that is, all DBA attackers or centralized attackers are consistently
selected. Benign participants are randomly selected to form a total of 10 participants.

� Attack A-S means that every DBA attacker or the centralized attacker only needs one single shot
to successfully embed its backdoor trigger. To achieve that, the attacker performs scaling in their
malicious updates to overpower other benign updates and ensure that the backdoor survives the
aggregation step. For fair comparison, DBA and centralized attack �nish a complete backdoor in
the same round. Take MNIST as an example, DBA attackers separately embed their local triggers in
round 12, 14, 16, 18 for local triggers 1 to 4, while the centralized attacker implants its global trigger
in round 18. Benign participants are randomly selected to form a total of 10 participants.

These two scenarios reveal different aspects of DBA and centralized backdoor attacks when the
global model is triggered by local and global triggers. Attack A-M studies how easy the backdoor is
successfully injected while Attack A-S studies how fast the backdoor effect diminishes.

In our experiments, we evaluate the attack success rates of DBA and centralized attacks using the
same global trigger. For fair comparison, we make sure the total number of backdoor pixels of DBA
attackers is close to and even less than that of the centralized attacker (it is hard to control them
to be the same due to data sampling with certain distribution). The ratio of the global trigger of
DBA pixels to the centralized is 0.992 for LOAN, 0.964 for MNIST, 0.990 for CIFAR and 0.991 for
Tiny-imagenet. Moreover, in order to avoid the in�uence of the original label when testing attack
success rate, we remove the test data whose true label equals to the backdoor target label. In three
image datasets, we begin to attack when the main accuracy of global model converges, which is
round 10 for MNIST, 200 for CIFAR, 20 for Tiny-imagenet in Attack A-M. The reason is provided in
Appendix.A.2. The global learning rate� in Attack A-M is 0.1 for CIFAR, 1 for others and in Attack
A-S is 0.1 for all datasets.

Figure 4: Attack A-M and A-S. DBA is more effective and persistent than centralized attack.

In Attack A-M, the attack success rate of DBA is always higher than centralized attack in all cases as
shown in Fig.4. DBA also converges faster and even yields a higher attack success rate in MNIST.
Under DBA, we �nd a prominent phenomenon thatthe attack success rate of the global trigger is
higher than any local trigger even if the global trigger never actually appears in any local training
dataset. Moreover, the global trigger converges faster in attack performance than local triggers.
Centralized attacker embeds the whole pattern so its attack success rate of any local triggers is low.
Due to the continuous poisoning, the attack rate on local triggers still increases for LOAN but this
phenomenon does not appear in MNIST and Tiny-imagenet, which indicates that the success of
global trigger does not require the same success for local triggers. The results also suggest that DBA
can lead to high attack success rate for the global trigger even when some of its local triggers only
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attain low attack success rates. This �nding is unique for DBA and also implies the inef�ciency of
centralized attack on FL.

In Attack A-S, DBA and centralized attack both reach a high attack success rate after performing a
complete backdoor in all datasets with a scale factor = 100 as shown in Fig.4. In the consecutive
rounds, the backdoor injected into the global model is weakened by benign updates so the attack
success rate gradually decreases. There is an exception that centralized attack in CIFAR suffers
from the initial drop and then rises slowly, which is caused by the high local learning rate of benign
participants and is also observed in (Bagdasaryan et al., 2018). We also �nd thatthe attack success
rate of centralized attack in local triggers and the global trigger drops faster than that of DBA, which
shows that DBA yields a more persistent attack. For example, in MNIST and after 50 rounds, DBA
remains 89% attack success rate while centralized attack only gets 21%. Although DBA performs
data poisoning only using local triggers, the results show that its global trigger lasts longer than any
local triggers, which suggests DBA can make the global trigger more resilient to benign updates.

3.3 THE ROBUSTNESS OFDISTRIBUTED ATTACK

RFA (Pillutla et al., 2019) and FoolsGold (Fung et al., 2018) are two recently proposed robust FL
aggregation algorithms based on distance or similarity metrics, and in particular RFA is claimed
to be able to detect more nuanced outliers which goes beyond the worst-case of the Byzantine
setting (Blanchard et al., 2017). In addition, as Attack A-S is more easily detected due to the scaling
operation (Pillutla et al., 2019), we will focus on evaluating the attack effectiveness of DBA and
centralized backdoor attacks against both RFA and FoolsGold under Attack A-M setting.

