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Abstract

Word Embeddings are able to capture lexico-semantic information but remain1

flawed in their inability to assign unique representations to different senses of2

a polysemous words. They also fail to include information from well curated3

semantic lexicons and dictionaries. Previous approaches that integrate polysemy4

and knowledge bases fall distinctly under two categories - a)retrofitting vectors to5

ontologies or b)learning from sense tagged corpora. While embeddings learned6

from these methods are superior in understanding contextual similarity, they are7

outperformed by single prototype word vectors on several relatedness tasks. In this8

work, we introduce a new approach that can induce polysemy to any pre-trained9

embedding space by jointly grounding contextualized sense representations and10

word embeddings to a knowledge base. Along with word sense induction, the11

resulting representations reduces the effect of vocabulary bias that arises in natural12

language corpora and in turn embedding spaces. By grounding them to knowledge13

bases they are able to learn multi-word representations and are also interpretable.14

We evaluate our vectors across 12 datasets on several similarity and relatedness15

tasks along with two extrinsic tasks ,we also evaluate against other transfer learning16

methods and find that our approach consistently outperforms current state of the17

art.18

1 Related Work and Introduction19

Distributed representations of words (Mikolov et al., 2013b) have proven to be successful in addressing20

multiple drawbacks of symbolic representations which treats words as atomic units of meaning. By21

grouping similar words and capturing analogical and lexical relationships, they are a popular choice22

in several downstream NLP applications.23

While these embeddings capture meaningful relationships, they come with their own set of drawbacks.24

For instance, complete reliance on natural language corpora amplifies existing societal and vocabulary25

bias that are inherent in datasets. A study by Bolukbasi et al., 2016 discussed societal biases in the26

form of gender stereotypes present in these VSMs. Vocabulary bias is caused by words not seen in27

the training corpora and also extends to bias in word usage where some words, often morphologically28

complex words, are used less frequently than other words or phrases with the same meaning. This29

also becomes evident in the relatively lower performance of word embeddings on the rare word30

similarity task (Luong et al., 2013b). A recent approach by (Bojanowski et al., 2016a) proposes31

using character n-gram representations to address the problem of out-of-vocabulary and rare words.32

(Faruqui et al., 2014) also proposed retrofitting vectors to an ontology. However, these methods don’t33

account for polysemy.34

Polysemy is an important feature of language which causes words to have different meanings based35

on the context in which they occur. For instance, the word ‘bank’ can mean ‘financial institution’ or36
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‘land on either side of a river’.A well known drawback with word embeddings is the assignment of a37

single vector representation to a word type, irrespective of polysemy. A large body of work has gone38

into developing word sense disambiguation systems to identify the correct sense of a word based on39

it’s context. The availability of such disambiguation systems coupled with the growing reliance of40

NLP systems on distributional semantics has led to an increasing interest in obtaining powerful sense41

representations.42

Some of the previous work that has gone into learning sense representations includes unsupervised43

learning techniques to cluster contexts and learn multi prototype vectors(Reisinger and Mooney44

(2010) , Huang et al. (2012) and Wu and Giles (2015)). However, a common drawback with the45

cluster based models is the difficulty in deciding the number of clusters apriori. ( Neelakantan et al.46

(2015) , Tian et al. (2014) ,Cheng and Kartsaklis (2015) also learn multiple word embeddings by47

modifying the Skip-Gram model. These approaches yield to sense representations that are limited in48

terms of interpretability which makes it challenging to include in downstream tasks.49

