
Towards Explainable AI Planning as a Service

Michael Cashmore1, Anna Collins1, Benjamin Krarup1, Senka Krivic1,
Daniele Magazzeni1, David Smith

1King’s College London, United Kingdom, {firstname.surname}@kcl.ac.uk

Abstract

Explainable AI is an important area of research within which
Explainable Planning is an emerging topic. In this paper, we
argue that Explainable Planning can be designed as a service
– that is, as a wrapper around an existing planning system that
utilises the existing planner to assist in answering contrastive
questions. We introduce a prototype framework to facilitate
this, along with some examples of how a planner can be used
to address certain types of contrastive questions. We discuss
the main advantages and limitations of such an approach and
we identify open questions for Explainable Planning as a ser-
vice that identify several possible research directions.

1 Introduction
Explainable Artificial Intelligence (XAI) is an emerging re-
search area in AI, motivated by the need to engender trust in
users by explaining to them why the AI is making a particu-
lar decision.

While the main focus of XAI has been in Machine Learn-
ing, recently there has been growing interest in Explain-
able Planning, as shown by many planning contributions
at the IJCAI International Workshops on XAI (XAI 2017;
2018) and the successful first ICAPS Workshop on Ex-
plainable Planning (XAIP 2018). Since the initial ideas of
Smith (2012), there has been significant effort, in partic-
ular on the topic of Human-Aware Planning and Model
Reconciliation (Chakraborti et al. 2017; Zhang et al. 2017;
Sreedharan, Chakraborti, and Kambhampati 2018). Other
significant works include topics such as Explainable Agency
(Langley et al. 2017), moral values (Lindner, Mattmüller,
and Nebel 2018), insights from social science (Miller 2019),
and preferred explanations (Sohrabi, Baier, and McIlraith
2011).

A roadmap for Explainable Planning (XAIP) was pro-
posed by Fox, Long, and Magazzeni (2017). They discussed
some types of user questions that should be addressed. In
particular, one type of question is of the form “Why did you
do A rather than B?”. We refer to this type of question as
a contrastive question. To answer this kind of question one
must reason about the hypothetical alternative “B”, which
likely means constructing an alternative plan where “B” is
used rather than “A”. The hypothetical alternative would be
a plan that is not better than the one found by the planner or
a plan which is better than the original one. Providing such

s0

sk

g

sk+1

sk+2

rk+1

rk+2

s0

sk

g g

sk+1

sk+2

rk+1

rk+2

rk+n
sk+m

A B A B

Figure 1: Generating contrastive explanations for a question
”Why A rather than B?” at the state sk.

a comparison between alternatives is what is called a con-
trastive explanation.

Fig. 1 shows an example of a contrastive question (Fox,
Long, and Magazzeni 2017). Given a plan from the initial
state s0 to the goal g, the users might suggest an alterna-
tive action B rather than A at the state sk. To provide a con-
trastive explanation means forcing action B and then replan-
ning from the resulting state to see the alternative plan. One
possible alternative is a sequence of different actions that
rejoin the original plan with a different cost (Fig. 1 left).
Another possibility is a completely alternative sequence of
actions that achieves the goal (Fig. 1 right). In both cases the
user can compare costs to gain confidence on the quality of
the plan found by the planner.

Given that planning is now used in safety-critical appli-
cations, for example oil-well drilling (Long 2018), explana-
tions play a key role. Crucially, the greater the expense or
risks in executing the plan, the more important the role of
explanations for engendering trust in the users who are re-
sponsible and accountable for authorising the execution of a
plan.

In this paper, we propose that Explainable Planning can
be designed and constructed as a service – i.e., as a wrap-
per around an existing planning system that takes as input
the current planning problem and domain model, the current
plan, and the user’s question. It must have the ability to in-
voke the existing planning system on hypothetical problems
in order to address contrastive questions. This approach al-
lows users to get explanations constructed from their own
trusted planner and model. In complex or safety-critical do-
mains this requirement is a crucial one. There is one im-



portant requirement, however; in order to effectively use the
existing planning system, the XAIP service must be able to
add constraints on the planning problem and domain model.
However, the user will not accept an explanation generated
using a model that differs from the original one that is poten-
tially verified and trusted. Hence the explanation generated
using the model revised with constraints has to be validated
against the original model. In other words, the contrastive
explanation should contain an executable plan which leads
to the goal state that the original planner could have created
using the original model.

Ideally, constraints over models should be described us-
ing a rich language designed for specifying constraints on
the form of a desired plan. However, in many cases, these
constraints can be compiled down into the domain model
directly, which requires that the XAIP service have visibil-
ity and access into that model. This approach is otherwise
agnostic about the domain model and the planner.

We have implemented this approach in a prototype frame-
work for XAIP as a Service, in a PDDL setting, as it is a
widely used planning language.

In particular, in this paper, we (1) present a prototype
framework that enables Explainable Planning as a Service
for contrastive questions, (2) describe some important cate-
gories of contrastive questions, (3) describe how the service
compiles these contrastive questions into hypothetical plan-
ning problems that can then be solved by the existing plan-
ner to facilitate contrastive explanations, and (4) discuss the
current state of our implementation and a roadmap for future
work on Explainable Planning as a Service.

