
Under review as a conference paper at ICLR 2019

OPTIMAL ATTACKS AGAINST MULTIPLE CLASSIFIERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of designing provably optimal adversarial noise algorithms
that induce misclassification in settings where a learner aggregates decisions from
multiple classifiers. Given the demonstrated vulnerability of state-of-the-art mod-
els to adversarial examples, recent efforts within the field of robust machine learn-
ing have focused on the use of ensemble classifiers as a way of boosting the
robustness of individual models. In this paper, we design provably optimal at-
tacks against a set of classifiers. We demonstrate how this problem can be framed
as finding strategies at equilibrium in a two player, zero sum game between a
learner and an adversary and consequently illustrate the need for randomization
in adversarial attacks. The main technical challenge we consider is the design of
best response oracles that can be implemented in a Multiplicative Weight Updates
framework to find equilibrium strategies in the zero-sum game. We develop a se-
ries of scalable noise generation algorithms for deep neural networks, and show
that it outperforms state-of-the-art attacks on various image classification tasks.
Although there are generally no guarantees for deep learning, we show this is a
well-principled approach in that it is provably optimal for linear classifiers. The
main insight is a geometric characterization of the decision space that reduces the
problem of designing best response oracles to minimizing a quadratic function
over a set of convex polytopes.

1 INTRODUCTION

In this paper, we study adversarial attacks that induce misclassification when a learner has access
to multiple classifiers. One of the most pressing concerns within the field of AI has been the well-
demonstrated sensitivity of machine learning algorithms to noise and their general instability. Sem-
inal work by (Szegedy et al., 2014) has shown that adversarial attacks that produce small perturba-
tions can cause data points to be misclassified by state-of-the-art models, including neural networks.
In order to evaluate classifiers’ robustness and improve their training, adversarial attacks have be-
come a central focus in machine learning and security (Moosavi-Dezfooli et al., 2016; Koh & Liang,
2017; Liu et al., 2017; Nguyen et al., 2015).

Adversarial attacks induce misclassification by perturbing data points past the decision boundary of
a particular class. In the case of binary linear classifiers, for example, the optimal perturbation is
to push points in the direction perpendicular to the separating hyperplane. For non-linear models
there is no general characterization of an optimal perturbation, though attacks designed for linear
classifiers tend to generalize well to deep neural networks (Moosavi-Dezfooli et al., 2016).

Since a learner may aggregate decisions using multiple classifiers, a recent line of work has focused
on designing attacks on an ensemble of different classifiers (Liu et al., 2017; Tramer et al., 2018;
Abbasi & Gagné, 2017; He et al., 2017). In particular, this line of work shows that an entire set of
state-of-the-art classifiers can be fooled by using an adversarial attack on an ensemble classifier that
averages the decisions of the classifiers in that set. Given that attacking an entire set of classifiers is
possible, the natural question is then:

What is the most effective approach to design attacks on a set of multiple classifiers?

The main challenge when considering attacks on multiple classifiers is that fooling a single model,
or even the ensemble classifier (i.e. the model that classifies a data point by averaging individual
predictions), provides no guarantees that the learner will fail to classify correctly. Models may
have different decision boundaries, and perturbations that affect one may be ineffective on another.
Furthermore, a learner can randomize over classifiers and avoid deterministic attacks (see Figure 1).
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Figure 1: Illustration of why randomization is necessary to compute optimal adversarial attacks. In this ex-
ample using binary linear classifiers, there is a single point that is initially classified correctly by two classifiers
c1, c2, and a fixed noise budget α in the ℓ2 norm. A naive adversary who chooses a noise perturbation deter-
ministically will always fail to trick the learner since she can always select the remaining classifier. An optimal
adversarial attack in this scenario consists of randomizing with equal probability amongst both noise vectors.

In this paper, we present a principled approach for attacking a set of classifiers which proves to be
highly effective. We show that constructing optimal adversarial attacks against multiple classifiers is
equivalent to finding strategies at equilibrium in a zero sum game between a learner and an adversary.
It is well known that strategies at equilibrium in a zero sum game can be obtained by applying the
celebrated Multiplicative Weights Update framework, given an oracle that computes a best response
to a randomized strategy. The main technical challenge we address pertains to the characterization
and implementation of such oracles. Our main contributions can be summarized as follows:

• We describe the Noise Synthesis FrameWork (henceforth NSFW) for generating adversar-
ial attacks. This framework reduces the problem of designing optimal adversarial attacks
for a general set of classifiers to constructing a best response oracle in a two player, zero
sum game between a learner and an adversary;

• We show that NSFW is an effective approach for designing adversarial noise that fools neu-
ral networks. In particular, applying projected gradient descent on an appropriately chosen
loss function as a proxy for a best response oracle achieves performance that significantly
improves upon current state-of-the-art attacks (see results in Figure 2);

• We show that applying projected gradient descent on an appropriately chosen loss func-
tion is a well-principled approach. We do so by proving that for linear classifiers such
an approach yields an optimal adversarial attack if the equivalent game has a pure Nash
equilibrium. This result is shown via a geometric characterization of the decision boundary
space which reduces the problem of designing optimal attacks to a convex program;

• If the game does not have a pure Nash equilibrium, there is an algorithm for finding an
optimal adversarial attack for linear classifiers whose runtime is exponential in the number
of classifiers. We show that finding an optimal strategy in this case is NP-hard.

Paper organization. Following a discussion on related work, in Section 2 we formulate the problem
of designing optimal adversarial noise and show how it can be modeled as finding strategies at
equilibrium in a two player, zero sum game. Afterwards, we discuss our approach for finding such
strategies using MWU and proxies for best response oracles. In Section 2 .1, we justify our approach
by proving guarantees for linear classifiers. Lastly, in Section 3, we present our experiments.

