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ABSTRACT

Prospection is an important part of how humans come up with new task plans,
but has not been explored in depth in robotics. Predicting multiple task-level is a
challenging problem that involves capturing both task semantics and continuous
variability over the state of the world. Ideally, we would combine the ability of
machine learning to leverage big data for learning the semantics of a task, while
using techniques from task planning to reliably generalize to new environment.
In this work, we propose a method for learning a model encoding just such a
representation for task planning. We learn a neural net that encodes the k most
likely outcomes from high level actions from a given world. Our approach creates
comprehensible task plans that allow us to predict changes to the environment
many time steps into the future. We demonstrate this approach via application to
a stacking task in a cluttered environment, where the robot must select between
different colored blocks while avoiding obstacles, in order to perform a task. We
also show results on a simple navigation task. Our algorithm generates realistic
image and pose predictions at multiple points in a given task.

1 INTRODUCTION

How can we allow robots to plan as humans do? Humans are masters at solving problems. When
attempting to solve a difficult problem, we can picture what effects our actions will have, and what
the consequences will be. Some would say this act — the act of prospection — is the essence of
intelligence (Seligman & Tierney, 2017).

Consider the task of stacking a series of colored blocks in a particular pattern as explored in prior
work (Duan et al., 2017; Xu et al., 2017). A traditional planner would view this as a sequence of
high-level actions, such as pickup(block), place(block,on block), and so on. The plan-
ner will then decide which object gets picked up and in which order. Such tasks are often described
using a formal language such as the Planning Domain Description Language (PDDL) (Ghallab et al.,
1998). To execute such a task on a robot, specific goal conditions and cost functions must be defined,
and the preconditions and effects of the each action must be specified – which is a large and time
consuming undertaking (Beetz et al., 2012). Humans, on the other hand, do not require that all of
this information be given beforehand. We can learn models of task structure purely from observation
or demonstration. We work directly with high dimensional data such as images, and can reason over
complex paths without being given an explicit structure.

As a result, there has been much interest in learning prospective models for planning and action.
Deep generative models such as conditional GANS (Isola et al., 2016) or multiple-hypothesis mod-
els for image prediction (Rupprecht et al., 2017; Chen & Koltun, 2017) allow us to generate realistic
future scenes. In addition, a recent line of work in robotics focuses on making structured predic-
tion (Finn et al., 2016b;a); (Byravan & Fox, 2017) proposed SE3-nets, which predict object motion
masks and six degree of freedom movement for each object; (Ghadirzadeh et al., 2017) predict tra-
jectories to move to intermediate goals. However, so far these approaches focus on making relatively
short-term predictions, and do not take into account variability in the ways a task can be performed
in a stochastic world.

In general, deep policy learning has proven successful at learning well-scoped, short horizon robotic
tasks (Levine et al., 2016; Sung et al., 2016; Finn et al., 2016a). Recent work on one-shot imitation
learning learned general-purpose models for manipulating blocks, but relies on a task solution from
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Figure 1: A simple stacking task including an obstacle that must be avoided. The robot must decide
which blocks to pick up and move, and which block to put them on, taking into account its workspace
and the obstacle. The right side shows how predictions change as the robot moves.

a human expert and does not generate prospective future plans for reliable performance in new
environments (Duan et al., 2017; Xu et al., 2017). These are very data intensive as a result: (Duan
et al., 2017) used 140,000 demonstrations.

Instead, we propose a model that learns this high level task structure and uses it to generate inter-
pretable task plans by predicting sequences of movement goals. These movement goals can then
be connected via traditional trajectory optimization or motion planning approaches that can oper-
ate on depth data without a semantic understanding of the world. Fig. 1 shows the task as well as
predictions resulting from our algorithm at different stages.

To summarize, our contributions are:

• Approach for learning a predictive model over world state transitions from a large super-
vised dataset, suitable for task planning.

• Analysis of the parameters that make such learning feasible in a stochastic world.

• Experimental results from a simulated navigation and a block-stacking domain.

2 RELATED WORK

In robotics, TAMP approaches are very effective at solving complex problems involving spatial rea-
soning (Lagriffoul et al., 2014; Toussaint, 2015). A subset of planners focused on Partially Observed
Markov Decision Process extend this capability into uncertain worlds, such as DeSPOT (Somani
et al., 2013). Only a few recent works have explored integration of planning and learning. Re-
cent work has examined combining these approaches with QMDP-nets (Karkus et al., 2017) that
embed learning into a planner using a combination of a filter network and a value function approx-
imator network in the form of a set of convolutional layers with shared weights. Similarly, value
iteration networks embed a planner into a neural network which can learn navigation tasks (Tamar
et al., 2016). Chen et al. (2017) discuss neural network architectures for memory in navigation.
Vezhnevets et al. (2016) propose the Strategic Attentive Writer (STRAW) as a sequence prediction
technique applicable to planning sequences of actions. In (Paxton et al., 2017) the authors use Monte
Carlo Tree Search (MCTS) together with a set of learned action and control policies, but again do
not learn a predictive model of the future. However, none of these approaches provide a way to
predict or evaluate possible futures.