The paper is organised as follows: we start with a run-
ning example in the next section. In Section 3 we describe
the XAIP as a Service framework, providing details for each
component. In Section 4 we briefly discuss the framework
that implements this approach. In Section 5 we discuss open
issues and present a roadmap that identifies several possible
research directions. Section 6 concludes the paper.

2 Running Example
As a running example throughout the paper, we use a sim-
plified version of a safety-critical model that might be used
in industry. The model describes a warehouse organisation
delivery system. There are one or more robots that work to-
gether to move pallets from their delivery location to the cor-
rect storage shelf. Before the pallets can be stored the shelf
must be scanned.

Fig. 2 defines the domain for this model. There are four
temporal actions, goto waypoint, scan shel f , load pallet,
and unload pallet. The goto waypoint action is used for
the robots to navigate the factory. It ensures that the shelf
the robot is moving to is not occupied by another robot to
stop congestion. The scan shel f action is a sensing action.
The load pallet action loads the pallet from a shelf on to
the robot. The robots do not have the ability to scan the shelf
while holding a pallet. Finally, the unload pallet action un-
loads the pallet onto a previously scanned shelf.

The problem we use as an example is shown in Fig. 3.
There are two robots, two pallets, and six waypoints.

An example plan for this planning problem is shown in
Fig. 4, its cost is its duration (20.003) which in this case is
the optimal plan 1. Upon close examination, the plan does
not appear straight-forward. Both pallets are delivered by a
single robot, and there are a lot of movements that appear to
be inefficient. For example, the robot Tom moves away from
waypoint sh6, even though there is an undelivered pallet at
that location. It might seem more efficient to pick up that pal-
let while the robot is beside it. Without access to the domain
and problem shown in Fig. 2 and 3, or without understand-
ing of PDDL semantics, the behaviour of these robots will
be opaque to a user, and explanation required.

(:types
waypoint robot - locatable
pallet

)
(:predicates

(robot_at ?v - robot ?wp - waypoint)
(connected ?from ?to - waypoint)
(visited ?wp - waypoint)
(not_occupied ?wp - waypoint)
(scanned_shelf ?shelf - waypoint)
(pallet_at ?p - pallet ?l - locatable)
(not_holding_pallet ?v - robot)

)
(:functions

(travel_time ?wp1 ?wp2 - waypoint))
(:durative-action goto_waypoint

:parameters (?v - robot
?from ?to - waypoint)

:duration(= ?duration
(travel_time ?from ?to))

:condition (and
(at start (robot_at ?v ?from))
(at start (not_occupied ?to))
(over all (connected ?from ?to)))

:effect (and
(at start (not (not_occupied ?to)))
(at end (not_occupied ?from))
(at start (not (robot_at ?v ?from)))
(at end (robot_at ?v ?to)))

)
(:durative-action scan_shelf

:parameters (?v - robot
?shelf - waypoint)

...)
(:durative-action load_pallet

:parameters (?v - robot ?p - pallet
?shelf - waypoint)

...)
(:durative-action unload_pallet

:parameters (?v - robot ?p - pallet
?shelf - waypoint)

...)

Figure 2: A fragment of a robotics domain used as a running
example. Some of the operator bodies have been omitted for
space.

1The plan is obtained using the planner POPF (Coles et al.
2010). However our framework accounts for all PDDL2.1 planners.



(define (problem task)
(:domain warehouse_domain)
(:objects

sh1 sh2 sh3 sh4 sh5 sh6 - waypoint
p1 p2 - pallet
Jerry Tom - robot

)
(:init

(robot_at Jerry sh3)
(robot_at Tom sh5)
(not_holding_pallet Jerry)
(not_holding_pallet Tom)
(not_occupied sh1) (not_occupied sh2)
(not_occupied sh4) (not_occupied sh6)
(pallet_at p1 sh3) (pallet_at p2 sh6)
(connected sh1 sh2) (connected sh2 sh1)
(connected sh2 sh3) (connected sh3 sh2)
...
(= (travel_time sh1 sh2) 4)
(= (travel_time sh2 sh1) 4)
(= (travel_time sh2 sh3) 8)
(= (travel_time sh3 sh2) 8)
...

)
(:goal (and

(pallet_at p1 sh6)
(pallet_at p2 sh1))))

Figure 3: A fragment of the problem instance used in the
running example.

0.000: (goto_waypoint Tom sh5 sh6) [3.000]
0.000: (load_pallet Jerry p1 sh3) [2.000]
2.000: (goto_waypoint Jerry sh3 sh4) [5.000]
3.001: (scan_shelf Tom sh6) [1.000]
4.001: (goto_waypoint Tom sh6 sh1) [4.000]
7.001: (goto_waypoint Jerry sh4 sh5) [1.000]
8.001: (scan_shelf Tom sh1) [1.000]
8.002: (goto_waypoint Jerry sh5 sh6) [3.000]
9.001: (goto_waypoint Tom sh1 sh2) [4.000]
11.002: (unload_pallet Jerry p1 sh6) [1.500]
12.503: (load_pallet Jerry p2 sh6) [2.000]
14.503: (goto_waypoint Jerry sh6 sh1) [4.000]
18.503: (unload_pallet Jerry p2 sh1) [1.500]

Figure 4: Plan generated from the example domain and prob-
lem with cost 20.003.