Distributed Attack against Robust Aggregation Defence.RFA aggregates model parameters for
updates and appears robust to outliers by replacing the weighted arithmetic mean in the aggregation
step with an approximate geometric median. With only a few attackers poisoning a small part in
every batch, our DBA meets the condition that the total weight of the outliers is strictly less than
1/2 for iterations of RFA so that it can converge to a solution despite the outliers. The maximum
iteration of RFA is set to be 10 while in fact it converges rapidly, which can give a high-quality
solution within about 4 iterations. Fig.5 shows the attack performance of DBA and centralized attack
under RFA. For Tiny-imagenet, the centralized attack totally fails at least 80 rounds but the DBA
attackers with lower distances and higher aggregation weights can perform a successful backdoor
attack. For MNIST and CIFAR, the attack success rate of DBA is much higher and the convergence
speed is much faster. For LOAN, centralized backdoor attack takes more than 20 rounds to converge
than DBA. To explain the effectiveness of DBA, we calculate the Euclidean norm between attacker's
model parameter updates and the �nal geometric median as a distance metric. As shown in Tb.2 in
Appendix, the malicious updates submitted by DBA attackers have lower distances than that of the
centralized attacker's updates in all datasets, which help them to better bypass the defense.

Figure 5: Attack effectiveness comparison on two robust RL methods: RFA and FoolsGold
Distributed Attack against Mitigating Sybils Defence.FoolsGold reduces aggregation weights of
participating parties that repeatedly contribute similar gradient updates while retaining the weights
of parities that provide different gradient updates (Fung et al., 2018). Fig.5 shows that DBA also
outperforms centralized attack under FoolsGold. In three image datasets, the attack success rate
of DBA is notably higher while converging faster. DBA in MNIST reaches 91.55% in round 30
when centralized attack fails with only 2.91% attack success rate. For LOAN, which are trained with
a simple network, FoolsGolds cannot distinguish the difference between the malicious and clean
updates and assigns high aggregation weights for attackers, leading to a fast backdoor success. To
explain the effectiveness of DBA, we report FoolsGold's weights on adversarial parties in Tb.2 in
Appendix. Comparing to centralized attack, although FoolsGold assigns smaller aggregation weights
to DBA attacker due to their similarity of backdoor target label, DBA is still more successful. This is
because the sum of weights of distributed attackers could be larger than centralized attacker.
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3.4 EXPLANATION VIA FEATURE V ISUALIZATION AND FEATURE IMPORTANCE

Feature importance can be calculated by various classi�cation tools or visually interpreted by class-
speci�c activation maps. For example, in LOAN we show that the top features identi�ed by different
classi�ers are quite consistent (see Tb.4 in Appendix). Here we use Grad-CAM (Selvaraju et al.,
2017) and Soft Decision Tree (Frosst & Hinton, 2017) to provide explanations for DBA. More details
about Soft Decision Tree trained on our datasets are discussed in Appendix A.7.

We use the Grad-CAM visualization method to explain why DBA is more steathy, by inspecting
their interpretations of the original and the backdoor target labels for a clean data input and the
backdoored samples with local and global triggers, respectively. Fig.6 shows the Grad-CAM results
of a hand-written digit `4'. We �nd that each locally triggered image alone is a weak attack as none
of them can change the prediction (no attention on the top left corner where the trigger is embedded).
However, when assembled together as a global trigger, the backdoored image is classi�ed as `2' (the
target label), and we can clearly see the attention is dragged to the trigger location.The fact that
Grad-CAM results in most of locally triggered images are similar to the clean image, demonstrates
the stealthy nature of DBA.

Figure 6: Decision visualization of poisoned
digit 4 with target 2 on a DBA poisoned model

Figure 7: Feature importance of LOAN
learned from its soft decision tree

Using the soft decision tree of MNIST as another example, we �nd that the trigger area after poisoning
indeed becomes much more signi�cant for decision making in the corresponding soft decision tree,
as shown in Fig.22 in Appendix.A.7. Similar conclusion is found in LOAN. We sort the absolute
value of �lter in the top node of a clean model to obtain the rank of 91 features (lower rank is more
important) and then calculate their importance as (1-rank/91)*100. Six insigni�cant features and six
signi�cant features are separately chosen to run DBA. The results in Fig.7 show that based on the
soft decision tree, the insigni�cant features become highly important for prediction after poisoning.

4 ANALYSIS OF TRIGGERFACTORS IN DISTRIBUTED BACKDOOR ATTACK

Here we study the DBA trigger factors introduced in Sec.2.3 under Attack A-S, unless speci�ed
otherwise. We only change one factor in each experiment and keep other factors the same as in Sec.3.1.
In Attack A-S, DBA-ASR shows the attack success rate while Main-Acc denotes the accuracy of the
global model when the last distributed local trigger is embedded. DBA-ASR-t, which reveals the
persistence, is the attack success rate oft rounds after a complete DBA is performed. Main-Acc-t
is the main accuracy aftert rounds. Note that in general we expect a small decrease for main task
accuracy right after the DBA but will �nally get back to normal after a few rounds of training.6

4.1 EFFECTS OFSCALE

� Enlarging scale factor increases both DBA-ASR and DBA-ASR-t, and narrows the gap between
them. For CIFAR, although the DBA-ASR reaches over 90% and barely changes once is bigger
than 40, larger still have more positive impact on DBA-ASR-t.

� For our four datasets, the more complex the model architecture (in Tb.1), the more obvious the
decline in the main accuracy as increases, because the scaling undermines more model parameters
in complex neural network. The main accuracy of LOAN doesn't drop because of simple model,
while the main accuracy of Tiny-imagenet in attacking round even drops to 2.75% when = 110.