Additional related work. The field of adversarial attacks on machine learning classifiers has re-
cently received widespread attention from a variety of perspectives (Carlini & Wagner, 2018; Atha-
lye et al., 2018; Elsayed et al., 2018; Papernot et al., 2016b; Schmidt et al., 2018; Bubeck et al.,
2018; Madry et al., 2018). In particular, a significant amount of effort has been devoted to comput-
ing adversarial examples that induce misclassification across multiple models (Moosavi-Dezfooli
et al., 2017; Szegedy et al., 2014; Moosavi-Dezfooli et al., 2016). There has been compelling evi-
dence which empirically demonstrates the effectiveness of ensembles as way of both generating and
defending against adversarial attacks. For example, Tramer et al. (2018) establish the strengths of
ensemble training as a defense against adversarial attacks. Conversely, Liu et al. (2017) provide the
first set of experiments showing that attacking an ensemble classifier is an effective way of gener-
ating adversarial examples that transfer to the underlying models. Relative to their investigation,
our work differs in certain key aspects. Rather than analyzing adversarial noise from a security per-
spective and developing methods for black-box attacks, we approach the problem from a theoretical
point of view and introduce a formal characterization of the optimal attack against a set of classifiers.
Furthermore, by analyzing noise in the linear setting, we design algorithms for this task that have
strong guarantees of performance. Through our experiments, we demonstrate how these algorithms
motivate a natural extension for noise in deep learning that achieves state-of-the-art results.
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2 A FRAMEWORK FOR OPTIMAL ADVERSARIAL ATTACKS

Given a set of point-label pairs {(xi, yi)}mi=1 where (xi, yi) ∈ Rd × [k], a deterministic adversarial
attack is a totally ordered set of noise vectors, V = (v1, . . . , vm) ∈ Rd×m. We say that q is
an adversarial attack if q is a distribution over sets of noise vectors. An adversarial attack q is α-
bounded if for all sets V that have non-zero probability under q, each individual noise vector vi ∈ V
has bounded norm, e.g ||vi||p ≤ α. We focus on the case where each vector vi is bounded to have
ℓ2 norm less than a fixed value α, however, our model can be easily extended to a variety of norms.1

For a given classifier c : Rd → [k], a realization of the adversarial attack, V = (v1, . . . , vm),
induces misclassification on (xj , yj) if c(xj + vj) ∕= yj . Given a finite set of classifiers C and a data
set S = {(xi, yi)}mi=1 of point-label pairs as above, an optimal adversarial attack is a distribution q
over sets of noise vectors that maximizes the minimum 0-1 loss of the classifiers in C:

argmax
q

min
c∈C

1

m



j∈[m]

E
V∼q

[ℓ0-1(c, xj + vj , yj)] (1)

Optimal adversarial attacks are equilibrium strategies in a zero sum game. An equivalent
interpretation of the optimization problem described in Equation (1) is that of a best response in
a two player, zero sum game played between a learner and an adversary. When the learner plays
classifier c ∈ C and the adversary plays an attack V , the payoff to the adversary is M(c, V ) =
1
m


j∈[m] ℓ0-1(c, xj + vj , yj), which is the average 0-1 loss of the learner.2 The learner and the

adversary can choose to play randomized strategies p,q over classifiers and noise vectors yielding
expected payout E(c,V )∼(p,q) M(c, V ). The (mixed) equilibrium strategy of the game is the pair of
distributions p,q that maximize the minimum loss maxq minp E(c,V )∼(p,q) M(c, V ).

Computing optimal adversarial attacks via MWU. As discussed above, the optimization problem
of designing optimal adversarial attacks reduces to that of finding strategies at equilibrium in a zero
sum game. It is well known that the celebrated Multiplicative Weight Updates algorithm can be used
to efficiently compute equilibrium strategies of zero sum games when equipped with a best response
oracle that finds an optimal set of perturbations for any strategy chosen by the learner:

BEST RESPONSE(p,α)
def
= argmax

V ∈Rd×m
E

c∼p
[M(c, V )]; s.t ||vi||2 ≤ α ∀vi ∈ V (2)

Our framework for generating adversarial noise applies the Multiplicative Weight Updates algorithm
as specified in Algorithm 1. The algorithm returns distributions p,q that are within δ of the
equilibrium value of the game λ = minp maxq E(c,V )∼(p,q)[M(c, V )] by using T ∈ O( lnn

δ2 ) calls
to a best response oracle.3 In this work, we focus on developing attacks on neural networks and
linear models. Yet, our framework is general enough to generate optimal attacks for any domain in
which one can approximate a best response. We analyze the convergence of NSFW in Appendix G.

Approximating a best response. Given the framework described above, the main challenge is in
computing a best response strategy. To do so, at every iteration, as a proxy for a best response,
we apply projected gradient descent (PGD) to an appropriately chosen surrogate loss function. In
particular, given C = {ci}ni=1 for every (x, y) ∈ Rd × [k] we aim to solve:

max
v

n

i=1

p[i]ℓ(ci, x+ v, y) (3)

ℓ is a loss function that depends on the type of attack (targeted vs. untargeted) and the type of
classifiers in C (linear vs. deep). We introduce a series of alternatives for ℓ in the following section.

As we will now show, maximizing the loss of the learner by applying PGD to a weighted sum of loss
functions is a well-principled approach to computing best responses as it is guaranteed to converge to
the optimal solution in the case where C is composed of linear classifiers. While there are generally
no guarantees for solving non-convex optimization problems of this sort for deep neural networks,
in Section 3 , we demonstrate the effectiveness of our approach by showing that it experimentally
improves upon current state-of-the-art attacks.

1For example, see Appendix H for extensions to the ℓ∞ norm.
2The adversary plays the role of the max player in our two player, zero sum game.
3In our experiments in Section 3, we show that the algorithm converges in a far fewer number of iterations..
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Algorithm 1 Noise Synthesis FrameWork (NSFW)
Input: Classifiers C = {c1, . . . , cn}, data points {(xi, yi)}mi=1, parameters α, T
initialize p1 = ( 1n , . . . ,

1
n );  =


ln |C|/T

for t = 1 to T do
Set Vt = BEST RESPONSE(pt,α)
Set pt+1[i] ∝ pt[i](1− )M(ci,Vt) for every i ∈ [n]

end for
Return: uniform distributions p,q over p1, . . . ,pT ; V1, . . . , VT

2 .1 PROVABLE GUARANTEES FOR COMPUTING OPTIMAL NOISE

The main theoretical insight that leads to provable guarantees for generating adversarial noise is a
geometric characterization of the underlying structure of adversarial attacks. Regardless of the type
of model, selecting a distribution over classifiers partitions the input space into disjoint regions, each
of which is associated with a single loss value for the learner. Given a distribution over classifiers
played by the learner, computing a best response strategy for the adversary then reduces to a search
problem. In this problem, the search is for points in each region that lie within the noise budget and
can be misclassified. The best response is to select the region which induces the maximal loss.