3 Providing explanations as a Service
We present an XAIP Service framework for providing con-
trastive explanations. Figure 5 summarises the approach
taken by the framework, following these steps:

Step 1: The XAIP Service takes as input the planning prob-
lem and model, the plan, and the question from the
user.

Step 2: The contrastive question implies a hypothetical
model characterised as an additional set of con-
straints on the actions and timing of the original
problem. These constraints can then be compiled
into a revised domain model (HModel) suitable for
use by the original planner.

Planner

Plan

HModel

HPlan

HModel 
Generation

HPlan
Synthesis

Validate
HPlan

Model
step 1 

XAIP Service

?

step 1 

step 2

step 3 

Contrastive 
Explanation

step 4 

HPlan

step 5 

Iterative 
Process

step 6 

Figure 5: Architecture for Explainable Planning as a service,
following the steps described in Section 3.

Step 3: The original planner uses the HModel as input to
produce the hypothetical plan (HPlan).

Step 4: The XAIP Service validates the HPlan according to
the original model.

Step 5: A contrastive explanation is constructed from the
original plan and HPlan, and shown to the user.

Step 6: The user can choose to iterate the process from Step
1 with a new question. The user can choose to re-
peat the process with the original model and plan,
or any HModel and HPlan.

The role of the HModel is to coerce the planner into cre-
ating the alternative plan that includes the actions and tem-
poral constraints the user has in mind. One or more con-
straints must be added to the original model to create the
HModel. We distinguish between three levels of abstraction
in this process: In the first level the user question is given
in natural language. The second level is a formal question
that is derived from the natural language question. The for-
mal question represents a set of constraints that are to be
imposed upon the original model. Finally, the third level is
a compilation of the formal question into the planning lan-
guage. In our framework we focus on PDDL2.1 as the plan-
ning language, as we are interested in temporal and numeric
planning problems. In this paper we describe the overall ap-
proach, and present a framework that encapsulates this pro-
cess. The framework is modular, and allows different inter-
faces for providing user questions, and presenting explana-
tions. The interface currently implemented in the framework
allows the user to select a formal question directly. This rep-
resents constraints upon the plan. The set of formal question
types from which the selection is made is described below
in Section 3.1. For example, the user might have a question
for the running example such as:

“At the point in the plan where action
(goto waypoint Tom sh6 sh1) is used, there’s a
pallet, so why doesn’t Tom pick it up?”

From the user question above the following formal question
is derived:

Why is action A used in state S, rather than action B?



Where action A is (goto waypoint Tom sh6 sh1), action B
is (load pallet Tom p2 sh6), and the state S is the state in
which action A was originally applied. This constraint en-
forces that the plan includes action B in state S instead.

Finally, this constraint can be compiled into the original
model to produce the HModel, as described in Section 3.2.

3.1 Encoding User Questions
The user question is encoded as a set of constraints, which
represent the formal question, and this is be done through
an user interface where the user is guided to select the con-
straints that match their question. The questions we are in-
terested in are contrastive questions of the form, ”Why A
rather than B?”, where A is the fact (i.e. what occurred in
the plan) and B is the foil (i.e. the hypothetical alternative ex-
pected by the user). The formal questions currently handled
by our approach are:
• “Why is action A used in the plan, rather than not being

used?” This constraint would prevent the action A from
being used in the plan.

• “Why is action A not used in the plan, rather than being
used?” This constraint would enforce that the action A is
applied at some point in the plan.

• “Why is action A used, rather than action B?” This con-
straint is a combination of the previous two, which en-
forces that the plan include action B and not action A.

• “Why is action A used before/after action B (rather than
after/before)?” This constraint enforces that if action A is
used, action B must appear earlier/later in the plan.

• “Why is action A used outside of time window W, rather
than only being allowed inside W?” This constraint forces
the planner to schedule action A within a specific time
window.

One specific form of the question: “Why is action A used,
rather than action B?”, represented in Fig. 1, is “Why is ac-
tion A used in state S, rather than action B?”. This refine-
ment forces the plan to include action B in state S, where
B is an action (different from A) that is valid in that state.
Using this constraint, the actions leading up to state S would
remain unchanged, and the action A would still be allowed
in other parts of the plan.

Deriving a formal question from a user question in natu-
ral language represents a significant research challenge. We
discuss how a formal question might be identified automati-
cally from natural language in Section 5.

While this set of formal questions covers a wide a range
of possible situations and explanations, this does not com-
prise a complete set of constraints that could be applied to
the problem. However, a single explanation does not exist in
a vacuum, and a user might have a series of questions that
will iteratively increase their understanding of the plan pro-
posed by the planner, or the user can realise that the first
question was not complete. For this reason, following ideas
of Smith (2012), the framework allows the user to apply a se-
quence of formal questions to a single plan. For example, the
general question “Why is action A used, rather than action
B” can be seen as a combination of the first two questions,

Figure 6: Example of iterative explanations.

which force action B to appear in the plan and not action A.
This allows for a much wider range of explanations. Clearly
the requirement of the plan being valid according to the orig-
inal model must be satisfied at each iteration.