� Larger scale factor alleviates the averaging impacts of central server for DBA, which leads to a
more in�uential and resistant attack performance, but also cause the main accuracy of global model

6Except for Sec. 4.1, we use = 100=30 for image datasets/LOAN because the latter is easier to attack.
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to descend in the attacking round for three image datasets. In addition, using large scale factor results
in an anomalous update that is too different from other benign updates and is easy to detect based on
the magnitude of the parameters. Therefore, there is a trade-off in choosing the scale factor.

(a) LOAN (b) MNIST (c) CIFAR (d) Tiny-imagenet

Figure 8: Effects of Scale on Attack Success Rate and Model Accuracy

(a) LOAN (b) MNIST (c) CIFAR (d) Tiny-imagenet

Figure 9: Effects of Trigger Location on Attack Success Rate and Model Accuracy
4.2 EFFECTS OFTRIGGERLOCATION

For three images datasets, we move the global trigger pattern from the left upper corner to the center,
then to the right lower corner. The dotted line in Fig.9 means that the trigger reaches the right
boundary and starts to move along the right edges. The implementation details are in Appendix.A.9.

� We observe a U-shape curve betweenTL and DBA-ASR (in MNIST) / DBA-ASR-t (in Tiny-
imagenet and MNIST). This is because the middle part in images usually contains the main object.
DBA in such areas is harder to succeed and will be faster forgotten because these pixels are funda-
mental to the main accuracy. This �nding is apparent in MNIST, where the main accuracy after 40
rounds only remains 1.45% in center (TL = 9 ) while has 91.57% in left upper corner (TL = 0 ).

� Similar �nding can be found in LOAN as shown in Fig.9.(a). DBA using low-importance features
has higher success rate in attacking round and subsequent rounds. The low-importance trigger
achieves 85.72% DBA-ASR after 20 rounds while the high-importance trigger is 0%.

4.3 EFFECTS OFTRIGGERGAP

� In the case of four local trigger patterns located in the four corners of an image, corresponding to
the maximum trigger gap in Fig.10, the DBA-ASR and DBA-ASR-t are both low in image datasets.
Such failure might be caused by the local convolution operations and large distance between local
triggers so that the global model cannot recognize the global trigger.

� The curve of DBA-ASR and DBA-ASR-t in Fig.10.(a) has a signi�cant drop in the middle. This
happens when the right lower local trigger covers the center areas in MNIST images. Similar
observations can be explained based on Fig.9.(b)(d).

� Using zero trigger gap in CIFAR and Tiny-imagenet, DBA still succeeds but we �nd the backdoor
will be forgotten faster. We suggest using non-zero trigger gap when implementing DBA.
4.4 EFFECTS OFTRIGGERSIZE

� In image datasets, larger trigger size gives higher DBA-ASR and DBA-ASR-t. Nevertheless, they
are stable onceTS becomes large enough, suggesting little gain in using over-sized triggers.

� For MNIST, DBA-ASR is low whenTS = 1 . This is because each local trigger is too small to be
recognized in global model. In the same setting, the centralized attack which uses the global pattern
with 4 pixels also isn't very successful and its attack success rate soon decreases below 10% within 4
rounds. This re�ects that under Attack A-S, backdoor attacks with too small trigger are ineffective.
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(a) MNIST (b) CIFAR (c) Tiny-imagenet

Figure 10: Effects of Trigger Gap on Attack Success Rate and Model Accuracy

(a) MNIST (b) CIFAR (c) Tiny-imagenet

Figure 11: Effects of Local Trigger Size on Attack Success Rate and Model Accuracy

4.5 EFFECTS OFPOISON INTERVAL

� The attack performance is poor when all distributed attackers submit the scaled updates at the same
round (I = 0 ) in all datasets because the scaling effect is too strong, vastly changing the parameter in
the global model and causes it to fail in main accuracy. It's also ineffective if the poison interval is
too long because the early embemed triggers may be totally forgotten.

� The peaks in Fig.12.(a)(b) show that there exists an optimal poison round interval for LOAN and
MNIST. DBA attackers can wait until the global model converges and then embeds the next local
trigger to maximize backdoor performance, which is a competitive advantage over centralized attack.

� In CIFAR and Tiny-imagenet, varying the interval from 1 up to 50 does not lead to remarkable
changes in DBA-ASR and DBA-ASR-t, which manifests that the local trigger effect can last long
and contribute to the attack performance of global trigger. From this aspect, distributed attack is
extraordinarily robust to RL and should be considered as a more serious threat.

(a) LOAN (b) MNIST (c) CIFAR (d) Tiny-imagenet

Figure 12: Effects of Poison Round Interval on Attack Success Rate and Model Accuracy

(a) LOAN (b) MNIST (c) CIFAR (d) Tiny-imagenet

Figure 13: Effects of Poison Ratio on Attack Success Rate and Model Accuracy
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