As a remedy to limitation in sense tagged corpora, Jauhar et al. (2015) and Rothe and Schütze (2015)50

explored grounding word embeddings to ontologies to obtain sense representations. As a result, these51

techniques drastically improved performance on several similarity tasks but an observed pattern is52

that this leads to compromised performance on word relatedness tasks(Faruqui et al. (2014), Jauhar53

et al. (2015)). We suspect this is a result of directly modifying word embedding spaces based on54

ontology structure.55

In this work, we present a novel approach that uses knowledge bases and sense representations to56

directly induce polysemy to any predefined word embedding space. We show how our approach57

allows the integration of ontological information and leads to improvements in both word similarity58

and relatedness tasks. The advantages of this are plenty, it allows the integration of knowledge into59

embedding spaces and can readily induce polysemy in them. We thus rely on a) Sense tagged corpora60

to obtain contextualized sense representations. The objective of which is to capture sense relations61

and interactions in naturally occurring corpora. The sense representations are interpretable and have62

lexical mappings to a knowledge base. We use them to induce polysemy in word embedding spaces.63

b) Pretrained word embeddings to capture many useful lexical relationships that are inherent in them64

on account of being trained on large amounts of data. These relationships are not effectively captured65

by sense representations due to the limited size of sense tagged corpora they are trained on. c) Lastly,66

in order to account for the vocabulary bias which causes similar meaning words to be farther apart in67

embedding spaces as a result of bias in co-occurrence statistics found in corpora, we use a knowledge68

base to jointly ground word and sense representations.69

We thus obtain unique multiple word sense representations that show superior performance in70

similarity, relatedness and extrinsic tasks. They also show performance benefits when used with71

transfer learning methods like CoVE (McCann et al. (2017)) and ELMo (Peters et al. (2018))72

2 Methodology73

2.1 Lexicon Building74

We use WordNet(Miller (1995)) as our primary knowledge base source. However, in order to obtain75

representations that cater to both similarity and relatedness, we modify the synset nodes in WordNet.76

A synset in WordNet is represented by a set of synonyms. We observe that these synonym sets include77

words of same meaning without differentiating between their syntactic forms. For instance, the78

synset operate.v.01, defined as ’direct or control; projects, businesses’ has both run and running in its79

synonym sets. In practice though, each syntactic form of a word has different semantic distributions.80

For instance, in this case run is found to most likely occur with words such as lead and head as81

compared to it’s alternate form running which is more likely to appear with words such as managing,82

administrating , leading. To account for this, we extend WordNet nodes to also include the syntactic83

form information and call a synset, syntactic form pair "sense-forms". The extended WordNet nodes84

is depicted in Figure 1.85

2.2 Sense-Form Embeddings86

We use a concatenation of two sense tagged corpora, SemCor(Ciaramita and Altun (2006)) and87

OMSTI(Taghipour and Ng (2015)) to obtain sense representations. To better capture different88
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Figure 1: Example WordNet nodes extended to include sense forms

relational and interaction information between senses, we pre-process the corpora by replacing every89

word and synset pair with it’s respective sense tag and syntactic form. We then use the Word2Vec90

toolkit(Mikolov et al. (2013b)) with the Skip Gram objective function with Negative Sampling to91

obtain our "sense-form" representations.92

2.3 Thesaurus Inclusion93

While WordNet provides valuable structural information, the stringent structure leads to a rather94

limited synonym set. We thus make use of an external thesaurus 1to augment each synonym set.95

2.4 Word Sense Induction96

Now that we have sense and word representations, we ground the two in WordNet and obtain multi97

word sense representations. Thus, for given a word with word embedding vw and sense-form with98

sense-form embedding vs, we obtain unique word specific sense representations vsw as follows.99

vsw = P (senseform|word)vs

Arora et al. (2018) infact observe that a word vector lies in the linear superposition of it’s senses as :100

vword = α1vword_sense1 + α2vword_sense2+

α3vword_sense3 + ...

The coefficients contributing to each sense of a word is the ratio of frequency of the word senses.101

Thus given a word with 2 senses, the coefficients follow a probability distribution as 1 − clog(r)102

where r is the ratio of frequencies of the two senses for some constant c, where r < 101/c. We thus103

mimic this property and ground our sense representations to WordNet to obtain :104

P (senseform|word) = 1− clog(rank(senseform|word))

To start of, we first rank all the sense-forms a given word is found in decreasing order of likelihood.105

WordNet ranks synsets for a word based on the frequency that a word has occurred with respect to a106

synset sense. We thus exploit this property of WordNet to rank sense forms. Since we use an external107

thesaurus to augment synonym sets, a word typically has senseform not found in the original WordNet108

list. To account for this, we use the ontology structure to find the closest synset from the original list109