In the case of linear classifiers, the key observation is that the regions are convex. As a result,
designing optimal adversarial attacks reduces to solving a series of quadratic programs.
Lemma 1. Selecting a distribution p over a set C of n linear classifiers, partitions the input space
Rd into kn disjoint, convex sets Tj such that:

1. For each Tj , there exists a unique label vector sj ∈ [k]n such that for all x ∈ Tj and
ci ∈ C, ci(x) = sj,i, where sj,i is a particular label in [k].

2. There exists a finite set of numbers a1, . . . akn , not necessarily all unique, such thatn
i=1 p[i]ℓ0-1(ci, x, y) = aj for a fixed y and all x ∈ Tj

3. Rd \


j Tj is a set of measure zero.

Proof Sketch (see full proof in Appendix C). Each set Tj is defined according to the predictions of
the classifiers ci ∈ C on points x ∈ Tj . In particular, each region Tj is associated with a unique label
vector sj ∈ [k]n s.t ci(x) = sj,i for all ci ∈ C. Since the prediction of each classifier is the same for
all points in a particular region, the loss of the learner


i∈[n] p[i]ℓ0-1(ci, x, y) is constant over the

entire region. Convexity then follows by showing that each Tj is an intersection of hyperplanes.
This characterization of the underlying geometry now allows us to design best response oracles for
linear classifiers via convex optimization. For our analysis, we focus on the case where C consists
of “one-vs-all” classifiers. In the appendix, we show how our results can be generalized to other
methods for multilabel classification by reducing these other approaches to the “one-vs-all” case.
Given k classes, a “one-vs-all” classifier ci consists of k linear functions ci,j(x) = 〈wi,j , x〉 + bi,j
where j ∈ [k]. On input x, predictions are made according to the rule ci(x) = argmaxj ci,j(x).
Lemma 2. For linear classifiers, implementing a best response oracle reduces to the problem of
minimizing a quadratic function over a set of kn convex polytopes.

Proof Sketch (see full proof in Appendix C). The main idea behind this lemma is that given a dis-
tribution over classifiers, the loss of the learner can be maximized individually for each point
(x, y) ∈ S. Furthermore, by Lemma 1, the loss can assume only finitely many values, each of
which is associated with a particular convex region Tj of the input space. Therefore, to compute a
best response, we can iterate over all regions and choose the one associated with the highest loss.
To find points in each region Tj , we can simply minimize the ℓ2 norm of a perturbation v such that
x+ v ∈ Tj , which can be framed as minimizing a quadratic function over a convex set.

These results give an important characterization, but it also shows that the number of polytopes is
exponential in the number of classifiers. To overcome this difficulty, we demonstrate how when there
exists a pure strategy Nash equilibrium (PSNE), that is a single set of noise vectors V where every
vector is bounded by α and minci∈C M(ci, V ) = 1, PGD applied to the reverse hinge loss, ℓr, is
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guaranteed to converge to a point that achieves this maximum for binary classifiers. More generally,
given a label vector sj ∈ [k]n , PGD applied to the targeted reverse hinge loss, ℓt, converges to a
point within the noise budget that lies within the specified set Tj . We define ℓr and ℓt as follows:

ℓr(ci, x, y)
def
=


y(〈wi, x〉+ bi)

+
; ℓt(ci, x, j)

def
=


max
l ∕=j

ci,l(x)− ci,j
+

(4)

The proof follows standard arguments for convergence of convex and β-smooth functions.
Theorem 1. Given any precision  > 0 and noise budget α > 0:

• For a finite set of linear binary classifiers C and a point (x, y), running PGD for T = 4α/
iterations on the objective f(v) =

n
i=i p[i]ℓr(ci, x + v, y) converges to a point that is

within  of the pure strategy Nash equilibrium f(x+ v∗), if such an equilibrium exists;

• For a finite set of linear multilabel classifiers C, given a label vector sj ∈ [k]n and a
distribution p over C, running PGD for T = 4α/ iterations on the objective f(v) =n

i=i p[i]ℓt(ci, x+v, sj,i) converges to a point x+v(T ) such that f(x+v(T ))−f(x+v∗) ≤
 where x+ v∗ ∈ Tj and ||v∗||2 ≤ α, if such a point exists.

Proof Sketch. From the definition of the reverse hinge loss, we see that ℓr(ci, x′, y) = 0 if and only
if ℓ0-1(ci, x

′, y) = 1. Similarly, the targeted loss ℓt(ci, x
′, j) is 0 if and only if ci predicts x′ to

have label j. For linear classifiers, both of these functions are convex and β-smooth. Hence PGD
converges to a global minimum, which is zero if there exists a pure equilibrium in the game.

The requirement that there exist a feasible point x′ within Tj is not only sufficient, it is also necessary
in order to avoid a brute force search. Designing an efficient algorithm to find the region associated
with the highest loss is unlikely as the decision version of the problem is NP-hard even for binary
linear classifiers. We state the theorem below and defer the proof to the appendix.
Theorem 2. Given a set C of n binary, linear classifiers, a number B, a point (x, y), noise budget α,
and a distribution p, finding v with ||v||2 ≤ α s.t. the loss of the learner is exactly B is NP-complete.

As we show in the following section, this hardness result does not limit our ability to compute
optimal adversarial examples. Most of the problems that have been examined in the context of ad-
versarial noise suppose that the learner has access only to a small number of classifiers (e.g less than
5) (Liu et al., 2017; Dong et al., 2017; Abbasi & Gagné, 2017; Tramer et al., 2018; He et al., 2017).
In such cases we can solve the convex program over all regions and find an optimal adversarial
attack, even when a pure Nash equilibrium does not exist.