To allow the user to explore the space of hypothetical
plans, it is possible to generate a tree of contrastive expla-
nations in our framework, as illustrated in Fig. 6. Each node
of the tree represents a hypothetical plan that was generated
following a user question. The user can impose additional
formal questions to a given plan in order to more precisely
explore the behaviour that they are interested in. If the first
question did not result in expected behaviour, the user can
ask new questions to refine the hypothetical model until they
reach a contrastive explanation that is satisfying to them.

As previously identified, the corresponding formal ques-
tion in our running example is “Why is action A
used in state S , rather than action B?”, where ac-
tion A is (goto waypoint Tom sh6 sh1), action B is
(load pallet Tom p2 sh6), and the state S is the state in
which action A was originally applied.

3.2 Constructing the HModel
Constructing an HModel consists of taking the constraints
in the formal question and compiling them into the planning
domain model.

We give one example of this step, using the original model
and plan shown in Section 2, and the question above. The
compilation is formed such that the ground action B appears
in the plan in place of the action A. Given a plan:

π = 〈a1,a2, . . . ,an〉
The ground action ai = A is replaced with B. The state di-
rectly after B has finished executing is found. This then be-
comes the new initial state I′ in the HModel. The frame-
work uses the effects at each happening, computed by
VAL (Howey, Long, and Fox 2004), up to the replacement
action to compute I′.

In addition, the new initial state I′ is extended with a set
of timed-initial-literals (TILs) which model the effects of
actions that have started but not yet finished execution in the
state selected by the user. A TIL is a tuple 〈t, p〉 where p is
the effect that is asserted, and t is the time at which it is ap-
plied. Specifically, for each action a j not finished executing
in state S, we add the TIL:

〈start(a j)+duration(a j)− start(B),e f f ect(a j)〉



0.000: (goto_waypoint Tom sh5 sh6) [3.000]
0.000: (load_pallet Jerry p1 sh3) [2.000]
2.000: (goto_waypoint Jerry sh3 sh4) [5.000]
3.001: (scan_shelf Tom sh6) [1.000]
4.001: (load pallet Tom p2 sh6) [2.000]
6.002: (unload_pallet Tom p2 sh6) [1.500]
7.502: (goto_waypoint Tom sh6 sh1) [4.000]
7.001: (goto_waypoint Jerry sh4 sh5) [1.000]
11.502: (scan_shelf Tom sh1) [1.000]
11.503: (goto_waypoint Jerry sh5 sh6) [3.000]
12.502: (goto_waypoint Tom sh1 sh2) [4.000]
14.503: (unload_pallet Jerry p1 sh6) [1.500]
16.004: (load_pallet Jerry p2 sh6) [2.000]
18.004: (goto_waypoint Jerry sh6 sh1) [4.000]
22.004: (unload_pallet Jerry p2 sh1) [1.500]

Figure 7: HPlan generated with a cost of 23.504. The re-
placed action is highlighted.

where start(a j) (start(a j)) is the time at which the action
a j (B) started execution, duration(a j) is the planned dura-
tion of action a j, and e f f ect(a j) is the end effect of action
a j. In this example the action (goto waypoint Jerrysh3sh4)
is still executing in the state where our action is re-
placed. We add a TIL which makes (not occupied sh3), and
(robot at Jerrysh4) true at time 2.999 in I′. This simulates
finishing of the concurrent action execution.

A plan is then generated from this new state for the origi-
nal goal, which gives us the plan:

π
′ = 〈a′1,a′2, . . . ,a′n〉

The HPlan is then the initial actions of the original plan π up
to ai, concatenated with the replaced action B and the new
plan π ′:

〈a1,a2, . . . ,ai−1,B,a′1,a
′
2, . . . ,a

′
n〉

The result is the HPlan shown in Fig. 7. The replaced action
(B) is shown in bold. The initial actions before B are the ac-
tions from the original plan. The remaining actions are those
of the new plan π ′. As part of the service, the HPlan is vali-
dated with respect to the original model before a contrastive
explanation is formed.

Note that in this HPlan, the user action is immediately
reversed. This would not be a satisfactory explanation to the
user, who wishes to see the plan in which carrying the pallet
is essential to achieve the goal. Thus, it is not sufficient for
the user suggested action to just be included in the plan, it
must be part of the plan’s key causal structure.

Fink and Yang (1992) define four categories of redundant
actions, and Chrpa, Mccluskey, and Osborne (2012) present
a simple algorithm to determine if an action is redundant in
a sequential plan. As a post-processing step, after generating
an HPlan, redundant actions of this kind can be detected. If
suggested actions are not essential (redundant) to the HPlan,
the planner needs to continue to search for additional plans
until it finds one where the suggested actions are part of the
causal structure for achieving the original goals. This addi-
tional search could potentially be made more efficient by in-
troducing additional constraints (nogoods) into the HModel

that rule out alternative ways of achieving those goals, ulti-
mately leaving only plans where the suggested actions are
essential. For example, if the action B is redundant in the
HPlan and action C is used instead of A, an additional con-
straint could be introduced to disallow C. In general, it is still
an open question how to automatically infer useful nogood
constraints from redundant HPlans.