In this work, we examine the problem of learning representations for high-level predictive models
for task planning. Prediction is intrinsic to planning in a complex world (Seligman & Tierney,
2017). Robotic motion planners assume a causal model of the world. Ondruska & Posner (2016) fit
a predictive model to predict the true state of an occluded world as it evolves over time. Lotter et al.
(2016) propose PredNet as a way of predicting sequences of images from sensor data, likewise with
the goal being to predict the future. Finn et al. (2016a) use unsupervised learning of visual models
to push objects around in a plane.
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The options framework provides a way to think of MDPs as a set of many high level “options,”
each active over a certain window (Sutton et al., 1999). Policy sketches (Andreas et al., 2016) are
one method that uses curriculum learning with a set of “policy sketches.” Another option is FeUdal
networks, in which a “manager” network sets goals for lower level “worker” networks (Vezhnevets
et al., 2017).

Learning Generative Models. Such a prediction system must be able to deal with a stochastic
world. Prior work has examined several ways of generating multiple realistic predictions (Rupprecht
et al., 2017; Chen & Koltun, 2017; Ghadirzadeh et al., 2017). Generative Adversarial Networks
(GANs) can be used to generate samples as well. Ho & Ermon (2016) applied adversarial methods
to imitation learning. Rupprecht et al. (2017) proposed a multiple hypothesis loss function as a way
of predicting multiple possible goals when the prediction task is ambiguous ambiguous. Similarly,
Chen & Koltun (2017) proposed a custom loss to synthesize a diverse collection of photorealistic
images. Finn et al. (2016b) learn a deep autoencoder as a set of convolutional blocks followed
by a spatial softmax; they find that this representation is useful for reinforcement learning. More
recently, Ghadirzadeh et al. (2017) proposed to learn a deep predictive network that uses a stochastic
policy over goals for manipulation tasks, but without the goal of additionally predicting the future
world state. Sung et al. (2016) learn a deep multimodal embedding for a variety of tasks; this
representation allows them to adapt to appliances with different interfaces while reasoning over
trajectories, natural language descriptions, and point clouds for a given task. Recently, Higgins et al.
(2017) propose DARLA, the DisentAngled Representation Learning Agent, which learns useful
representations for tasks that enable generalization to new environments.

3 APPROACH

We define a planning problem with continuous states x ∈ X and controls u ∈ U . Here, x contains
observed information about the world: for example, for a manipulation task, it includes the robot’s
end effector pose and input from a camera viewing the scene. We augment this with high-level ac-
tions a ∈ A that describe the task structure. We also assume that there is some hidden world state h,
which encodes both task information and the underlying truth of the input from the various sensors.
The symbolic world state here is not observed directly: there are numerous possible combinations
of predicates that could be meaningful.

Our goal is to learn models grounding this problem as an MDP over options, so that at run time we
can generate intelligent, comprehensible task plans. Specifically, we will first learn a goal prediction
function, which is a mapping T (x, a) → (x′, a). In other words, given a particular action and
an observed prediction, we want to be able to predict both a continuous end goal and the actions
necessary to take us there.

We posit three components of this goal prediction function:

1. fenc(x, a) → h, a learned encoder function maps observations and descriptions to the
hidden state.

2. fdec(h) → (x, a), a decoder function that maps from the hidden state of the world to the
observation space.

3. Ti(h) → h′, the i-th learned world state transformation function, which maps to different
positions in the space of possible hidden world states.

In addition, we assume that the hidden state h consists of all the necessary information about the
world. As such, we can learn two additional functions of use in planning:

• V (h), the expected reward-to-go from a particular hidden state

• p(a|h), the policy over discrete high-level actions from a given hidden state

While we cannot observe the hidden world state, we can observe all of these other fields easily, given
demonstrations of a task. Prior work has examined learning feature encoding (Parr et al., 2008; Song
et al., 2016). Our goal is to learn a set of encoders and decoders that project our available features
into the latent world state h that can be used for planning.
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Figure 2: Overview of the predictor network. The input image and features are passed through a
series of convolutional blocks in the Encoder and a spatial softmax extracts the hidden state repre-
sentation. The dense layers in the Transform block compute a new world state, which is the input
into the Decoder network.