3 EXPERIMENTS

We evaluate the performance of NSFW at fooling a set of classifiers by comparing against noise
generated by using state-of-the-art attacks against an ensemble classifier. Recent work by Liu et al.
(2017) and Tramer et al. (2018), demonstrates how attacking an ensemble of a set of classifiers
generates noise that improves upon all previous attempts at fooling multiple classifiers. We test our
methods on deep neural networks on MNIST and ImageNet, as well as on linear classifiers where
we know that NSFW is guaranteed to converge to the optimal adversarial attack.

3 .1 EVALUATING NSFW ON DEEP NEURAL NETWORKS

We use the insights derived from our theoretical analysis of linear models to approximate a best
response oracle for this new setting. Specifically, at each iteration of NSFW we compute a best
response as in Equation (3) by running PGD on a weighted sum of untargeted reverse hinge losses,
ℓut, introduced in this domain by Carlini & Wagner (2017). Given a network ci, we denote ci,j(x)
to be the probability assigned by the model to input x belonging to class j (the jth output of the
softmax layer of the model).

ℓut(ci, x, y)
def
=


ci,y(x)−max

j ∕=y
ci,j(x)

+
(5)

For MNIST, the set of classifiers C consists of 5 convolutional neural networks, each with a different
architecture, that we train on the full training set of 55k images (see Appendix for details). All
classifiers (models) were over 97% accurate on the MNIST test set. For ImageNet, C consists of
the InceptionV3, DenseNet121, ResNet50, VGG16, and Xception models with pre-trained weights
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Figure 2: Visual comparison of misclassification using state-of-the-art adversarial attacks. We compare the
level of noise necessary to induce similar levels of misclassification by attacking an ensemble classifier using
the (from left to right) Fast Gradient Method (FGM), the Madry attack, and the Momentum Iterative Method
(MIM) versus applying NSFW (rightmost column) on the same set of classifiers. To induce a maximum of 17%
accuracy across all models, we only need to set α to be 300 for NSFW. For the MIM attack on the ensemble
we need to set α = 2000. For FGM and the Madry attack, the noise budget must be further increased to 8000.

downloaded from the Keras repository (Chollet et al., 2015; He et al., 2016; Simonyan & Zisserman,
2014; Chollet, 2017; Szegedy et al., 2016; Huang et al., 2017).4

To evaluate the merits of our approach, we compare our results against attacks on the ensemble com-
posed of C as suggested by Liu et al. (2017). More specifically, we create an ensemble by averaging
the outputs of the softmax layers of the different networks using equal weights. We generate baseline
attacks by attacking the ensemble using (1) the Fast Gradient Method by Goodfellow et al. (2014),
(2) the Projected Gradient Method by Madry et al. (2018), and (3) the Momentum Iterative Method
by Dong et al. (2017) which we download from the Cleverhans library (Papernot et al., 2016a).5

We select the noise budget α by comparing against the average ℓ2 distortion reported by similar
papers in the field. For MNIST, we base ourselves off the values reported by Carlini & Wagner
(2017) and choose a noise budget of 3.0. For ImageNet, we compare against Liu et al. (2017).
In their paper, they run similar untargeted experiments on ImageNet with 100 images and report a
noise budget of 22 when measured as the root mean squared deviation. Converted to the ℓ2 norm,
this corresponds to α ≥ 8500. 6 We found this noise budget to be excessive, yielding images
comparable to those in the leftmost column in Figure 2. Therefore, we chose α = 300 (roughly
3.5% of the total distortion used in Liu et al. (2017)) which ensures that the perturbed images are
visually indistinguishable from the originals to the human eye (see rightmost column in Figure 2).

Noise Algorithm InceptionV3 Xception ResNet50 DenseNet121 VGG16 Mean Max
FGM 74% 77% 60% 54% 66% 66 % 77 %

Madry Attack 74% 76% 58% 53% 73% 67% 76 %
Momentum Iterative Method 68% 65% 34 % 35% 49% 50% 68%

NSFW 17% 12.2% 5.8% 7.2% 13.4% 11% 17%

Table 1: Accuracies of ImageNet models under different noise algorithms using a noise budget of 300.0 in
the ℓ2 norm. Entry (i, j) indicates the accuracy of each model j when evaluated on noise from attack i. The
last two columns report the mean and max accuracy of the classifiers on a particular attack. We see that NSFW
significantly outperforms noise generated by an ensemble classifier for all choices of attack algorithms.

4Specific details regarding model architectures as well as the code for all our experiments can be found in
our repository which will be made public after the review period in order to comply with anonymity guidelines.
The test set accuracies of all ImageNet classifiers are displayed on the Keras website.

5Momentum Iterative Method won the 2017 NIPS adversarial attacks competition (Kurakin et al., 2018).
6In their paper, Liu et al. (2017) define the root mean squared deviation of two points x, x as
(xi − x

i )
2/N where N is the dimension of x. For ImageNet, our images are of dimension 224×224×3,

while for MNIST they are of size 28 × 28 × 1. For further perspective, if we convert our noise budgets from
the ℓ2 norm to RMSD, our budgets would correspond to .77 and .11 for ImageNet and MNIST respectively.
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Figure 3: Class saliency map with respect to the image displayed in the top row of Figure 2 for each ImageNet
classifier and their ensemble. From left to right: InceptionV3, Xception, ResNet50, DenseNet121, VGG16,
and the ensemble classifier of all 5 models.

For our experiments, we ran NSFW for 50 MWU iterations on MNIST models and for 10 iterations
on ImageNet classifiers. We use far fewer iterations than the theoretical bound since we found that in
practice NSFW converges to the equilibrium solution in only a small number of iterations (see Figure
5 in Appendix A). At each iteration of the MWU we approximate a best response as described in
Equation 3 by running PGD using the Adam optimizer (Kingma & Ba, 2014) on a sum of untargeted
reverse hinge losses. Specifically, we run the optimizer for 5k iterations with a learning rate of .01.
At each iteration, we clip images to lie in the range [0, 1] for MNIST and [0, 255.0] for ImageNet.7

Finally, for evaluation, for both MNIST and ImageNet we selected 100 images uniformly at random
from the set of images in the test sets that were correctly classified by all models. In Table 1, we
report the empirical accuracy of all classifiers in the set C when evaluated on NSFW as well as on
the three baseline attacks. To compare their performance, we highlight the average and maximum
accuracies of models in C when attacked using a particular noise solution.