An alternative is to allow the user to refine their question
to rule out additional alternative solutions in which the sug-
gested action is not essential. For example, the user’s ques-
tion might be expanded to include the constraint “and don’t
use actions C or D either”. In either case it is clear that XAIP
as a Service needs to follow an iterative approach where the
planner generates a sequence of progressively more refined
solutions, as additional constraints are imposed by nogoods,
or by successive refinement of the user question. This is dis-
cussed further in Section 3.3.

Ideally, we would like to compile the original user ques-
tion into an HModel that guarantees that suggested actions
are essential to the causal structure of the plan (not redun-
dant). However, it is an open question as to whether it is
possible to do this. We suspect not. It is easy to force an ac-
tion into a plan by adding a phantom effect to the action, and
adding this phantom proposition to the goal. However, it is
not obvious how to ensure that the action play an essential
part in the achievement of other goals.

In addition to the example shown here, our framework in-
cludes compilations for all of the questions introduced in
Section 3.1. Contrary to the compilation process of the pre-
sented example, the constraints posed from other questions
are directly compiled into HModels which are used to pro-
duce HPlans.

3.3 Explainable Planning as an Iterative Process

Following the ideas of iterative processes by Smith (2012),
we follow the same approach for explainable planning.

The user is able to use the framework to iterate the pro-
cess by asking further questions, and refining the HModel.
If the explanation does not completely satisfy the user, this
allows the user to impose additional constraints that can be
compiled into the HModel. For example, given the HPlan in
Fig. 7, the user may have an additional question:

“Wait, shouldn’t Tom have taken the pallet to its desti-
nation?”

Through the user interface with the framework the user se-
lects a formal question. The formal question which encapsu-
lates this user question is

Why is the action A not used in the plan, rather than
being used?

Where action A is the action (unload pallet Tom p2 sh1).
This constraint enforces that action A is used in the plan.

This constraint compiled into the HModel to enforce the
user’s suggestion, resulting in a new HModel. The HModel
is then solved with the original planner to obtain the plan
shown in 8.



0.000: (goto_waypoint Tom sh5 sh6) [3.000]
0.000: (load_pallet Jerry p1 sh3) [2.000]
2.000: (goto_waypoint Jerry sh3 sh4) [5.000]
3.001: (scan_shelf Tom sh6) [1.000]
3.002: (goto_waypoint Tom sh6 sh1) [4.000]
7.001: (goto_waypoint Jerry sh4 sh5) [1.000]
7.003: (scan_shelf Tom sh1) [1.000]
7.004: (goto_waypoint Tom sh1 sh6) [4.000]
11.004: (load_pallet Tom p2 sh6) [2.000]
13.004: (goto_waypoint Tom sh6 sh1) [4.000]
17.004: (unload pallet Tom p2 sh1) [1.500]
17.005: (goto_waypoint Jerry sh5 sh6) [3.000]
20.005: (unload_pallet Jerry p1 sh6) [1.500]

Figure 8: HPlan generated with the second user constraint
maintained, with a cost 21.505. The action suggested by the
user is highlighted.

3.4 Forming Contrastive explanations
A contrastive explanation draws from the original plan π , the
HPlan πH and the validation outcome. Defining a contrastive
explanation is a complex task. In this paper we introduce a
foundation for the contrastive comparison as a result of a
comparison between the original plan and the HPlan.

The contrastive explanation can be defined as

CE = 〈comparison,Q〉

where comparison contains relevant information about the
differences in plans that were caused by the user question Q:
comparison(π,πH) = 〈existing,removed,added,di f f cost〉
where:
• existing - actions in the plan which remained the same
• removed - actions which were removed from the plan
• added - actions which were added in HPlan and were not

in original plan
• diffcost - the difference between the cost of the plans

By observing the comparison, a user can reason about
the effect of the constraints that their question imposed and
about the behaviour of the model. The validation outcome
(performed against the original model) reassures the user
about the validity of the HPlan. It also helps the user un-
derstand the difference between the costs of the two plans.
The contrastive explanation for the HPlan in Fig. 8 is shown
in Fig. 9.

4 XAIP as a Service Framework
For the purpose of evaluating the proposed approach to Ex-
plainable Planning as a Service we implemented a modular
framework for domains and problems written in PDDL2.1.
This prototype works with any planner capable of reasoning
with PDDL2.1. The architecture of the framework is illus-
trated in Fig. 10. Interaction with a user is enabled through
a console interface as well as a graphical user interface.