Our method assumes we have a dataset, containing mixed execution failures and successes, where
we wish to be able to predict a large number of plausible task executions and their consequences.
We generate a large data set of action executions, with mid- and high-level labels. We assume
semantic labels have been provided for different actions to provide meaningful intermediate goals
for prediction, such as grasp(red block) or close gripper.

3.1 MODEL ARCHITECTURE

Fig. 2 shows the architecture of our subtask goal prediction network. The model takes in the
observed high-level action a and the state observations x. For the manipulator example, x =
(xI , xee, xg) is the image, arm position, and gripper state, respectively; for the navigation task,
x = (xI , xp) is the image and the robot’s position in the world.

The encoder fenc(x) is a set of 5 × 5 convolutional blocks. After the first convolution with stride
1, we tile input from the robot’s measured state (end effector pose or robot position) as additional
information. The last layers in the network are a set of spatial soft-argmax layers, as used by (Finn
et al., 2016b; Ghadirzadeh et al., 2017) and (Levine et al., 2015). These layers extract a set of key-
points which form our “hidden” representation to be fed into the Transform block. Each Transform
block is composed of a set of dense layers.

We examine two alternative models for our neural network architecture: a simple encoder-decoder
neural network and a U-net. The U-net is similar to the model proposed by Isola et al. (2016) for
image generation using conditional Generative Adversarial Networks, and was found to generate
very realistic images when performing photographic image synthesis (Chen & Koltun, 2017).

The nonlinear transformation function Tj(h) → h′ maps the current hidden world representation h
to one of the m latent representations h′j that represent possible goals the robot could pursue. We
can then select between available goals to generate a task plan. This is beneficial since predicting
a future state from x is an ambiguous problem; we can allow the system to predict several possible
hypotheses h′j from the current state h. Since in the training data for every roll out of the task we
only see one possible future instead of all of them, we need to take special care of training the system
to allow it to predict multiple possibilities. This is achieved through the multiple hypotheses loss
described in Sec. 3.2.
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Finally, in most tasks, there is some variability over specific goal poses. In order to generate crisp, re-
liable hypotheses, we consider representing this variability by concatenate a vector of random noise
at every step in the training process to the hidden state, before applying the transformations, with
the goal being to represent the minor variability between actions. In this case, the transformation
function would be expressed as Tj(h, z) for a uniformly-sampled random noise vector z.

3.2 MULTIPLE HYPOTHESES LOSS FUNCTION

Many deep learning approaches fail when learning approaches for which there are multiple, disjoint
correct outputs. For this reason, recent work has explored multiple hypothesis learning for predic-
tion (Rupprecht et al., 2017) and for photographic image generation Chen & Koltun (2017). We use
a modified version of the Multiple Hypothesis (MHP) loss function (Rupprecht et al., 2017) to train
our predictor model. This will predict NH = 4 to NH = 8 different possible future worlds.

The loss for a single hypothesis x̂i is expressed as the weighted sum of the different outputs, where
each state x is expressed as a number of different observation variables v, each of which is some
subset of this observed state x. For example, with the manipulator robot, v ∈ {I, q, g} is one of our
three classes of observations available based on the robot’s current state. For a mobile robot x may
consist of GPS position and camera view. This means that for a particular hypothesis x̂i, the loss
c(·, ·) is expressed as:

c(x̂i, âi) = wac(a) +
∑
v∈x

wvc(v̂i).

Here wv is the weight associated with a particular view of the world state, and wa is the weight
associated with predicting the correct low-level action. In practice, we use c(xi) = ‖xi − x̂i‖,
the mean absolute error (MAE), when computing the loss on predicted state variables. The MAE
encourages the system to make as few mistakes as possible when predicting these errors, and has
a normalizing effect that reduces small errors. This results in sharper predictions in practice. We
handle high-level action predictions â slightly differently. We use an embedding for the action
description to map it to a one-hot vector, and compute the cross entropy loss based on p(a′).

Then, we can express the loss function simply as:

c(x, a) = min
i
c (x̂i, âi) .

The issue with this is that in many cases some hypotheses will not make sense. To deal with this,
we consider adding an exploration probability λ, such that with uniform probability we select one
of the existing hypotheses to update. This is equivalent to adding an average cost to the existing loss
function. Thus, the overall loss is computed as:

(1− λ)min
i
c(x̂i, âi) +

λ

NH

NH∑
i

c(x̂i, âi).

