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Bianca S. Gerendas Wolf-Dieter Vogl Ursula Schmidt-Erfurth

Christian Doppler Laboratory for Ophthalmic Image Analysis
Department of Ophthalmology and Optometry

Medical University of Vienna

1 Introduction

Longitudinal imaging allows to capture both, the static anatomical structures and the dynamic
changes of the morphology due to aging or disease progression. However, common supervised or
unsupervised methods for medical imaging do not consider dynamic aspects and process longitudinal
data as individual data points. For natural images, algorithms already exist that learn a representation
from videos [Walker et al., 2016]. In retinal imaging, however, the temporal sampling resulting
from follow-up to disease progression is much lower than in videos. Predictions are therefore more
ambiguous and prone to noise

We propose a deep learning approach to overcome these challenges, which allows us to understand
the underlying morphological organization and its changes over time, and to discover abnormalities
and pathologic evolutions. Our data-driven approach learns a feature representation from unlabeled
longitudinal images by predicting the unobserved subsequent image within a series of observations.
Several sources of noise, such as imaging noise, misalignment of follow-up images or motion
artifacts aggravates the direct prediction of the target image. Thus, we propose to adapt a Conditional
Variational Autoencoder (CVAE) [Kingma and Welling] to learn representative static and dynamic
features that are robust to noise and uncertainty.

2 Method

Theory of conditional variational autoencoders

Let Xi = [xi−J , . . . xi] be a sequence of J consecutive images xi, from which a subsequent unseen
image xi+1 is predicted. Following [Walker et al., 2016, Kingma and Welling], the optimization of
variational autoencoder is based on the variational inequality, which maximizes the likelihood of the
prediction P(xi+1|Xi) by optimizing the last term of the equation 1. Q is the introduced distribution,
from which the latent noise vector z is sampled.

log P(xi+1|Xi) ≥ log P(xi+1|Xi)−KL[Q(z|Xi, xi+1)||P(z|Xi, xi+1)]

= Ez∼Q[log P(xi+1|z,Xi)]−KL[Q(z|Xi, xi+1)|P(z|Xi)]
(1)

The term Ez∼Q[log P(xi+1|z,Xi)] encourages the model to output a correct prediction, where Xi is
encoded by the Encoder network. This term is optimized with a L2 reconstruction loss. The second
term, the KL divergence, forces Q to be a normal distribution (N (0, I)). Thus, the encoding network
is forced to extract as much information as possible from the previous images. At testing time, the Q
network is discarded, and z ∼ N (0, I).
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Figure 1: Architecture: the encoder, the Q Network (µ and σ) and decoder are implemented by
convolutional networks. At training time z = µ+ ε · σ, at testing time: z ∼ N (0, I)
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Figure 2: Example of four subsequent OCT B-scans acquired in a monthly interval. The first three
images are used as input and the last one as target (red). Retinal thickness, hyperreflective foci or
Drusens are morphological properties tested for feature evaluation.

CVAE is computing a distribution over the possible solutions instead of a single prediction as for
instance an autoencoder provides. This distribution is built from two parameters: the code vector, h,
which encodes deterministic factors and the z vector, which represents unpredictable factors.

Architecture: the optimization relies on three convolutional networks: (1) the encoder network,
which extracts important information for predictions in the code vector h, (2) the Q network for
implementing a standard distribution N(µ(Xi, xi+1), σ(Xi, xi+1)), and (3) the decoder having as
inputs the vectors h and z and which outputs a prediction of the subsequent image (Figure 1).

3 Experiments and results

3.1 Dataset

The dataset contains 3900 OCT scans from 204 different patients diagnosed with intermediate age-
related macular degeneration (AMD). Each patient was scanned with a monthly follow-up for a
period of up to 24 months. Time-points where a patient already converted to late stage AMD were
excluded.

Preprocessing: We built sequences of four consecutive visits without overlapping, and cropped local
patches from the central 3 mm of the retina. In order to crop patches from the same anatomical
position, we registered all scans to a reference scan within the sequence as described by Vogl et al.
[2017]. Finally, every sample is a sequence of four 170 x 170 patches. The first three images were
used as inputs to predict the last one (Figure 2).

3.2 Training

We divided the dataset into training and validation subsets for the training of the CVAE and a test
set for the final evaluations. Care has been taken that all image series of a patient were in the same
subset. The network was trained by stochastic gradient descent using ADAM algorithm. Overfitting
was controlled by examining the reconstruction loss on the test set (without Q network).
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Table 1: Prediction results of morphological properties. “Direct” shows the results predicted from
previous values of the properties only. “CVAE” uses in addition the code vector h from previous
images. The target values are scaled to have 0 mean and unit variance (standard scaling).

Method Retinal thickness Drusen Volume HRF volume

R2 score

Direct 0.959 0.945 0.807
CVAE 0.945 0.974 0.823
Mean absolute error (standard scaled)

Direct 0.152 0.228 0.406
CVAE 0.177 0.185 0.392

3.3 Evaluation

In order to evaluate the features produced by the encoder (h code), we predicted morphological
properties from it, which change over time in intermediate stage of AMD. We used average total
retinal thickness, drusen volume and hyperreflective foci (HRF) volume, which were automatically
segmented using the methods described in [Garvin et al., 2009, Schlegl et al., 2017].

The prediction target was the average value of a morphological property from the last image in the
sequence (unobserved image). We trained a self-normalizing MLP regressor [Klambauer et al., 2017].
For comparison, we performed a regression based on the measured property values from the initial
time-points serving as baseline (Direct). In the CVAE method, we in addition included the code
vector h as regression input. Results are listed in Table 1.

Initial results showed that the prediction code h improves the results of a direct prediction, both for
Drusen Volume and HRF volume, by increasing R2 score and reducing the mean absolute error. This
indicates that the proposed method is able to successfully encode dynamic properties of OCT images.
The prediction of total retinal thickness was not improved but given that in intermediate AMD total
retinal thickness usually remains very stable, it can be predicted more easily by simply regressing
from previous thickness measurements.
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