1https://www.thesaurus.com/
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to the senseform and use it’s rank. By conditioning rank on structure, this leads to ontology grounded110

sense forms. Once we obtain these word specific sense representations, we transfer this to pre existing111

embedding spaces to induce polysemy. To best combine information from the two vectors spaces, we112

experiment with two vector manipulations, concatenation and modification.113

1) Concatenation : We simply concatenate the word specific senseform vectors to the respective114

word’s pretrained word embedding115

vw,s = [vw; vsw ]

2) Modification :116

vw,s = [vw; vsw ; vw − vsw ; vw � vsw ]

The combination is thus done as a post processing step after obtaining word specific sense representa-117

tions.118

3 Experimental Setup119

In this section, we describe the experiments done to evaluate our multi sense word embeddings. We120

use an array of existing word similarity and relatedness datasets to conduct intrinsic evaluation and 4121

datasets across 2 tasks for extrinsic evaluation.122

3.1 Intrinsic Evaluation123

3.1.1 Word Representations124

We pick three different embeddings(Pennington et al. (2014) , Bojanowski et al. (2016b) , Mikolov125

et al. (2013a)) of 300 dimension to run our experiments126

3.1.2 Similarity Measures127

Given a pair of words w with M senses and w
′

with N senses, we follow Reisinger and Mooney128

(2010) and use two metrics for computing similarity scores without using context.129

AvgSim(w,w
′
) =

1

MN

M∑
i=1

N∑
j=1

(cos(vw,i, vw′ ,j))

MaxSim(w,w
′
) = max

1≤i≤M,1≤j≤M
cos(vw,i, vw′ ,j)

AvgSim computes word similarity as the average similarity between all pairs of sense vectors.130

Whereas MaxSim computes the maximum similarity over all pairwise sense vector similarities.131

3.1.3 Word Similarity132

We evaluate our embeddings on several standard word similarity datasets namely, SimLex (Hill et al.133

(2015)), WordSim-353(Gabrilovich and Markovitch), WS-S, MC-30(Miller and Charles (1991)) ,134

RG-65 (Rubenstein and Goodenough (1965)), YP-130 (Yang and Powers (2006)),SimVerb(Gerz et al.135

(2016))and Rare Word(RW) similarity (Luong et al. (2013a)).136

Each dataset contains a list of word pairs with a human score of how related or similar the two137

words are.We calculate the Spearman correlation between the labels and the scores generated by our138

method.We evaluate with another baseline using random vectors as senseform vectors along with139

word embeddings. MaxSim shows bigger improvements on all datasets, except for WordSim -353140

and Rare Word and we thus use AvgSim for it. The results are outlined in Table 1.141

3.1.4 Word Relatedness142

Integration of our vectors also shows improvements in word relatedness tasks.As our bench-143

mark, we evaluate on WS-R (relatedness) , MTurk(771) (Halawi et al. (2012)), MEN(Bruni et al.144
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Vector WS-S RG-65 RW SL-
999

YP MC SV-
3500

Skip-Gram 76.23 76.60 47.13 45.39 58.02 78.34 37.54
+RANDOM 52.6 60.77 28.92 33.59 44.48 70.76 25.20
+CoKE(C) 75.33 84.41 48.82 62.13 67.86 80.68 51.50
+CoKE(M) 73.37 84.65 48.91 62.10 67.62 80.47 51.42
Glove 79.86 76.60 43.72 43.66 55.51 78.87 29.38
+RANDOM 52.58 60.75 28.5 32.63 44.58 69.27 18.60
+CoKE(C) 81.19 84.53 45.81 57.25 63.67 82.7 42.93
+CoKE(M) 81.28 84.03 45.9 56.78 64.18 82.51 42.33
FastText 77.42 79.25 45.60 38.51 56.31 83.14 26.32
+RANDOM 60.07 76.02 33.35 31.1 46.6 64.11 14.30
+CoKE(C) 76.09 87.14 47.02 59.32 66.71 85.56 47.44
+CoKE(M) 76.14 86.73 46.88 59.18 66.55 85.23 47.41