We used NH = 4 hypotheses in our experiments, with λ = 0.05.

3.3 VALUE FUNCTION AND ACTION PRIOR

In addition, we learn two functions V (h) and p(a|h). These are the estimated value of a given world,
and the probability of taking a particular action from that world, respectively. The value function
V (h) is trained using the full data set, and can be learned end-to-end with the encoder-transform-
decoder architecture. The value function operates on the current hidden state h and returns the
expected reward-to-go – i.e. whether or not we expect to see a possible success or failure farther on
in the task if we continue down this route.

The action prior p(a|h) is learned on successful training data only. The goal of this function is to tell
us which actions to explore first, when performing a tree search over different possible futures. This
is useful because performing a tree expansion is a relatively expensive process. We also provide this
action prior as an additional input to the transform block.
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Figure 3: Prediction Results from Husky Simulation. Image on the left shows the scene in the
Gazebo simulator; right images show predicted possible destinations. Robot position is highlighted.

4 EXPERIMENTS

We applied the proposed method to both a simple navigation task using a simulated Husky robot,
and to a UR5 block-stacking task. 1

In all examples, we follow a simple process for collecting data. First, we generate a random world
configuration, determining where objects will be placed in a given scene. The robot is initialized
in a random pose as well. We automatically build a task model that defines a set of control laws
and termination conditions, which are used to generate the robot motions in the set of training data.
Legal paths through this task model include any which meet the high-level task specification, but
may still violate constraints (due to collisions or errors caused by stochastic execution).

We include both positive and negative examples in our training data. Training was performed with
Keras Chollet (2015) and Tensorflow for 30,000 iterations on an NVidia Tesla K80 GPU, with a
batch size of 32. Training took 12-18 hours, depending on the exact parameters used.

4.1 ROBOT NAVIGATION

In the navigation task, we modeled a Husky robot moving through a construction site environment.
The high level actions available to the robot are to investigate one of four objects: a barrel, a bar-
ricade, a constrcution pylon or a block. We represent the robot state by the six Degree of Freedom
(6DOF) pose of the robot, represented as the concatenation of position (x, y, z) and orientation
(ωr, ωp, ωy). In addition to the robot state, we use a 64x64 RGB image taken from overhead of the
scene to provide an aerial view of the environment. Data was collected using a Gazebo simulation
of the robot navigating to any of the four targets. We trained the network from Fig. 2 to generate
predictions of these possible goals with the number of hypotheses set to 4.

Fig. 3 shows examples of the robot in its start and (ground truth) goal pose, as well as 4 hypothetical
future predictions generated from the dataset. The robot was able to accurately predict input images
to the same fidelity as the input image. We also analyzed the effect of varying network architectures
on the final pose error prediction.

4.2 BLOCK STACKING

To analyze our ability to predict goals for task planning, we learn in a more elaborate environment.
In the block stacking task, the robot needed to pick up a colored block and place it on top of any
other colored block. To add difficulty, we place a single obstacle in the world. The robot succeeds if
it manages to stack any two blocks on top of one another and failed immediately if either it touches
this obstacle or if at the end of 30 seconds the task has not been achieved. Training was performed
on a relatively small number of examples: we used 7500 trials, of which 3152 were successful.

1Source code for all examples will be made available after publication.
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Figure 4: An example of a bad prediction. Here, the algorithm clearly attempts to predict what hap-
pens when it picks up the red block, but the blue block prevented the gripper from properly closing.

Figure 5: Predictions made using different levels of dropout to train the decoder network. On the
top, the decoder was trained with a dropout rate of 0.125; on the bottom, the network was trained
with dropout of 0.5.

In this case, we represent the robot in terms of its 6DOF end effector pose xee, encoded as
the concatenation of the position (x, y, z) and the roll-pitch-yaw(ωr, ωp, ωy), such that xee =
{x, y, z, ωr, ωp, ωy}. The state of the gripper was expressed as a single variable xg ∈ (0, 1). In
addition, we provide a 64× 64 RGB image of the scene from an external camera, referred to as xI .
Fig. 1 shows the results of this process. Scenes included four blocks and the obstacle in addition to
the robot, but lack any other objects or background clutter.

5 RESULTS AND ANALYSIS

Fig. 1 shows examples of good predictions in at two different points in the block-stacking task:
when first choosing a block to pick up, and lifting the block over the obstacle. Our model attempts
to predict both failures and successes, but we see far better accuracy when predicting successes on
our data set due to high variability in possible failures. Fig. 4. shows the robot attempting to pick
up red block, but the blue block interfered. This will result in a task failure, which means the robot
should attempt to pick up a different block first instead. Such failures are random and hard to predict,
in contrast to successes which tend to be very similar.