From Table 1, we see that on ImageNet our algorithm results in solutions that robustly optimize
over the entire set of models using only a small amount of noise. The maximum accuracy of any
classifier is 17% under NSFW, while the best ensemble attack yields a max accuracy of only 68%.
If we wish to generate a similar level of performance from the ensemble baselines, we would need
to increase the noise budget to 8000 for FGM and the Madry attack and to 2000 for the Momentum
Iterative Method. We present a visual comparison of the different attacks under these noise budgets
required to achieve accuracy of 17% in Figure 2. On MNIST, we find similar results. NSFW yields
a max accuracy of 22.6% compared to the next best result of 48% generated by the Madry attack on
the ensemble. We summarize the results for MNIST in Table 2 presented in Appendix A.

3 .2 WHY ARE DIRECT ATTACKS ON ENSEMBLE NETWORKS POOR NOISE GENERATORS?
ANALYZING DIFFERENCES IN DECISION BOUNDARIES VIA CLASS SALIENCY MAPS

As seen in the previous section, noise generated by directly attacking an ensemble of classifiers
significantly underperforms NSFW at robustly fooling the underlying models. In this section, we
aim to understand this phenomenon by analyzing how the decision boundary of the ensemble model
compares to that of the different networks. In particular, we visualize the class boundaries of con-
volutional neural networks using the algorithm proposed by Simonyan et al. (2013) for generating
saliency maps.8 The class saliency map indicates which features (pixels) are most relevant in clas-
sifying an image to have a particular label. 9 Therefore, they serve as one way of understanding the
decision boundary of a particular model by highlighting which dimensions carry the highest weight.

In Figure 3, we see that the class saliency maps for individual models exhibit significant diversity.
The ensemble of all 5 classifiers appears to contain information from all models, however, certain
regions that are of central importance for individual models are relatively less prominent in the en-
semble saliency map. Compared to our approach which calculates individual gradients for classifiers
in C, creating an ensemble classifier obfuscates key information regarding the decision boundary of
individual models. We make this discussion rigorous by analyzing the linear case in Appendix B.

7Further discussion regarding experiment setup and hyperparameters may be found in Appendix A.
8We make use of the implementation found at https://github.com/experiencor/deep-viz-keras.
9If we let ci,j(x) be the jth output of the softmax layer of network ci, they define the image-specific class

saliency as the derivative ∂ci,j(x)/∂x. In the case of multichannel images, the value per pixel is defined as the
maximum across all channels so as to yield a single grayscale image.
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Figure 4: Results of running NSFW on linear models. On the left, we demonstrate the results of running
NSFW on linear multiclass models using different noise functions and varying the noise budget α. NSFW-
Oracle corresponds to running Algorithm 1 using the best response oracle described in Lemma 2. Similarly,
NSFW-Untargeted shows the results of running NSFW and applying PGD to a weighted sum of untargeted
losses as in Equation (3). The label iteration method is described below. Lastly, the ensemble attack corresponds
to the optimal noise on an equal weights ensemble of models in C. On the right, we illustrate the convergence
of NSFW on linear binary classifiers with maximally different decision boundaries to compare against the
convergence rate observed for neural nets in Figure 5 and better understand when weight adaptivity is necessary.

3 .3 EXPERIMENTS ON LINEAR CLASSIFIERS

In addition to evaluating our approach on neural networks, we performed experiments with linear
classifiers. Since we have a precise characterization of the optimal attack on a set of linear classifiers,
we can rigorously analyze the performance of different methods in comparison to the optimum.

We train two sets of 5 linear SVM classifiers on MNIST, one for binary classification (digits 4 and
9) and another for multiclass (first 4 classes, MNIST 0-3). To ensure a diversity of models, we
randomly zero out up to 75% of the dimensions of the training set for each classifier. Hence, each
model operates on a random subset of features. All models achieve test accuracies of above 90%.
For our experiments, we select 1k points from each dataset that are correctly classified by all models.

In order to better compare across different best response proxies, we further extend NSFW by in-
corporating the label iteration method as another heuristic to generate untargeted noise. Given a
point (x, y), the iterative label method attempts to calculate a best response by running PGD on the
targeted reverse hinge loss for every label j ∈ [k] \ {y} and choosing the attack associated with the
minimal loss. Compared to the untargeted reverse hinge loss, it has the benefit of being convex.

As for deep learning classifiers, we compare our results to the noise generated by the optimal attack
on an ensemble of models in C. Since the class of linear classifiers is convex, creating an equal
weights ensemble by averaging the weight vectors results in just another linear classifier. We can
compute the optimal attack by running the best response oracle described in Section 2 .1 for the
special case where C consists of a single model and then scaling the noise to have norm equal to α.

As seen in the leftmost plot in Figure 4, even for linear models there is a significant difference be-
tween the optimal attack and other approaches. Specifically, we observe an empirical gap between
NSFW equipped with the best response oracle as described in Lemma 2 vs. NSFW with proxy best
response oracles, e.g. the oracle that runs PGD on appropriately chosen loss functions.10 This dif-
ference in performance is consistent across a variety of noise budgets. Our main takeaway is that in
theory and in practice, there is a significant benefit in applying appropriately designed best response
oracles. Lastly, on the right in Figure 4, we illustrate how the adaptivity of MWU is in general
necessary to compute optimal attacks. While for most cases, NSFW converges to the equilibrium
solution almost immediately, if the set of classifiers is sufficiently diverse, running NSFW for a
larger number of rounds drastically boosts the quality of the attack. (See Appendix A for details.)
4 CONCLUSION
Designing adversarial attacks when a learner has access to multiple classifiers is a non-trivial prob-
lem. In this paper we introduced NSFW which is a principled approach that is provably optimal
on linear classifiers and empirically effective on neural networks. The main technical crux is in
designing best response oracles which we achieve through a geometrical characterization of the
optimization landscape. We believe NSFW can generalize to domains beyond those in this paper.