Table 1: Spearman Correlation on Word Similarity Task..(Higher scores are better)

Vector WS-R MEN MT-
771

SGS

SG 58.11 72.45 65.21 57.15
+RANDOM 44.58 59.94 30.46 40.02
+CoKE(C) 58.46 71.94 62.52 60.82
+CoKE(M) 58.32 71.92 62.66 61.39
Glove 68.31 79.80 70.51 60.09
+RANDOM 45.14 64.48 53.07 30.1
+CoKE(C) 69.48 79.86 71.93 71.46
+CoKE(M) 69.35 79.53 72.00 71.23
FastText 65.49 75.3 65.19 55.40
+RANDOM 53.46 62.80 52.10 40.02
+CoKE(C) 65.37 74.73 65.52 64.67
+CoKE(M) 65.18 75.1 63.24 64.75

Table 2: Spearman Correlation on Word Relatedness Task

Model ρ x 100
Jauhar et al. (2015) 61.3

Iacobacci et al. (2015) , 2015 62.4
Huang et al. (2012) 62.8

Athiwaratkun and Wilson (2017) 65.5
CoKE + SG(Our model) 65.9

Chen et al. (2014) 66.2
Rothe and Schutze (2015) 68.9

Table 3: Spearman Correlation on Stanford Contextual Word Similarity Dataset.(Higher scores are
better)

(2012)),SGS130 ( Szumlanski et al. (2013)), this dataset also includes phrases. We evaluate the145

performance of our method against standard pretrained word embedding using spearman correlation.146

We depict the performance of MaxSim on MT(771) and SGS130 and AvgSim for WS-R and MEN.147

The results are outlined in Table 2.148

3.1.5 Word Similarity for Polysemous Words149

We use the SCWS dataset introduced by Luong et al. (2013a), where word pairs are chosen to have150

variations in meanings for polysemous and homonymous words. We compare our method with other151

state of the art multiprototype models .We find that our model performs competitively with previous152

models. We use the SkipGram(SG) word embedding with our method to allow for fair comparison153
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Figure 2: Performance improvements with CoKE.

with the previous methods listed which uses SkipGram based retrofitting to WordNet.The spearman154

correlation between the labels and scores are seen in Table 3.155

3.2 Extrinsic Evaluation156

3.2.1 Datasets157

For sentiment analysis we use the Stanford Sentiment Treebank dataset(Socher et al. (2013)). We train158

seperately and test on the Binary Version(SST-2) as well as the five class version(SST-5). For question159

classification, we evaluate performance on the TREC(Voorhees (2001)) question classification dataset160

which consists of open domain questions and semantic categories.161

Dataset GloVe CoKE CoVE CoKE(+CoVE ) ELMo CoKE(+ELMo)
SST-2 85.99 85.72 88.18 89.41 88.02 89.32
SST-5 50.19 50.56 51.4 50.97 51.62 51.60

TREC-6 89.90 91.53 90.56 91.15 91.59 92.78
TREC-50 83.84 85.5 84.59 85.46 84.31 84.249

Table 4: CoKE improves performance when used alone as well as when used with a disambiguation
system. Note, CoVE and ELMo are only used for disambiguation, their representations aren’t
included with CoKE(Higher scores are better)

3.2.2 Performance Comparisons162

We conduct two experiments to evaluate the usefulness of our vectors. The first comparison is against163

using pre-trained word embeddings alone(Pennington et al. (2014)). For this experiment, we represent164

each word as the average of all it’s sense vectors learned by CoKE.165

Recent trends have also lead to an increasing interest in transfer learning. Both CoVE( McCann et al.166

(2017)) and ELMo( Peters et al. (2018) )show significant improvements in extrinsic tasks by inclusion167

with pre-trained word embeddings. As shown by Peters et al. (2018), these systems inherently act as168

word sense disambiguation and representation systems. They give word representations conditioned169

on the context it occurs in. However, they rely entirely on distributional semantics and could benefit170

from including knowledge base information. Thus in our second experiment, we first train and test171

using vanilla CoVE and ELMo representations. We then use them as disambiguation systems but172
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Figure 3: Sense clusters for "rock"

replace word representations with CoKE embeddings instead and show performance improvements.173

