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ABSTRACT

In dynamic malware analysis, programs are classified as malware or benign based
on their execution logs. We propose a concept of applying monotonic classifi-
cation models to the analysis process, to make the trained model’s predictions
consistent over execution time and provably stable to the injection of any noise
or ‘benign-looking’ activity into the program’s behavior. The predictions of such
models change monotonically through the log in the sense that the addition of new
lines into the log may only increase the probability of the file being found mali-
cious, which make them suitable for real-time classification on a user’s machine.
We evaluate monotonic neural network models based on the work by Chistyakov
et al. (2017) and demonstrate that they provide stable and interpretable results.

1 INTRODUCTION AND MOTIVATION

Malware (i.e.malicious software) detection is an important and challenging task for the cybersecu-
rity industry. One of the main approaches for detecting malware is a dynamic one, in which an
investigated code is executed in a controlled environment and a prediction about the malware or
benign label is made based on the program’s execution trace. In this paper we focus on the appli-
cation of machine learning methods for dynamic analysis in a real-time scenario and their stability
w.r.t. code obfuscation. A real-time scenario implies that the detection task is being continuously
solved while the program is running on a user’s machine, and its execution is interrupted as soon
as predicted probability of maliciousness becomes high. Therefore it is crucial to detect malicious
behavior as early as possible to prevent or at least reduce the damage.

In the dynamic analysis the program’s behavior trace is usually represented with a log of the ob-
served system events or API calls (function name, arguments, and, optionally, a return value). There
are several machine learning techniques to classify these logs as malware or benign. Most of them
first extract some features based on n-grams of events, links between APIs and their arguments, or
the behavior patterns in the graph representation of the log, and then apply a classifier such as neural
net or boosting (Bayer et al., 2009; Berlin et al., 2015; Huang & Stokes, 2016; Salehi et al., 2017;
Chistyakov et al., 2017). Some methods also exploit the sequential nature of the logs and apply
recurrent neural networks (Pascanu et al., 2015; Kolosnjaji et al., 2016).

All these methods operate with full logs and do not directly aim to predict correct labels for the
log’s prefixes, therefore their predictions through the program’s execution time may be inconsistent.
This complicates the use of any of them in the real-time scenario – because at one moment of
the execution the method may be sure that the program is malicious, and at the next moment the
prediction may become benign. Extending the training dataset with log’s prefixes cannot solve
this problem, because labels for the prefixes of malicious logs are not defined (malicious program
may start its main payload only after a long period of execution). Moreover, there are no specific
limitations on existing methods, which guarantee that no activities in the log are used as ‘benign’
features. A feature is ‘benign’ for some model if its presence in the log brings the prediction of the

∗Most of the work was done when Ekaterina Lobacheva worked at Kaspersky Lab.
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model closer to benign. Such features should not be employed in the malware detection because
they may be easily used to construct adversarial examples. For example, if starting a process from a
standard directory is the ‘benign’ feature for the detector, then a malicious program can deceive the
model by starting several processes from that directory in addition to its usual functionality.

In this paper, we propose to modify the dynamic detection techniques by making both feature ex-
traction and classification monotonic in the sense that the addition of new lines into the log may only
increase the probability of the file being found malicious. This condition results in the monotonically
increasing predicted probability of maliciousness w.r.t running time, which makes the predictions
consistent through the program’s execution. Hence for a benign file, the prediction is benign for all
moments of time and for a malware file, the prediction becomes malware at some point and remains
so until the end of the log. Additionally, this condition restricts the use of ‘benign’ features making
predictions stable w.r.t. the injection of any new functionality in the program’s behavior.

In order to demonstrate that such modification is reasonable, we apply it to an end-to-end neural
network model, based on the work by Chistyakov et al. (2017). However, the technique is general
and can be adapted for different models both to modify a feature extraction part and a classifier,
such as a neural network (Sill, 1997; Daniels & Velikova, 2010; You et al., 2017), a decision tree
(Potharst & Feelders, 2002), or boosting. Our experiments show that even though the monotonic
model experiences some accuracy drop in a full log classification task, it works consistently in the
real-time scenario and its predictions are very interpretable, because they indicate after which events
in the log the model starts to classify the program as malware.