The Controller controls the behaviour of the XAIP frame-
work and communicates with all other segments of the
framework. The XAIP Interface creates a knowledge base

existing:

0.000: (goto_waypoint Tom sh5 sh6) [3.000]
0.000: (load_pallet Jerry p1 sh3) [2.000]
2.000: (goto_waypoint Jerry sh3 sh4) [5.000]
3.001: (scan_shelf Tom sh6) [1.000]
3.002: (goto_waypoint Tom sh6 sh1) [4.000]
7.001: (goto_waypoint Jerry sh4 sh5) [1.000]
7.003: (scan_shelf Tom sh1) [1.000]
17.005: (goto_waypoint Jerry sh5 sh6) [3.000]
20.005: (unload_pallet Jerry p1 sh6) [1.500]

removed:

9.001: (goto_waypoint Tom sh1 sh6) [4.000]
12.503: (load_pallet Jerry p2 sh6) [2.000]
14.503: (goto_waypoint Jerry sh6 sh1) [4.000]
18.503: (unload_pallet Jerry p2 sh1) [1.500]

added:

7.004: (goto_waypoint Tom sh1 sh6) [4.000]
11.004: (load_pallet Tom p2 sh6) [2.000]
13.004: (goto_waypoint Tom sh6 sh1) [4.000]
17.004: (unload_pallet Tom p2 sh1) [1.500]

di f f cost = 21.505−20.003 = 1.502

Figure 9: The contrastive explanation that is presented to the
user.

Model

Planner

Plan

Question

XAIP
Interface

User

InterpreterHuman -XAIP
 Interface

Controller VAL

Compilation

XAIP 
Service

Figure 10: Architecture of the framework for Explainable
Planning as a service.

from the PDDL files of the original model. This module
also interacts with a planner. The Compilation module uses
the constraints of the formal question to create the HModel.
The validation module VAL (Howey, Long, and Fox 2004)
is used as the validation technique.

The Human-XAIP interface and interpreter receives the
questions from the user, creates a formal question instance,
and demonstrates the explanation to the user. There are two
implementations of this interface: a console and graphical
user interface (Fig. 11). Both provide the same functionality,
in which a user can see the plan, ask a formal question from
the set of questions presented in Section 3.1, either by using
a simple console interface or a set of forms for filling in the
necessary details of the question. The output of the system is
a visualisation of the original plan, HPlan, and VAL report.
Actions in the plan are highlighted to correspond with the
comparison described in Section 3.4.



(a) Loading model (b) Plan visualisation (c) Question selection

Figure 11: Screenshots of the graphical user interface of the XAIP Service framework

5 Discussion
In order for Explainable Planning as a service to become
effective, we discuss some challenges and outline some po-
tential future work.

• Understanding user questions. The framework is modu-
lar to enable different ways for communicating a question
to the AI system. Depending on the user interface a ques-
tion could be given in different forms, for example speech,
visual gestures or text input. Different technologies can
be used to translate the question into a formal question
such as: speech recognition, Natural Language Process-
ing methods or human body tracking. Context can play
a crucial role in understanding the question that the user
asks. Borgo, Cashmore, and Magazzeni (2018) showed
an example of a question requiring two different explana-
tions depending on the context in which it was asked. In
each case, improperly interpreting the question lead to an
unsatisfying explanation. One promising direction for ad-
dressing this challenge is the use of argumentation (Cyras
et al. 2019).

• Formally categorising the set of questions that can be
answered with contrastive explanations. Although some
philosophers, such as van Fraassen (1980), noted that
“why”-questions can be implicitly or explicitly under-
stood as: “why is A better than some alternative?”, there
might be questions in the planning space for which con-
trastive explanations are not well-suited. For example, if
the user is simply trying to understand the conditions or
requirements for various actions in the plan, or the causal
or temporal structure of the plan, a contrastive explana-
tion may not be appropriate. Instead it might be more ap-
propriate to highlight the causal structure in an abstracted
version of the plan. An important issue for future work
is the development of a formal taxonomy of the types of
questions that should be addressed using contrastive ex-
planations (Miller 2018).

• Expressing constraints on actions and plan structure. A
contrastive question requires creating a hypothetical plan-
ning model, which is often characterised by constraints
on what actions are permissible in the plan and how they
are arranged. For example, the question “Why did you use

action A rather than action B for achieving P?” requires
planning with the hypothetical model where B is required
to be in the causal support for achieving P, but A is not
in that causal support. This is substantially more difficult
than just universally excluding A from the plan and forc-
ing B into the plan because A or B might be required or
prohibited elsewhere in the plan. Currently we do not have
a good language for expressing these kinds of constraints.
PDDL 3 allows the expression of simple constraints on
the order in which goals are achieved, but does not have
the ability to express constraints on action inclusion, ex-
clusion, or ordering, and does not allow us to place more
complex constraints on how something is achieved or on
plan structure. We would like to be able to say something
simple like “Supports(B,P)∧¬Supports(B,P)”. LTL will
likely play a key role in defining the semantics of any such
language, but additional concepts concerning plan struc-
ture are needed, such as the ability to specify that an ac-
tion is part of the causal support for a goal or subgoal.

• Compiling constraints into the HModel. We showed ex-
amples of how a constraint derived from a user question
could be compiled to form an HModel. However, pro-
viding compilations for more general constraints (like the
one above) and ensuring their correctness is an important
issue. Additionally, the compilation can lead to producing
plans which might differ from the original plan in ways
unrelated to the user question. We believe that the work
on planning with preferences (Gerevini, Saetti, and Serina
2006) and state-trajectory constraints (Baier et al. 2009)
is an important first step, but does not yet address the full
range of constraints needed.

