
Under review as a conference paper at ICLR 2018

AANN: ABSOLUTE ARTIFICIAL NEURAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

This research paper describes a simplistic architecture named as AANN: Abso-
lute Artificial Neural Network, which can be used to create highly interpretable
representations of the input data. These representations are generated by penaliz-
ing the learning of the network in such a way that those learned representations
correspond to the respective labels present in the labelled dataset used for super-
vised training; thereby, simultaneously giving the network the ability to classify
the input data. The network can be used in the reverse direction to generate data
that closely resembles the input by feeding in representation vectors as required.
This research paper also explores the use of mathematical abs (absolute valued)
functions as activation functions which constitutes the core part of this neural net-
work architecture. Finally the results obtained on the MNIST dataset by using
this technique are presented and discussed in brief.

1 INTRODUCTION

In the field of philosophy, there has been a principle known as ’Ockham’s Razor’ which, in a sim-
plified relevant language states that ”Among the available multiple solutions to the same problem,
the simplest one is the best one”. For instance, if there are multiple polynomial functions that fit a
given data distribution, the lowest degree one would be preferred (Russell & Norvig, 2015). The
technique AANN is driven by this principle. In spite of being elementary in its construction, an
AANN is able to classify inputs in the forward direction while being able to generate them back in
the reverse direction. It can be visualized to be doing classification in the forward direction whereas
performing a regression task in the backward direction.

A standalone GAN (Generative Adversarial Network) described in Goodfellow et al. (2014) is able
to create representations of the input data by using a novel technique of generating a distribution
that contains the original data points as well as data points generated by the Generator part of the
network; the distribution is then used by the Discriminator part of the network to classify the data
points as genuine or generated. The representations generated by a GAN, although being very effec-
tive in creating undistinguishable data points, are however not interpretable and also highly entan-
gled (Chen et al., 2016) (Makhzani et al., 2016). Using an InfoGAN, the problem of entanglement
is solved by training in such a way that the network maximises mutual information within small
clusters of related latent representations (Chen et al., 2016). Auto-encoder is another technique that
uses the concept of encoder-decoder architecture for creating low dimensional representations of the
originally very high dimensional input data points. A VAE: Variational Auto-Encoder tries to make
the learned representations sparse by using the KL-divergence cost as a regularizer on the final cost
of an autoencoder (Kingma & Welling, 2014). Various attempts at combining the two techniques
of GAN and VAE have also been made in the unsupervised as well as semi-supervised learning di-
rections (Makhzani et al., 2016) (Larsen et al., 2016). However, these techniques kept getting more
and more complicated and somewhere in synthesizing these techniques, it is felt that the ’striving
for simplicity’ principle has been neglected.

The Absolute Artificial Neural Network exploits all possible information available in the labelled
training datasets to structure the learned representations of the input data. Structurally, an AANN is
very similar to a feed forward Neural Network with the distinction that AANN uses the abs func-
tion as the activation function of the neurons. Due to this, all the activations produced, including the
hidden layer activations, contain positive real number values. Thus, the network runs on the assump-
tion that the input data as well as the label information comes from a positive data distribution. This
doesn’t create an issue for the computer vision based tasks. However, for those situations, where

1

Under review as a conference paper at ICLR 2018

this is not possible, the feature values in the input dataset can be easily moved 1 into the positive
region of the multi-dimensional input data space.

Figure 1: Example of learned representation space created by AANN

The AANN transforms the n-dimensional input data into a space whose number of dimensions are
equal to the number of labels used in the training dataset. For instance, presume that, the task is
to classify images of cats and dogs and there is a labelled dataset present for achieving this clas-
sification. So, the learned representations will contain two dimensions corresponing to each label:
cat and dog. The input images are transformed into 2-dimensional vectors by the AANN in such a
way that the vectors are as close as possible to their ideal axes. This is achieved by constructing the
cost function in a manner that it maximises the cosine value of the angle formed by the vector with
its ideal axis. As a result, the representation space generated by this AANN can be visualized as
shown in the Figure 1. The label axes in the representation space are mutually orthogonal; thus the
resulting representation vectors become very interpretable.

2 AANN DESCRIPTION

Figure 2: Bidirectional artificial neuron: the building block of an AANN.

The AANN is constructed by using a ’Bidirectional Neuron’ (Figure 2) as the building block for
the hidden layers of a preliminary feed forward neural network. This bidirectional neuron uses the
abs (mathematical absolute valued) function as the activation function. The computation performed
by the neuron is similar in the forward and the backward directions. In the forward direction, the
computation is given by:

Aforward =| (Wleft ∗Xin) + bforward |

Whereas, in the backward direction, the neuron computes:

Areverse =| (Wright ∗Xin rev) + breverse |

1By mentioning moving the distribution, it is refered to the process of ’change of origin’ in cartesian math-
ematics.