2 MONOTONIC CLASSIFICATION MODEL FOR LOGS

The non-monotonic classification model for logs by Chistyakov et al. (2017) is based on a behavior
graph representation of the log, in which nodes correspond to event types and arguments occurring
in the log, and edges represent the occurrence of the corresponding event type and the argument
in the same line of the log. To construct a feature representation of such graph authors extract
behavior patterns from this graph (specific subsets of connected event types and arguments), pretrain
a compact feature representations for these patterns with linear autoencoder and then aggregate
features of patterns into the feature representation of a graph using dynamic pooling operations
(min, max and average). As a final classifier authors use XGBoost.

As a baseline in this paper we use a slightly different version of the non-monotonic model. We
replace XGBoost with a neural network and train the whole model in an end-to-end manner, so in-
stead of pretraining pattern features with autoencoder we add an embedding layer into the model.
This makes the monotonic modification of the model more straightforward and additionally acceler-
ates the training procedure. Our experiments show that this version achieve the same results as the
original one.

In the non-monotonic model only the step of behavior graph construction is monotonic because the
addition of new events to a log may result only in the addition of new nodes or edges to a graph.
All the other steps need modifications. To make the pattern extraction step monotonic, we impose
a following constraint on pattern’s definition: there is no argument outside of the pattern which
is connected to all the event types from this pattern. As a result, any set of event types from the
graph with all the arguments, that they share, is a pattern. Such a step is monotonic because if the
new argument is added to a graph, then it is simply added to some patterns, and if the new event
type is added to the graph, then the new patterns appear without removing the existing ones. To
make the feature extraction steps monotonic we replace the weight matrix W in the embedding
layer by its element-wise absolute value |W | and use just the max-pooling operation since it is the
only monotonic option. Finally, to make the classifier monotonic we try some existing monotonic
versions of neural networks – min-max networks (Daniels & Velikova, 2010) and lattice networks
(You et al., 2017). We also implement our own version based on the same trick for weight matrices
as in the embedding layer and using monotonic nonlinear functions.

Chistyakov et al. (2017) show in the experiments that their model provides higher accuracy if ad-
ditional counter features are used. We also use these features because they are monotonic. We
concatenate the counter features and the log features obtained after the dynamic max-pooling step
into one vector, and use it in the classification step.
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(a) Benign file.
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(b) Malware file.

Figure 1: Predictions of monotonic and non-monotonic models in the real-time scenario. On the
vertical axis the pre-activation of the final neuron of the network is shown (the higher, the closer to
the malware class). The values are shifted for each model in such way that the zero value corresponds
to a classification threshold.

Table 1: AUC-ROC of monotonic and non-monotonic models in two different scenarios: the full log
classification and the real-time classification.

Scenario Non-mon. Mon. linear Mon. deep Mon. min-max
Full logs (AUC-ROC) 0.999998 0.987430 0.992089 0.993811
Real-time (AUC-ROC) 0.511195 0.987430 0.992089 0.993811

3 EXPERIMENTS

In this section we compare the baseline non-monotonic model with several variations of monotonic
model. In all variations the feature extraction part is the same, but classifiers are different: we
implement a linear and a deep networks with modified weight matrices and a min-max network
(Daniels & Velikova, 2010). We also tried a lattice network (You et al., 2017), but its training was
unstable and it showed significantly worse results than the other variations. All the models are
end-to-end trainable neural networks. Baseline non-monotonic model and monotonic model with
deep neural network as a classifier have the same architecture. Details about network architectures
are described in Appendix A. Since there are no large publicly available datasets of the program’s
execution logs, 2.9M train objects and 1.2M test objects were collected for the experiments from
our in-lab sandbox.