• Forming and presenting contrastive explanations. The
form of contrastive explanation we provide, as discussed
in Section 3.4 and shown in the GUI in Fig. 12, is a
very simple one that presents the original plan and HPlan
and highlights the action differences between them. Also,
it is possible to obtain hierarchical contrastive explana-
tions by asking consecutive questions. However, this does
not show the causality of the plans, or the differences in
their causal structure. Fig. 13 shows a possible compos-
ite causal representation for both the original plan and



Figure 12: Output of the GUI in which differences in the
plans are highlighted.

the HPlan, with the differences shown in different col-
ors. This way of visualising the explanation can help to
elucidate how the two plans achieve, or fail to achieve,
the (sub)goals of the problem with respect to specific ac-
tions in the domain. However, for larger and more com-
plex plans we expect that some form of abstraction will
be necessary in order to effectively compare and con-
trast plans; the user might wants to see the important
differences between two plans, not all the details. What
counts as details remains an open research question, but
is likely related to action costs and to the ease and im-
portance of achieving various subgoals. Sreedharan, Sri-
vastava, and Kambhampati (2018) have done some initial
work in this area, and have considered milestones as im-
portant abstractions for purposes of explanation. The is-
sues of what constitutes a good explanation, and how to
visualize it or present it remain intertwined. Some synergy
between researchers in planning, data visualization (e.g.,
Chakraborti et al. (2018) or Mennatallah et al. (2018)),
and social sciences (Miller 2019) would be fruitful.

• Providing explanations for complex questions. In the pre-
sented approach, a user is able to iteratively ask questions

to refine the explanation. If the explanation does not sat-
isfy the user, or the question they have is more complex,
this approach can provide the user with a deeper under-
standing. However, this process could be automated by
analysing a more complex question the user might have,
and decomposing it into several formal questions. In this
case new constraints can be added to the HModel au-
tomatically until the explanation addresses the intended
question and potentially the context it was asked within.

• Assessing the effectiveness of explanations. We believe
it is crucial to be able to acquire evidence of the effec-
tiveness of an explanation. In particular, if engendering
trust is the motivation for Explainable Planning and XAI
in general, then we should look at the actual experience
of the users and check whether they gain confidence in
the planner or not. For this, a vital step for planning re-
searchers is to include user studies to assess the effective-
ness of the explanations they are providing.

While of course this is not an exhaustive list of all the
necessary next steps, it already provides an interesting set
of challenges that should be addressed. Note that while we
are advocating for Explainable Planning as a service, we
are well aware that this is not the only way to provide ex-
planations for planning. In particular, we envisage at least
the following possible limitations that nevertheless repre-
sent important research questions that should be considered
by the Explainable Planning community. First we acknowl-
edge that contrastive explanations are not suitable to answer
every type of question that the user might have. However,
we argue that contrastive questions are common and that
contrastive explanations therefore play a significant role, as
also acknowledged by other researchers in Explainable AI,
e.g, (Miller 2018). Second, by lifting the requirement that
the explanation is generated by the planner used to generate
the original plan, it could be possible to modify the search
procedure used by the planner to generate explanations from
a wider set of constraints. Third, we are assuming that there
is no uncertainty in the original planning model and that the
model is correct. However, this is not always the case and

goto_waypoint_start(Tom,sh5,sh6)

goto_waypoint_end(Tom,sh5,sh6)

scan_shelf_start(Tom,sh6)goto_waypoint_start(Tom,sh6,sh1) goto_waypoint_start(Jerry,sh4,sh5)

load_pallet_start(Jerry,p1,sh3)

load_pallet_end(Jerry,p1,sh3)

unload_pallet_start(Jerry,p1,sh6)

goto_waypoint_start(Jerry,sh3,sh4)

goto_waypoint_end(Jerry,sh3,sh4)

scan_shelf_end(Tom,sh6)

goto_waypoint_end(Tom,sh6,sh1)

scan_shelf_start(Tom,sh1)

goto_waypoint_start(Jerry,sh5,sh6)

goto_waypoint_start(Tom,sh1,sh2) goto_waypoint_start(Tom,sh1,sh6)

goto_waypoint_end(Jerry,sh4,sh5)

scan_shelf_end(Tom,sh1)

unload_pallet_start(Jerry,p2,sh1)

unload_pallet_start(Tom,p2,sh1)

goto_waypoint_end(Jerry,sh5,sh6)

load_pallet_start(Jerry,p2,sh6)

goto_waypoint_start(Jerry,sh6,sh1)

goto_waypoint_end(Tom,sh1,sh2)

unload_pallet_end(Jerry,p1,sh6)

load_pallet_end(Jerry,p2,sh6)

goto_waypoint_end(Jerry,sh6,sh1)

unload_pallet_end(Jerry,p2,sh1)

goto_waypoint_end(Tom,sh1,sh6)

load_pallet_start(Tom,p2,sh6) goto_waypoint_start(Tom,sh6,sh1)

load_pallet_end(Tom,p2,sh6) goto_waypoint_end(Tom,sh6,sh1)

unload_pallet_end(Tom,p2,sh1)

Figure 13: Example of a causal graph which demonstrates a comparison of the original plan and HPlan. Added actions are red,
removed actions are blue.



for this, the body of research on model reconciliation plays
a very important role (Chakraborti et al. 2017).