10We present a similar figure for binary classifiers in the appendix.
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Appendix: Supplementary Material

A ADDITIONAL EXPERIMENTS AND DETAILS ON EXPERIMENTAL SETUP

Figure 5: Fast convergence of NSFW on MNIST and ImageNet deep learning models. NSFW-Untargeted
corresponds to running NSFW and applying PGD on a sum of untargeted reverese hinge losses as described
in Section 3 .1. The dotted lines correspond to running the indicated attack on the ensemble of models in C.
For both datasets, we find that NSFW converges almost immediately to the equilibrium noise solution. These
misclassification results can also be examined in Tables 1 and 2.

We now discuss further details regarding the setup of the experiments presented in Section 3 . In the
case of deep learning, we set hyperparameters for of all the baseline attacks (Fast Gradient Method,
Madry attack, and the Momentum Iterative Method) by analyzing the values reported in the original
papers. When running the Projected Gradient Method by Madry et al., given a noise budget α, we
run the algorithm for 40 iterations with a step size of α/40 × 1.25 so as to mimic the setup of the
authors. In the case of the Momentum Iterative Method, we run the attack for 5 iterations with
a decay factor µ = 1.0 and a step size of α/5 as specified in Dong et al. (2017). FGM has no
hyperparameters other than the noise budget. For all methods, we clip solutions to lie within the
desired pixel range and noise budget.

When comparing different algorithms to compute best responses for linear multiclass classifiers as
described in Section 3 .3, we run the NSFW algorithm with α = .2k for k ∈ [5]. In the case
of binary classifiers (Figure 6), we find that the margins are smaller, and hence run NSFW with
α = .05 + .1k for k ∈ [5]. For each value of α and choice of noise function, we run NSFW for 50
iterations. The one exception is that, for the multiclass experiments with α equal to .2 or .4, we ran
the best response oracle for only 20 iterations due to computational constraints. When optimizing
the loss of the learner through gradient descent (e.g when using PGD on appropriately chosen loses),
we set the number of iterations to 3k and the learning rate to .01.

We set up the weight adaptivity experiment described at the end of Section 3 .3 (rightmost plot of
Figure 4) as follows. We train 5 linear binary SVM classifiers on our binary version of the MNIST
dataset. For each classifier, we zero out 80% of the input dimensions so that each model has nonzero
weights for a strictly different subset of features, thereby ensuring maximum diversity in the decision

Noise Algorithm Model 1 Model 2 Model 3 Model 4 Model 5 Mean Max
FGM 59% 63% 60% 69% 59% 62% 69%

Madry Attack 48% 43% 33% 36% 40% 40% 48%
Momentum Iterative Method 45% 50% 44% 56% 39% 46.8% 56%

NSFW 20.2% 16.2% 11.6% 22.6% 14.6% 17% 22.6%

Table 2: Classification accuracies for deep learning MNIST models under different noise algorithms. As in the
ImageNet case, we find that the NSFW algorithm improves upon the performance of state-of-the-art attacks and
robustly optimizes over the entire set of classifiers. Moreover, we find that, for all attacks, there is a significant
difference between the average and maximum accuracy of classifiers in C, further highlighting the need to
design noise algorithms that are guaranteed to inhibit the performance of the best possible model.
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Figure 6: Results of running NSFW for linear binary classifiers and varying the noise budget. As seen in the
case of multiclass classifiers in Figure 4 NSFW equipped with the best response outperforms other approaches
at generating noise for linear models. Furthermore, we see there is a performance gap between gradient based
approaches and the theoretically optimal one that leverages convex programming.

boundaries across models. In order to generate noise, we select 500 points uniformly at random from
the test set that were correctly classified by all modes. We then run NSFW equipped with the best
response oracle described in Lemma 2 for 50 iterations with a noise budget of .4.

B WHY ATTACKING AN ENSEMBLE IS NOT OPTIMAL

In this section, we provide a brief theoretical justification as to why methods designed to attack an
ensemble constructed by averaging individual models in a set of classifiers (e.g. Liu et al. (2017);
Tramer et al. (2018); He et al. (2017); Abbasi & Gagné (2017)) do not yield optimal adversarial
attacks against a learner who selects classifiers from this set.

Attacks on ensemble classifiers, as seen in Liu et al. (2017), typically consist of applying gradient
based optimization to an ensemble model E(C,p) made up of classifiers C and ensemble weights
p. For concreteness, consider the simplest case where C is composed of linear binary classifiers. To
find adversarial examples, we run gradient descent on a loss function such as the reverse hinge loss
that is 0 if and only if the perturbed example x′ = x+ v with true label y is misclassified by ci.

Assuming x′ is not yet misclassified by the ensemble, running SGD on the ensemble classifier with
the reverse hinge loss function results in a gradient update step of ∇ℓr(E(C,p), x′, y) =


i p[i]wi.

This is undesirable for two main reasons:

• First, the ensemble obscures valuable information about the underlying objective. If x′ is
misclassified by a particular model ci but not the ensemble, ci still contributes p[i]wi to the
resulting gradient and biases exploration away from promising regions of the search space;

• Second, fooling the ensemble does not guarantee that the noise will transfer across the
underlying models. Assuming the true label y is -1 and that x′ is correctly classified
by all models, ℓr(E(C,p), x′, y) = 0 if and only if there exists a subset of classifiers
T ⊆ C such that


ct∈T p[t](〈wt, x

′〉 + bt) > 0, p[j](


cj∈C\T 〈wj , x
′〉 + bj) < 0 and

ct∈T p[t](〈wt, x
′〉 + bt) > |p[j](


cj∈C\T 〈wj , x

′〉 + bj)|. Hence, the strength of an
ensemble classifier is only as good as its weakest weighted majority.
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C PROOF OF GEOMETRIC CHARACTERIZATION

Lemma 1. Selecting a distribution p over a set C of n linear classifiers, partitions the input space
Rd into kn disjoint, convex sets Tj such that:

1. For each Tj , there exists a unique label vector sj ∈ [k]n such that for all x ∈ Tj and
ci ∈ C, ci(x) = sj,i, where sj,i is a particular label in [k].