First, we compare similar non-monotonic and monotonic models qualitatively. We run both models
in the real-time scenario in which the prediction is made after each new line in the log. The typical
results for one malware and one benign file are shown in Figure 1. When the non-monotonic model
sees the full log it makes the right prediction, but predictions for prefixes of the log are inconsistent
and may change over time from malware to benign and vice versa several times. Predictions of the
monotonic model grow with time monotonically, and therefore this model is much more suitable
for the real-time scenario. Moreover, predictions of the monotonic model usually go up on very
interpretable lines of the log, such as writing to the autorun, saving an URL corresponding to some
cryptocurrency, and so on. Examples of such interpretations are presented in Appendix B.

To compare the models quantitatively, we use the AUC-ROC measure. We compare the models both
in the real-time scenario and in a full log classification. In the real-time scenario, the joint prediction
for the log is computed as a maximum prediction on all the prefixes of this log. For monotonic
models, predictions in both scenarios are the same, because the real-time prediction reaches its
maximum on the full log. For the non-monotonic model, the real-time joint prediction is always
greater or equal to the full log prediction. Obtaining the real-time joint prediction for the non-
monotonic model is a very time-consuming operation, therefore we do not compute the AUC-ROC
on the full test set but just on the random subset of 1000 logs. The results of these experiments are
shown in Table 1. In the full log classification task, monotonic models demonstrates less impressive
results than the non-monotonic one. That is an expected outcome since monotonic models satisfies
the additional constraints and therefore have less expressive power. On the contrary, in the real-time
classification task, the non-monotonic model can’t make any reasonable predictions. The reason
for such behavior is that the non-monotonic model learns to use a lot of ‘benign’ features while we
forbid monotonic models to do so.
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A EXPERIMENTAL SETUP

Data format. The set of possible event types in the logs contains 180 different elements. Each argu-
ment is represented as a set of tokens. For example, the filename C:\Windows\374683.ini cor-
responds to the set [’C’, ’:\’, ’Windows’ , ’\’, ’374683’, ’.’, ’ini’]. We
use the vocabulary of 135 907 most popular tokens from the training data. As a result, each pattern
is described with a vector of size 136 087 with counters for event types and tokens.

Feature representation. For pattern feature extraction we use a linear embedding layer with output
of size 300. In addition, we use counter features for 382 of the most popular event groups in the
training data. As a result, the feature representation for graph contains 682 elements.

Classifiers. For the baseline non-monotone model and deep monotone model we use a neural net-
work with 4 hidden layers as a classifier. These layers have the following architecture (numbers of
hidden units and nonlinearities): 600 tanh− 300 ELU − 100 ELU − 50 tanh. We also try a one
linear layer classifier and a min-max network with 10 MIN blocks, 20 neurons each.

Loss function. We use the stochastic version of the continuous 1−AUC upper-bound as an objec-
tive in all experiments:

L(B,M) =
1

|B| · |M |
∑
b∈B

∑
m∈M

max(0, sb−sm+1)2 ≥ 1

|B| · |M |
∑
b∈B

∑
m∈M

I[sb ≥ sm] = 1−AUC

Where B and M are sets of benign and malicious items in a batch and sx is the suspicious-
ness predicted by the trained model on object x. Minimizing of this objective affords to obtain
higher AUC-ROC value than minimizing of the the standard log-loss and could be computed with
O (|B|+ |M |) · log (|B|+ |M |) operations as the traditional AUC-ROC.

B INTERPRETATION OF PREDICTIONS OF THE MONOTONIC MODEL

Predictions of monotonic models are usually interpretable. In Figure 2 we demonstrate predictions
of the deep monotonic model for three malicious logs alongside with the suspicious lines from these
logs on which the model’s prediction grows significantly.

The top picture corresponds to a Cryptocurrency Trojan Miner. Here the model notice the start of
a specific service, writing to the auto-run and saving a specific miner URL and port number to the
system register.

The middle picture represents a typical ransomware cryptor. Almost all the time of execution the
program takes a new file from a filesystem, modifies it somehow and then changes the file extension
by adding xoxoxo (that could be read as hohoho in a Cyrillic notation). An interesting observation
is that the model increases the predicted suspiciousness while reading the whole sequence but the
detection threshold is crossed after approximately 350 events. So, if we stop the process at this
point, we will save the rest of a filesystem from encryption.