6 Conclusions
In this paper we have presented a prototype framework for
Explainable Planning as a service, which we believe rep-
resents an effective way of providing explanations, particu-
larly in safety critical domains. In such scenarios the user
would not accept an explanation that is generated by a plan-
ner or a model different from the ones that they use and
whose performance they trust. To this end, Explainable Plan-
ning as a service is based on providing explanations using
the users’ planners and models. Note that while the users
can trust their planners and their models, there might still
be reasonable questions on why a particular plan was found.
This is where explanations are important, and we propose
contrastive explanations to allow the user to compare the
plan found by the planner with what the user was expecting.

The Explainable Planning as a Service framework is mod-
ular, and can be used with all planners and domains that
ahere to PDDL2.1. In order to foster the use of Explainable
Planning in robotics applications the proposed framework is
now being integrated in ROSPlan (Cashmore et al. 2015).

We proposed a roadmap with some of the challenges that
should be addressed for Explainable Planning to become
effective, also highlighting promising directions. We be-
lieve that synergies between researchers in planning and in
other disciplines, such as data visualization, social science,
human-computer-interaction, and cognitive science, are key
for the practical success of Explainable Planning.

Acknowledgements This work was partially supported by
Innovate UK grant 133549: Intelligent Situational Aware-
ness Platform, and by EPSRC grant EP/R033722/1: Trust in
Human-Machine Partnerships.

References
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artif. Intell. 173(5-6):593–618.
Borgo, R.; Cashmore, M.; and Magazzeni, D. 2018. Towards
providing explanations for AI planner decisions. IJCAI-18
Workshop on Explainable AI.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. Rosplan: Planning in the robot operating system. In
ICAPS.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In IJCAI.
Chakraborti, T.; Fadnis, K. P.; Talamadupula, K.; Dholakia,
M.; Srivastava, B.; Kephart, J. O.; and Bellamy, R. K. E.
2018. Visualizations for an explainable planning agent. In
IJCAI.
Chrpa, L.; Mccluskey, T. L.; and Osborne, H. 2012. Deter-
mining redundant actions in sequential plans. In ICTAI.

Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In ICAPS.
Cyras, K.; Letsios, D.; Misener, R.; and Toni, F.
2019. Argumentation for explainable scheduling. In
https://arxiv.org/abs/1811.05437.
Fink, E., and Yang, Q. 1992. Formalizing plan justifications.
In Conference of the Canadian Society for Computational
Studies of Intelligence, 9–14.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explain-
able planning. IJCAI-17 workshop on Explainable AI
abs/1709.10256.
Gerevini, A.; Saetti, A.; and Serina, I. 2006. An approach
to temporal planning and scheduling in domains with pre-
dictable exogenous events. JAIR 25.
Howey, R.; Long, D.; and Fox, M. 2004. Val: automatic plan
validation, continuous effects and mixed initiative planning
using pddl. In 16th IEEE International Conference on Tools
with Artificial Intelligence, 294–301.
Langley, P.; Meadows, B.; Sridharan, M.; and Choi, D. 2017.
Explainable agency for intelligent autonomous systems. In
AAAI.
Lindner, F.; Mattmüller, R.; and Nebel, B. 2018. Moral
permissibility of action plans. ICAPS-18 Workshop on Ex-
plainable Planning.
Long, D. 2018. Planning a way into a deep hole. In In-
vited talk at ICAPS Workshop on Planning and Scheduling
Applications (SPARK).
Mennatallah, E.-A.; Duen Horng, C.; Adam, P.; Hendrik, S.;
and Fernanda, V. 2018. Workshop on visualization for AI
explainability. In http://visxai.io/.
Miller, T. 2018. Contrastive explanation: A structural-model
approach. arXiv preprint arXiv:1811.03163.
Miller, T. 2019. Explanation in artificial intelligence: In-
sights from the social sciences. Artificial Intelligence 267.
Smith, D. 2012. Planning as an iterative process. In AAAI.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2011. Preferred
explanations: Theory and generation via planning. In AAAI.
Sreedharan, S.; Chakraborti, T.; and Kambhampati, S. 2018.
Handling model uncertainty and multiplicity in explanations
via model reconciliation. In ICAPS.
Sreedharan, S.; Srivastava, S.; and Kambhampati, S. 2018.
Hierarchical expertise-level modeling for user specific con-
trastive explanations. In IJCAI.
van Fraassen, C. B. 1980. The Scientific Image. Oxford
University Press.
XAI. 2017. IJCAI Workshop on Explainable AI.
http://home.earthlink.net/dwaha/research/meetings/ijcai17-xai.
XAI. 2018. IJCAI Workshop on Explainable AI.
http://home.earthlink.net/dwaha/research/meetings/faim18-xai.
XAIP. 2018. ICAPS Workshop on Explainable Planning.
http://icaps18.icaps-conference.org/xaip.
Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.; Zhuo, H.;
and Kambhampati, S. 2017. Plan explicability and predictability
for robot task planning. In ICRA.