2

Under review as a conference paper at ICLR 2018

The weights of the hidden layers of the AANN in forward direction learn to compute a function
for transforming the input data into the representation vectors. While in the reverse direction, the
weights constitute a function for constructing data points that closely resemble the data points be-
longing to the input dataset from the representation vectors. It is highly intriguing, and at the same
time enigmatic, that the same set of weights constitute two entirely distinct functions.

2.1 FORWARD PASS

Figure 3: Forward pass of the AANN.

The input n-dimensional feature vector is passed through the neural network consisting of hidden
layers, constructed from the bidirectional neurons, to obtain an m-dimensional representation vector;
where m corresponds to the number of labels. The obtained representation vector is then converted
into a unit vector, which primarily corresponds to the cosines of the angles made by the representa-
tion vector with the coordinate axes. Finally, the forward cost Jforward can be computed as either
the Euclidean distance or just the mean absoulte difference, which is an estimate of the euclidean
distance, between the unit representation vector Y ′ and the one-hot-encoded-label vector Y .

The direction cosines of the vector can be obtained by using the formula:

if A = [x1, x2, x3, ..., xm]; then | A |=
√
x21 + x22 + x23 + ...+ x2m

Acosine =
A

| A |

i.e. by scaling every activation value present in the representation vector by the inverse of the mag-
nitude of the vector. This results in a unit vector that only corresponds to the direction of the original
vector. As per the forward cost, it is intended to bring this direction vector as close as possible to
the ideal label coordinate axis. Due to which, the label axis encodes the input information as rep-
resentation vectors of different magnitudes converge on it. [link] 2 This visualization demonstrates
how information gets encoded along the label axis in various real valued magnitude ranges. The
visualization was generated by interpolating a small of range of values, precisely [0 − 100), along
all 10 different axes corresponding to the 10 digits, present in an MNIST dataset, in a sequence by
using a trained AANN. It is clearly evident from the visualization that the network creates more than
just input output mappings; it creates a function of the learned representations as apparent from the
smooth transitions between the different forms of a digit along it’s dedicated axis.

2Since this is a submission for the double-blind review, the link has been redacted not to reveal any identities.

3

Under review as a conference paper at ICLR 2018

2.2 REVERSE PASS

Figure 4: Reverse pass of the AANN.

During the reverse pass of the AANN, the representation vector emitted by the network of hidden
layers in the forward pass is fed back into the network in the reverse direction 3. The network then
performs transpose operations to give off a new vector X ′ in the input n-dimensional space. The
reverse cost Jreverse is computed as either the euclidean distance or the mean absolute difference
between the vectors X ′ and X . By defining the reverse cost in such a way, it is intended to obtain
the vectorX ′ as close as possible to the original input vectorX . This accords the network the ability
to generate data points in the input space in the reverse direction.

2.3 TRAINING:

The network is trained by using the Backpropagation (Rumelhart et al., 1986) algorithm to minimise
the final cost Jfinal. The final cost is defined as the sum of the forward and the reverse costs.

Jfinal = Jforward + Jreverse

It is ultimately this cost with respect to whom the partial derivatives of the parameters are com-
puted. The parameters are then adjusted by using the computed derivatives according to the Adam
optimization as described in Kingma & Ba (2017).

This action of performing the forward pass to calculate the forward cost followed by the reverse pass
to obtain the reverse cost and then performing backpropagation on the final cost constitutes a single
pass of the AANN. The term AANN: Absolute Artificial Neural Network, which is also the title of
the paper, thus refers to this unified process of training a neural network in such a way.

3 EXPERIMENTATION WITH OTHER ACTIVATION FUNCTIONS

This section attempts to succinctly describe the process of, and findings attained by, using other
activation functions for the neural network architecture described in the previous section. Since the
actual reasons why these activation functions behave in the manner that they do are not fully known,
it has been tried to remain fatihful while describing the experiments and not to make any unproven,
or otherwise philosophical, remarks in this section. The programming implementations of these
experiments have been made available at [link].

3Note that the unscaled representation vector and not the directional cosine vector (Y’ in Figure 3) is fed
back.

4

Under review as a conference paper at ICLR 2018

Figure 5: Images generated in the reverse direction by different activation function settings of an
AANN. (a) Use of ReLU activation function. (b) Linear activation function. (c) ReLU in the forward
direction and Abs in the backward direction. (d) Abs forward and ReLU backward. (e) Use of
Sigmoid activation function.

Upon using the ReLU, i.e. Rectified Linear-Unit, function (Nair & Hinton, 2010) as the activation
function for this architecture, all the activations shoot to nan 4 in the forward direction leading to
proliferation of nan in the reverse direction as well. If the Linear activation function is used, the
network performs poorly in the forward direction, leading to very high classification error rates,
while, the network converges to the point that it outputs the same structure as shown in (b) of Figure
5 for every possible representation vector. On activating the hidden neurons with a ReLU in the
forward direction and with an Abs in the reverse direction, the network kills all the activations, i.e.
outputs the zero vector for every input, in the forward direction. In the backward direction, the
network converges to the (c) structure. Upon using the Abs function in the forward direction and
the ReLU in the backward direction, the network this time kills all the activations in the backward
direction as visualized in (d). The (e) in Figure 5 is the output achieved by using the Sigmoid
activation function in the network. The result obtained is very similar to the result of using Linear
activation function, as in (b).