The bottom picture the inspected program has no malicious activity except for starting a legitimate
powershell process with a very interesting parameter – a long base64 encoded string. This string is
an obfuscated malicious script.
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Score | Event
---------------------------------------------------------------------------------------------------------------------
2.734 | RegCreateKey("$hklm\software\minergate\organizationdefaults\miners\mro")
2.737 | RegSetValue("$hklm\software\minergate\organizationdefaults\miners\mro","visible","true")
4.238 | RegSetValue("$hklm\software\minergate\organizationdefaults\miners\mro","pool","xmr.pool.minergate.com:45560")

Score | Event
-------------------------------------------------
-2.083 | RegCreateKey("$hklm\system\controlset001\

| services\directx11b")
-2.083 | RegSetValue("$hklm\system\controlset001\

| services\directx11b","imagepath",
| ""$appdata\DirectX11b\System.exe"")

-1.175 | InstallService("$appdata\directx11b\system.exe",
| 0x4635935FC972C582632BF45C26BFCB0E)

Score | Event
--------------------------------------------------------------------------------
-0.077 | WriteProcessMemory("bi16.cmd",0x000000007EFDF368,0,0,8)
-0.077 | ResumeThread("bi16.cmd")
-0.077 | LoadLibrary("$windir\regedit.exe")
0.733 | CreateProcess("$windir\regedit.exe",""$windir\regedit.exe" /s "Bi1.reg"")
0.734 | CreateProcessInt("$windir\regedit.exe",""$windir\regedit.exe" /s "Bi1.reg"")

Score | Event
-------------------------------------------------------
-2.352 | FileAccessed("$programfiles\7-zip\7zcon.sfx",

|              00000010110000000010000100100001)
-2.343 | FileModified("$programfiles\7-zip\7zcon.sfx")
-2.335 | FileRenamed("$programfiles\7-zip\7zcon.sfx",

|             "$programfiles\7-zip\7zcon.sfx.xoxoxo")
-0.996 | FileAccessed("$programfiles\7-zip\history.txt",

|              00000010110000000010000100100001)
-0.670 | FileModified("$programfiles\7-zip\history.txt")
-0.653 | FileRenamed("$programfiles\7-zip\history.txt",

|             “$programfiles\7-zip\history.txt.xoxoxo")
| 

● ● ● | ● ● ●
|

1.967 | FileAccessed("c:\python27\license.txt",
|              00000010110000000010000100100001)

3.055 | FileModified("c:\python27\license.txt")
3.646 | FileRenamed("c:\python27\license.txt",

|  "c:\python27\license.txt.xoxoxo")