For disambiguating using CoKE and ELMo, we use the same approach as outlined in Peters et al.174

(2018). We first use the sense tagged corpus to compute CoVE or ELMo word representations175

and then take the average representation for each sense to obtain sense representations. During176

disambiguation, we again use CoVE or ELMo architecture to compute representations for a given177

word and then take the nearest neighbor sense from the training set to get the correct sense. We then178

use respective CoKE embeddings on the disambiguated data.179

3.2.3 Training Details180

To test for performance of different embeddings on datasets, we implement a an LSTM(Hochreiter181

and Schmidhuber (1997)) with a hidden size of 300 and run our experiments. Parameters were182

fine-tuned specific to task and embedding type.183

4 Qualitative Analysis184

In this section, we look at some visualizations of senses induced and show how they are easily185

interpretable. Since the sense tags have lexical mappings to an ontology,they can be looked up to186

find meanings. Moreover, the semantic distribution also plays a role in obtaining meaningful sense187

clusters. We analyze two things 1) Sense clusters induced 2)How using different sense forms affect188

representations and sense interactions in their respective word forms. For all our analysis, we use the189

concatenated version of CoKE + GLoVE embeddings and do a dimensionality reduction.190

4.1 Sense Clusters191

: We look at the sense clusters formed by our word specific senses embeddings for the word "rock".192

The clusters for the word "rock" is depicted in Fig2, the multiple fine grained embeddings cluster193

to form 5 basic sense meanings. We see three distinct clusters that dominate. "Cluster#2" can be194

interpreted as all synsets that speak of rock as a "substance". In , "Cluster#3", the synsets cluster195

together to speak of rock as "music". An interesting property can be observed comparing "Cluster#1"196

and "Cluster#5" . The senses found in both of these clusters interpret "rock" as "movement/motion".197

However the two distinct clusters also capture the kind of motion . For instance ,the senses roll.v.13198

and rock.v.01 in "Cluster#5" map specifically "sideways movement". While the senses in "Clus-199

ter#1" map to glosses "sudden movements"(convulse , lurch,move , tremble) and "back and forth200

movements(wobble , rock)". Another interesting property is depicted by "Cluster#4", although they201

are more synonymous in meaning to rock as a "substance", the senses for gravel cluster very closely202

to senses mapping to gloss "jerking" movements capturing deeper relations between sense.203

204
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Figure 4: Sense interaction of mastermind.v.01 for the word "plan"

Figure 5: Sense interaction of mastermind.v.01 for the word "planning"

4.2 Sense Forms205

In this section, we analyze how different sense form representations interact for synonyms within a206

sense. We do so by considering the word forms "plan" and "planning" both of which are synonyms of207

their respective senseforms of "mastermind.v.01" ( Gloss : plan and direct ,a complex undertaking).208

In order to observe difference in relationships of word forms, we consider only common synsets in209

"plan" and "planning" for visualization and observe the interactions with each other. For the word210

"plan" as shown in Figure 5, we observe that the synset "mastermind" is closer in proximity to synsets211

that map to words like "plan" , "sketch" , "prepare". In contrast the same synset in the embedding212

space for "planning" as shown in Figure 6 interacts closely with synsets that are analogous to "project213

planning" , "scheduling" , "organizing". This shows how using different sense form representations,214

leads to different interactions among the same group of synsets for different words and allows for215

better interaction that is more unique to each word.216

5 Conclusion217

In our work, we explore the possibility of obtaining multiword prototypes from embedding spaces218

by directly transfer learning from an ontology. The prototypes allow ease of use with WSD systems219

, can easily be used in downstream applications since they are portable and are flexible to use in a220

wide variety of tasks. While previous work on polysemy falls under three distinct clusters of learning221

multi word sense representations, resource specific sense vectors and grounding vectors directly to222

lexicons. Our work lies in the intersection.223
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