4 RESULTS ON MNIST DATASET

The AANN architecture was trained on the MNIST digit recognition dataset5. The dataset contains
[(28 x 28) pixels] sized images of handwritten digits from 0 - 9. The programming implementation
using the Tensorflow framework (Abadi et al., 2015) has been made available at [link].

Figure 6: Cost plots obtained upon training the AANN on the MNIST digit dataset. (a) Forward
cost. (b) Reverse cost. (c) Final cost.

There are 42000 images in the training set, of which, 95% were used for train set and remaining 5%
images were used for the dev set. i.e. 39900 in the train set and 2100 in the dev set. The network
was trained using the Adam (Kingma & Ba, 2017) optimizer with α = 0.001, β1 = 0.9, β2 = 0.999
and ε = 10−8.

4nan: ’Not A Number’; used in the programming terminologies.
5https://www.kaggle.com/c/digit-recognizer

5

https://www.kaggle.com/c/digit-recognizer

Under review as a conference paper at ICLR 2018

Figure 7: Outputs generated by the AANN in the reverse direction. (a) Original images fed into the
network. (b) Images reconstructed by the network in the reverse direction.

The network achieved a classification accuracy score of 99.86% on the train set and 97.43% on
the dev set in the forward direction. The unseen test set of this version of the dataset used contains
another 28000 images for which the network achieved an accuracy of 97.671%. Figure 7 shows
the images generated by the network in the reverse direction against the original images fed to the
network. It is perceived that the capability of the network should not be evaluated only on the basis
of it’s forward accuracy scores but should be evaluated on the basis of a unified metric that not only
measures the network’s forward performance but also the faithfulness with which the network is
able to generate input data points in the reverse direction.

5 CONCLUSIONS AND FUTURE SCOPE

This research paper put forth an elementary but potent neural network architecture, named as AANN,
that has the ability to learn in the forward as well as the backward direction. It also proposed the Abs
function as a viable activation function for a neural network architecture. Due to lack of hardware
resources, the experimentation had to be limited to the preliminary MNIST dataset, but it is firmly
believed that the technique will perform equally well upon tackling other robust datasets, because of
the theoretical evidence shown in the performed experiments.

The AANN presently encodes the information in real number valued ranges across the the dedicated
label axes in the the representation space. Certain regularization functions can be synthesized in
order to stretch these ranges so that more information can be incorporated in them. The number of
dimensions of the learned representations can be manually controlled by setting certain number of
dedicated axes to a single label and by modifiying the forward cost function in such a way that the
representation vectors lie inside the space generated by the coordinate axes dedicated to the ideal
label. An in depth mathematical study of the Abs activation function could reveal the underlying
behaviour of AANN. This forms the future scope for research.

This technique also opens up new research opportunities for considering the AANN architectural
modifications to certain network architectures like Rasmus et al. (2015) for semi-supervised learn-
ing. Moreover, it would be interesting to note the implications of applying the corresponding modi-
fications to more advanced architectures such as Conv-nets (Krizhevsky et al., 2012) and Recurrent
Nets with LSTM cells (Hochreiter & Schmidhuber, 1997).

6

Under review as a conference paper at ICLR 2018

REFERENCES

M. Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
Preliminary White Paper, 2015.

X. Chen et al. Infogan: Interpretable representation learning by information maximizing generative
adversarial nets. arXiv:1606.03657v1 [cs.LG], 2016.

I. Goodfellow et al. Generative adversarial nets. arXiv:1406.2661v1 [stat.ML], 2014.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation 9(8):1735-1780,
1997.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980v9 [cs.LG],
2017.

D. Kingma and M. Welling. Auto-encoding variational bayes. arXiv:1312.6114v10 [stat.ML], 2014.

A. Krizhevsky et al. Imagenet classification with deep convolutional neural networks. In Proceed-
ings of the Neural Information Processing Systems Conference, 2012.

A. Larsen et al. Autoencoding beyond pixels using a learned similarity metric. arXiv:1512.09300v2,
2016.

A. Makhzani et al. Adversarial autoencoders. arXiv:1511.05644v2, 2016.

V. Nair and G. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings
of the 27 th International Conference on Machine Learning, Haifa, Israel, 2010.

A. Rasmus et al. Semi-supervised learning with ladder networks. arXiv:1507.02672v2 [cs.NE],
2015.

D. Rumelhart et al. Learning representations by back-propagating errors. Nature, 323:533–536,
October 1986.

S. Russell and P. Norvig. Artificial Intelligence A Modern Approach, chapter 18: Learning from
examples. Person publications, 3rd edition, 2015.

7

	Introduction
	AANN description
	Forward pass
	Reverse pass
	Training:

	Experimentation with other activation functions
	Results on MNIST dataset
	Conclusions and future scope

