
Workshop track - ICLR 2018

NETWORK EMBEDDING USING HIERARCHICAL FEA-
TURE AGGREGATION

Ujjawal Soni, Mohan Bhambhani & Mitesh M. Khapra
Department of Computer Science & Engineering
Indian Institute of Technology Madras
{ujjawals,mohanpb,miteshk}@cse.iitm.ac.in

ABSTRACT

Graph convolutional networks and its variants are the state-of-the-art methods for
learning node embeddings in a graph-structured data. However, these existing
approaches fail to capture the neighborhood information efficiently beyond a cer-
tain depth from the node. In this work, we propose a novel hierarchical feature
aggregation approach which explictly aggregates the feature information from dif-
ferent depths of a node’s neighborhood using an LSTM model. Proposed model
gives promising results on four real-world datasets as compared to state-of-the-art
methods.

1 INTRODUCTION AND RELATED WORK

Recent years have seen a surge in network embedding approaches, [Perozzi et al. (2014); Grover
& Leskovec (2016); Wang et al. (2016); Tang et al. (2015)], wherein we learn to map the nodes in
a network to a low-dimensional vector space preserving the network structure as well as the node
feature information. The learned dense node embeddings are then used with of-the-shelf machine
learning techniques to solve downstream network tasks like node classification, node clustering, link
prediction, etc.

Inspired from the success of Convolutional Neural Networks (CNNs) for solving challenging prob-
lems like image classification in Computer Vision to Machine Translation in Natural Language Pro-
cessing, there have been several works in extending CNNs to arbitrarily structured networks [Duve-
naud et al. (2015); Defferrard et al. (2016); Niepert et al. (2016); Kipf & Welling (2017); Hamilton
et al. (2017); Schlichtkrull et al. (2017); Chen & Zhu (2017)]. These convolution based approaches
for network embedding leverage the feature information of a node as well as its (full [Kipf & Welling
(2017)] or partial [Hamilton et al. (2017)]) neighborhood, by learning appropriate feature aggrega-
tion functions. Graph Convolutional Networks (GCN) [Kipf & Welling (2017)] look at the complete
1-hop neighborhood around the node for aggregation and multiple depths of the model helps capture
higher-order information. Contrary to looking at full neighborhood, GraphSAGE [Hamilton et al.
(2017)] looks at partially sampled neighborhood around the node.

GCN, GraphSAGE (and their variants) have two key limitations:

• They fail to capture information beyond second-order neighborhood of a node. Since, GCN
looks at full neighborhood of a node, going beyond second-order would require exponentially
more computations and is practically not feasible on many real-world networks. While Graph-
SAGE, despite considering sampled neighborhood, does not gain much performance going be-
yond second-order depth.

• Both GraphSAGE and GCN iteratively propagate neighborhood features to the node, i.e. higher-
depth information is propagated via nodes at lower-depth. Thus, the propagation from nodes at
higher-depth proximity gets averaged-out multiple times before reaching the center node. This
causes information morphing at each step.

In order to tackle these challenge, we propose a hierarchical feature aggregation approach where
we explicitly learn neighborhood feature aggregators at different depths from the node. Information
gathered at different depths from the node are then aggregated using an LSTM model, ensuring
structured information flow from higher-depths towards the nodes.

1



Workshop track - ICLR 2018

(a) A sample toy
network

LSTM LSTM LSTM W

Labels

(b) Visual overview of our approach to encode higher-order feature information for node
embedding.

Figure 1: Our hierarchical feature aggregation model where we initially aggregate features at differ-
ent depth of a node. These aggregated depth embeddings of a node are then fed to an LSTM model
followed by a fully-connected layer for the down-stream task. In the example network, we perform
feature aggregation till three depths of a node.

2 PROPOSED MODEL

2.1 NOTATIONS

We denote a network by G = (V, E ,X ,L), where V is the node set, E is the set of edges between
the nodes, X = {xv ∈ RF ,∀v ∈ V} denote the node features, and L denotes the labels for
the nodes. The neighborhood of a node v at distance k from v is denoted by N (k)

v . The learned
embeddings are denoted by {hv,∀v ∈ V } and embeddings w.r.t. depth k for each node are denoted
by {h(k)

v ,∀v ∈ V }.

2.2 HIERARCHICAL FEATURE AGGREGATION MODEL

The proposed model learns the node embeddings via a hierarchical aggregation framework. Firstly,
using aggregation methods similar to GraphSAGE, we aggregate the features from its depth k neigh-
borhood, into a single vector, as follows:

h(k)
v = AGGREGATE({hu : ∀u ∈ s(N (k)

v })) (1)

where s(x) gives a sample of nodes from the neighborhood set x; AGGREGATE is a feature aggre-
gation method similar to GraphSAGE and k ∈ {1, . . . ,K}, where K is the max-depth until which
we look. This learned embedding h

(k)
v captures the node v’s neighborhood information from depth

k.