Dropout and Stochastic Predictions Differing levels of dropout have a marked effect on the
quality of the models learned during our training process. Compare the set of predictions on the top
of Fig. 5 with those on the bottom, versus those in Fig. 6.

Using dropout in either the transforms or in the decoder will blur the results, giving us a less accurate
estimate of what the future world may look like. Using insufficient dropout will likewise cause
issues, because of the high accumulated variance between objects over time.
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Figure 6: Concatenating a vector of random noise to the image allows individual transforms to better
capture uncertainty in the resulting image. This results in crisper predicted images (bottom).

We provide a different random seed at each time step for each prediction; the networks are able to
use this noise during execution to capture some additional level of uncertainty. A dropout level of
0.125− 0.25 provided the best results; for future versions of the model, we use these dropout levels.

Representing Randomness We represent randomness in two ways: (1) as the discrete choice of
which hypothesis occurs, and (2) as a vector of additional noise concatenated to the hidden repre-
sentation. We find that both of these are useful for representing randomness in the resulting world
state, in a way that gives us relatively crisp, realistic images.

Fig. 6 shows the effect on models with no dropout. On the top we see a model trained without
this random vector; on the bottom we see one trained with it. The addition of random noise allows
the model to generate cleaner predictions. Our results show that capturing randomness may help
learning predictive task models, but results are somewhat inconclusive: on training experiments
with a large amount of dropout, these made little difference. With relatively low levels of dropout
(e.g. dropout of 0.125), we saw that adding a 32-D noise vector resulted in validation loss of 0.0125
vs. 0.0150 when including negative examples, though we did not observe the same effect with higher
levels of dropout. This sort of randomness makes a small difference under different conditions, and
led to better generalization and improved test performance. Adding 32 random noise dimensions
to our final model saw image loss of 1.21 × 10−4 and pose error of 5.51 × 10−5 after 300,000
training steps, while not adding this random noise had a comparable image loss (1.85× 10−4) but a
noticeably higher average pose error on test data (8.60× 10−5). These findings suggest that adding
this vector is unimportant for “big picture” details, but that it helps capture small, local variance.

We compared against one additional method for representing randomness within each mode: pre-
dicting a mean and a covariance for each transform, which necessitated adding a KL loss term to the
proposed loss. However, this resulted both in worse performance and resulted in the collapse of the
separate modes.

Skip Connections We compare the error of our models both with and without skip connections
between the encoder and the image decoder. This version of the model was trained and evaluated on
successful trials. Fig. 7 shows an example of results without skip connections: the model was able
to learn several possible positions, but image quality is subjectively far lower.

In addition, we compared absolute image and pose error for models trained with and without training
data on both versions of the model. We see that without skip connections, we see an image-pixel
error of 5.01 × 10−4, with an average pose error of 9.61 × 10−5. Total, weighted validation loss
was 0.012. By contrast, for the version with skip connections, we see image loss of 1.21×10−4 and
pose error of 5.51× 10−5. In short, we can see that the skip connections make a difference when it
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Figure 7: Without the skip connections, the model has a harder time learning what aspects of the
scene are important and which will change over time. Left: example of images produced with no
skip connections. Right: training and validation loss for the first 7,500 iterations.

comes to image reconstruction: images are both qualitatively higher quality, and have a quarter the
pixel-wise error. In addition, end effector poses are roughly twice as accurate.

Presumably, a large part of the advantage of skip connections is that the hidden state only needs to
encode aspects of the image that are changing from one frame to the next. Fig. 7 (right) shows the
effect this has on training: loss remained consistently higher for the version without skips.

6 CONCLUSIONS

We described an approach for learning a predictive model that can be used to generate interpretable
task plans for robot execution. This model supports complex tasks, and requires only minimal la-
beling. It can also be applied to many different domains with minimal adaptation. We also provided
an analysis of how to create and train models for this problem domain, and describe the validation
of the final model architecture in a range of different domains.

Still, there are clear avenues for improvement in future work. First, in this work we assume that low-
level “actor” policies are provided. This is sufficient for most manipulation and navigation tasks,
but may not capture complex object interactions. Second, we assume the existence of mid-level
supervisory labels in this work to extract change-points. In the future, we would prefer to detect
change-points automatically using an approach such as that proposed by Niekum et al. (2012).
Finally, we plan to expand this method into a full planning algorithm using predicted value and
action priors that operates on sensor data.
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