CreateProcess("$system32\windowspowershell\v1.0\powershell.exe",
""powershell.exe" -nop -w hidden -c $s=New-Object IO.MemoryStream( ,
[Convert]::FromBase64String(
'H4sIAKAhylkCA71W62/aSBD/nEr9H6wKCaOjYCdA00iVzk9wwjMG8zpUGXuxN6wf8SOY9Pq/3yzYCb0mVa4fzkJi
HzM7v/nNzM5uUt9KcOAzyB1EnsaP2jbz7f27s6EZmR7Dlrb2NKgypcxoVs7OYL20vwvnm9kFavck5gvDLoUwlAPPx
P7q6kpKowj5yXFea6NEiGPkrQlGMVth/mamLorQx8H6DlkJ840pfa21SbA2SS62l0zLRcxHwbfpXjewTAqtpocEJ2
z5r7/KleVHflVT7lOTxGxZ33cJ8mo2IeUK871CDY73IWLLPWxFQRxsktoU+xfntYkfmxvUh9MeUA8lbmDH5Qo4A78
IJWnkM6du0XOOUmwZhsMosATbjlAMSjXNfwi2iC35KSFV5k92mYO4Tf0Eewj2ExQFoY6iB2yhuNYxfZugW7RZsX20
K3x/qxJ7qgRSwySqVCEqr6PtBXZK0PGAcuVnvIeAVuDLgwo0fH//7v27TZEHJMuC9RoHPe/xNBFgdLY8jBFgZYdBj
A/iXxiuyvTAnJkE0R6mpXGUosqKWdJQLFcroLbVHHHiY/X1I/hCHqTvv87mjqbA6tIIsL0CrTxUJTs17udfW3Tr9a
yT0Qb7SN77poetIrHYl8hHG4IOPtcKsT5AY8v5BrJlRJBjJpTHKrP8WU3xcPKkK6aY2CgSLAhgDKggtpUfwRxDw5Y
1v4c8IOs4L0MgNpDOqJDOU3hfWKdzECpLxIzjKjNMoZ6sKqMjkyC7ygh+jPMtIU2Cw7D8DLeXkgRbZpwUx60qJ1Tm
JqXAj5MotSCE4P5YD5GFTULZqDIdbCNxr2OnMF1+kQvJJAT7Dpz0ALGAFcqBntDEiABlkQSVmo4SzQsJ8kDsUN4qM
R0o5rwWDslkOsguv4CzyPNjUlNSCjZOUEKkdRIkVcbAUQIXBSU4T6rfxnFyURSIpAjlwWGLGlqK+4SmfCmzxpe7YK
Do8qVAszWn60BOlAAxahR4ohmjVkNPIqCN/VBXsNwcysGjAJ+i3o4MUZ8YC61nXxNdS/S5grsT19Uwrzkw308UZ5h
w4c143LnW5Y4QyZm7EbRYUzrifsSLgtXBn4xrcTIBPSx1R3eZJtii58ycubTThu5MA0NS19Ec+Bc11xK5BeeInCp1
ddFVMCc4+qgzavALrX5JRPyoa7rQmT7Ze7KjNBqdWTYW+r1rwVUHtsqfqwf9LdVfbNtdWTnMLTofzWMFK2BHUecjw
0VTIxPniroYGaHm/LFzRka33lBdEdY1nHVDvQ4fzwMPyVhfNy/MaTNcewYHHE11zXd1ayONO5Yn1uvGhO9rGKnj6Z
bLdgqX7Y0+6AQtw/d8SqswrBst8TDKBvIk7d0Ju+6dkvVxI+vfbYXpFl/vJn5n141BSuz3LDKenAfyhPNaRsPbZJQ
qQa7zyJnQUff8liw8lV93Rul81t8h6XO7xxGvD3xii+JQ55SvCYcbgnzjuAfT4ghwXmeX3cjQG5/qnw2QXdxL5LOG
N+p9hw91UxMgDcRrjMR7EbjR1yF/G7bahQ/gdzbhQ8CXY+QAM+ba7c5DnZ/PBFvva9llW1N2ggC6yqU8c550h/WhL
XSjiPr5IPEBWdd5o78wt6Kpz/3bHdJGwCmYp3notaY3t+PmKPd7gsdHjm2KVcN2CH4IAs0k0G0C11B5Pn7GOVQ0Df
DcND28szXBGqi7zkyfqnfyB1pWUFclF12elMhrHbFnRrFrEigd6HHFVaYGkZq3rWGAqQbLnjxjtijyEYH2Dw+E4jI
QCAks2kJP2xx08WNvXcHVNoHhxfmLowrzJFh5bq3F0tXVAiDTtnpS/bUu8p3ErXLZBcdBp+SyBgeev91dKQj37A9H
VmnHpbT92xQ5mKrQm6iEB/Z0+H/wml+DLvzZb+T1ee0Xu2/imqseePhp9ceF/8T3b9IwNXEC8jrc5QQd3xm/ZCNPq
JMH2iFikCeb/KPv5UGafOzDw+0fYnWge6ULAAA='

));IEX (New-Object IO.StreamReader(New-Object 
IO.Compression.GzipStream($s,[IO.Compression.CompressionMode]::Decompress))).Rea
dToEnd();")

Figure 2: Predictions of the deep monotonic model for three malicious logs alongside with the
suspicious lines from these logs.
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