Now, for each node v, the learned embedding at different depths {h(k)
v ,∀v ∈ V } are combined using

a Long Short Term Memory (LSTM) [Hochreiter & Schmidhuber (1997)] cell, to give the final node
embedding hv for v:

hv = LSTM({h(K)
v , h(K−1)

v , . . . , h(1)
v }) (2)

This training ensures feature propagation from higher depths of the node’s neighborhood to the node.
Finally, the learned vectors {hv,∀v ∈ V} are fed to a fully-connected layer for downstream node
classification task. Figure 1 gives an overview of the proposed model.

2.3 TRAINING

We train our model for supervised multi-class node classification task (transductive as well as induc-
tive) using classification cross-entropy as the loss. The model is trained end-to-end using the same
training objective. For multi-label, multi-class classification we use binary cross entropy for each
class. To boost training we apply this loss function at each time step of the LSTM instead of only
the last layer.

2



Workshop track - ICLR 2018

All models were implemented in TensorFlow with the Adam optimizer with learning rate of 0.01 or
or 0.05. For all the experiments, we consider nodes in the 4-neighbourhood of the center node, i.e.,
we go upto depth K = 4. We learn 128-dimensional node embeddings in each of the experiments.
We vary the number of nodes to be sampled for each level of proximity from 5 to 50 depending on
the network’s density. We use ReLU (rectified linear unit) non-linearity as activation functions in all
our variants.

3 EXPERIMENTS

In this section, we compare our proposed model against GraphSAGE, on transductive as well as
inductive tasks, on four real-world benchmark datasets (Cora, Pubmed and PPI and Citeseer), and
show that our model betters or achieves the state-of-the-art performance across all of them.

3.1 DATASETS

• Transductive Setup: We use Cora, Pubmed and Citeseer citation network datasets for
evaluating our model on transductive setup. Nodes in these networks are documents and
edges denote the citation relation between them. Node features are the bag-of-words rep-
resentations of documents. The stats about these networks are shown in Table 1. Here the
nodes have access to the features of the nodes in the test and validation set. But the network
was not trained on these nodes.

• Inductive Setup: The inductive learning requires learning of role of different type of nodes
in the network. Here, features of the nodes in the test set and validation set were not used in
any form while training. We use protein-protein interaction (PPI) dataset [Hamilton et al.
(2017)] consisting of total 24 graphs corresponding to different human tissues. We use 20
graphs for training, 2 for testing and 2 for validation. This is a multi-label classification
task.

Cora Pubmed PPI Citeseer
Task T T I T
|V| 2708 19717 56944 3312
|E| 5429 44338 818716 4715
|F| 1433 500 50 3703
|L| 7 3 121 6

Table 1: Datasets summary. In task T stands for
Transductive and I for inductive.

PPII Cora Pubmed Citeseer
GS-M 0.592 0.878 0.862 0.709
GS-G 0.5 0.854 0.812 0.688

Ours-M 0.706 0.836 0.887 0.722
Ours-G 0.671 0.87 0.876 0.725

Table 2: Micro-F1 scores for node classification.
GS stands for GraphSAGE. -M and -G are the
mean and GCN variants. I : Inductive task.

3.2 RESULTS

The results of our models with different aggregators are compared with equivalent GraphSAGE
models in Table 2. Although the results are only compared to only 2 of the aggregators, our results
are better than the best performance from the 4 aggregators.

Transductive Setup: On Cora datasets, our proposed - GCN variant attains ∼ 2% improvement
over GraphSAGE - GCN. While on Pubmed, we get ∼ 8% improvement with our GCN variant
over GraphSAGE - GCN. On Citeseer also, we show 2% improvement in the performance over
GraphSAGE.
Inductive Setup: For inductive setup on PPI datasets, we obtain an impressive 13.6% improvement
over GraphSAGE - mean variant and achieves state-of-the-art 67.4% f1-score.

4 CONCLUSION

In this work, we presented an hierarchical feature aggregation model for network embedding which
leverages higher-order neighborhood features information more explicitly. We showed good im-
provements over state-of-the-art approaches.

3



Workshop track - ICLR 2018

REFERENCES

Jianfei Chen and Jun Zhu. Stochastic training of graph convolutional networks. arXiv preprint
arXiv:1710.10568, 2017.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems, pp. 3844–3852, 2016.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224–2232, 2015.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864. ACM, 2016.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of NIPS, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In Proceedings of ICLR, 2017.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In International conference on machine learning, pp. 2014–2023, 2016.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710. ACM, 2014.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. arXiv preprint
arXiv:1703.06103, 2017.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In Proceedings of the 24th International Conference on
World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Commit-
tee, 2015.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of
the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
1225–1234. ACM, 2016.

4


	Introduction and Related Work
	Proposed Model
	Notations
	Hierarchical Feature Aggregation Model
	Training

	Experiments
	Datasets
	Results

	Conclusion