2. There exists a finite set of numbers a1, . . . akn , not necessarily all unique, such thatn
i=1 p[i]ℓ0-1(ci, x, y) = aj for a fixed y and all x ∈ Tj

3. Rd \


j Tj is a set of measure zero.

Proof. Given a label vector sj , we define each Tj as the set of points x where ci(x) = sj,i for all
i ∈ [n]. This establishes a bijection between the elements of [k]n and the sets Tj . All the Tj are
pairwise disjoint since their corresponding label vectors in [k]n must differ in at least one index and
by construction each classifier can only predict a single label for x ∈ Tj .

To see that these sets are convex, consider points x1, x2 ∈ Tj and an arbitrary classifier ci ∈ C s.t.
ci(x) = z for all x ∈ Tj . If we let x′ = γx1 + (1− γ)x2 where γ ∈ [0, 1] then the following holds
for all j ∈ [k] where j ∕= z:

ci,z(x
′) = 〈wi,z, γx1+(1-γ)x2〉+bi,z
= γ〈wi,z, x1〉+γbi,z+(1-γ)〈wi,z, x2〉+(1-γ)bi,z
> γ〈wi,j , x1〉+γbi,j+(1-γ)〈wi,j , x2〉+(1-γ)bi,j
= ci,j(x

′)

Furthermore, for each Tj , there exists a number aj ∈ R≥0 such that the expected loss of the learner
i p[i] · l(ci, x, y) equals aj for all x ∈ Tj . Since the distribution p is fixed, the loss of the learner

is uniquely determined by the correctness of the predictions of all the individual classifiers ci. Since
these are the same for all points in Tj , the loss of the learner remains constant.

Lastly, the set Rd \


i Ti is equal to the set of points x where there are ties for the maximum valued
classifier. This set is a subset of the set of points K that lie at the intersection of two hyperplanes:

Rd \


i

Ti ⊂ {x|∃ ci,k, cj,l s.t ci,k(x) = cj,l(x)} (6)

Finally, we argue that K has measure zero. For all ε > 0, x ∈ K, there exists an x′ such that
||x − x′||2 < ε and x′ /∈ K since the intersection of two distinct hyperplanes is of dimension two
less than the overall space. Therefore, Rd \


i Ti must also have measure zero.

Lemma 2. For linear classifiers, implementing a best response oracle reduces to the problem of
minimizing a quadratic function over a set of kn convex polytopes.

Proof. We outline the proof as follows. Given a distribution p over C, the loss of the learner
1
m

m
t=1

n
i=i p[i]ℓ0-1(ci, xt + vt, yt) can be optimized individually for each vt since the terms

in the sum are independent from one another. We leverage our results from Lemma 1 to demonstrate
how we can frame the problem of finding the minimum perturbation vj such that x + vj ∈ Tj as
the minimization of a convex function over a convex set. Since the loss of the learner is constant
for points that lie in a particular set Tj , we can find the optimal solution by iterating over all sets Tj

and selecting the perturbation with ℓ2 norm less than α that is associated with the highest loss. The
best response oracle then follows by repeating the same process for each point (x, y).

Given a point (x, y) solving for the minimal perturbation v such that x + v ∈ Tj can be expressed
as the minimization of a quadratic function subject to n(k − 1) linear inequalities.
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min
v∈Rd

||v||22

subject to c1(x+ v) = sj,1

. . . .

cn(x+ v) = sj,n

(7)

Each constraint in (7) can be expressed as k − 1 linear inequalities. For a particular z ∈ [k], ci ∈ C
we write ci(x+ v) = z as ci,z(x+ v) > ci,l(x+ v) for all l ∕= z. Lastly, squaring the norm of the
vector is a monotonic transformation and hence does not alter the underlying minimum.

D BEYOND “ONE-VS-ALL” LINEAR CLASSIFICATION

Here we extend the results from our analysis of linear classifiers to other methods for multilabel
classification. In particular, we show that any “all-pairs” or multivector model can be converted to
an equivalent “one-vs-all” classifier and hence all of our results also apply to these other approaches.

All-Pairs. In the “all-pairs” approach, each linear classifier c consists of

k
2


linear predictors ci,j

trained to predict between labels i, j ∈ [k]. As per convention, we let ci,j(x) = −cj,i(x). Labels
are chosen according to the rule:

c(x) = argmax
i∈[k]



j ∕=i

ci,j(x) (8)

Given an “all-pairs” classifier c, we show how it can be transformed into a “one-vs-all” classifier c′
such that c(x) = c′(x) for all x ∈ Rd.

c(x) = argmax
i∈[k]



j ∕=i

ci,j(x)

= argmax
i∈[k]



j ∕=i

〈wi,j , x〉+ bi,j

= argmax
i∈[k]

〈w′
i, x〉+ b′i

= argmax
i∈[k]



j ∕=i

c′i(x) = c′(x)

Multivector. Lastly, we extend our results to multilabel classification done via class-sensitive fea-
ture mappings and the multivector construction by again reducing to the “one-vs-all” case. Given a
function Ψ : Rd × [k] → Rn, labels are predicted according to the rule:

c(x) = argmax
y∈[k]

〈w,Ψ(x, y)〉 (9)

While there are several choices for the Ψ, we focus on the most common, the multivector construc-
tion:

Ψ(x, y) =


0, . . . , 0  
∈R(y−1)(d+1)

, x1, . . . , xn, 1  
∈Rd+1

, 0, . . . , 0  
∈R(k−y)(d+1)


(10)

w =

w1, . . . , wk


where wi ∈ Rd+1 ∀i (11)

This in effect ensures that (9) becomes equivalent to that of the “one-vs-all” approach:

c(x) = argmax
i∈[k]

〈wi, x〉 (12)
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E CONVERGENCE ANALYSIS OF PROJECTED GRADIENT DESCENT

Theorem 1. Given any precision  > 0 and noise budget α > 0:

• For a finite set of linear binary classifiers C and a point (x, y), running PGD for T = 4α/
iterations on the objective f(v) =

n
i=i p[i]ℓr(ci, x + v, y) converges to a point that is

within  of the pure strategy Nash equilibrium f(x+ v∗), if such an equilibrium exists;

• For a finite set of linear multilabel classifiers C, given a label vector sj ∈ [k]n and a
distribution p over C, running PGD for T = 4α/ iterations on the objective f(v) =n

i=i p[i]ℓt(ci, x+v, sj,i) converges to a point x+v(T ) such that f(x+v(T ))−f(x+v∗) ≤
 where x+ v∗ ∈ Tj and ||v∗||2 ≤ α, if such a point exists.

Proof. We know that if a function f is convex and β-smooth, then running projected gradient descent
over a convex set, results in the following rate of convergence, where v is the optimal solution and
v(1) is the initial starting point (See Theorem 3.7 in Bubeck (2015)).

f(v(T ))− f(v) ≤ 3β||v(T ) − v||2 + f(v(1))− f(v)

T
(13)

Given n classifiers, the objective is
n

i=1 p[i]||wi||2 smooth:

f(v) =

n

i=i

p[i]ℓr(ci, x+ v, y)

=

n

i=i

p[i]

y(〈wi, x+ v〉+ bi)

+

||∇f(v)||2 ≤
n

i=1

p[i]||wi||2

Furthermore, since v∗ is a pure strategy Nash equilibrium, f(v) = 0 and the maximum difference
between f(v)− f(v), for any v, is bounded by:

f(v)− f(v) ≤
n

i=1

p[i]

y(〈wi, x+ v〉+ bi)

+ − 0

=

n

i=1

p[i]

y〈wi, v − v〉+ y(〈wi, x+ v〉+ bi)

+
(Convexity of Noise Budget)

≤
n

i=1

p[i]

y〈wi, v

′〉)
+

y(〈wi, x+ v〉+ bi) < 0

≤
n

i=1

p[i]||wi||2||v′||2 (Cauchy-Schwartz)

≤ α

n

i=1

p[i]||wi||2 (Noise Budget)

Since ||v(T ) − v||2 ≤ α, we have that:

f(v(T ))− f(v) ≤ 4α
n

i=1 p[i]||wi||2
T

(14)

Lastly, we can normalize all the wi such that ||wi||2 = 1 without changing the predictions of the ci
and arrive at our desired result.

For the multiclass case, we have that:
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f(v) =

n

i=1

p[i]ℓt(ci, x+ v, sj,i)

=

n

i=1

p[i]

max
l ∕=sj,i

〈wi,l, x+ v〉+ bi,l − (〈wi,sj,i , x+ v〉+ bi,sj,i)
+

A similar bound follows by using the logic for the binary case. If we let v′ = v − v, we know that
by our initial assumption, maxl ∕=sj,i〈wi,l, x + v〉 + bi,l − 〈wi,sj,i , x + v〉 − bi,sj,i < 0. We use
this fact in the second line of the following argument.

f(v)− f(v∗) ≤
n

i=1

p[i]

max
l ∕=sj,i

〈wi,l, x+ v〉+ bi,l − (〈wi,sj,i , x+ v〉+ bi,sj,i)
+ − 0

≤
n

i=1

p[i]

max
l ∕=sj,i

〈wi,l, v
′〉 − 〈wi,l, v

′〉


≤ α

n

i=1

p[i] max
l ∕=sj,i

||wi,l||2 (Cauchy-Schwartz, Noise Budget)

Using the fact that all weight vectors wi,j can be transformed to have ℓ2 norm equal to 1, we have
that f(v)− f(v∗) ≤ α

n
i=1 p[i]. Lastly, we can check that ℓt is β-smooth with β = α

n
i=1 p[i],

which yields the same bound as in the binary case.

F BEST RESPONSE ORACLE IS NP-COMPLETE

Theorem 2. Given a set C of n binary, linear classifiers, a number B, a point (x, y), noise budget α,
and a distribution p, finding v with ||v||2 ≤ α s.t. the loss of the learner is exactly B is NP-complete.

Proof. We can certainly verify in polynomial time that a vector v induces a loss of B simply by
calculating the 0-1 loss of each classifier. Therefore the problem is in NP.

To show hardness, we reduce from Subset Sum. Given n numbers p1, . . . pn and a target number
B,11 we determine our input space to be Rn, the point x to be the origin, the label y = −1, and the
noise budget α = 1. Next, we create n binary classifiers of the form ci(x) = 〈ei, x〉 where ei is the
ith standard basis vector. We let pi be the probability with which the learner selects classifier ci.12

We claim that there is a subset that sums to B if and only if there exists a region Tj ⊂ Rn on
which the learner achieves loss B. Given the parameters of the reduction, the loss of the learner
is determined by the sum of the probability weights of classifiers ci such that ci(x + v) = +1 for
points x+ v ∈ Tj . If we again identify sets Tj with sign vectors sj ∈ {±1}n as per Lemma 2, there
is a bijection between the sets Tj and the power set of {p1, . . . , pn}. A number pi is in a subset Uj

if the ith entry of sj is equal to +1.

Lastly, we can check that there are feasible points within each set Tj and hence that all subsets
within the original Subset Sum instance are valid. Each Tj simply corresponds to a quadrant of Rn.
For any ε > 0 and for any Tj , there exists a vj with ℓ2 norm less than ε such that x + vj ∈ Tj .
Therefore, there is a subset Uj that sums to B if and only if there is a region Tj in which the learner
achieves loss B.

11Without loss of generality, we can assume that instances of Subset Sum only have values in the range
[0, 1]. We can reduce from the more general case by simply normalizing inputs to lie in this range.

12We can again normalize values so that they form a valid probability distribution.
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G CONVERGENCE ANALYSIS OF THE NSFW ALGORITHM

To facilitate our analysis, we overload our notation of the payoff function M(c, V ) described in
Section 2 to accept distributions p,q as input. We write M(p,q) to indicate E(c,V )∼(p,q) M(c, V ).

Theorem 3. Given an error parameter δ, after O( lnn
δ2 ) iterations, Algorithm 1 returns distributions

p, q such that:

min
ci∈C

M(ci,q
) ≥ λ− δ

max
V

M(p, V ) ≤ λ+ δ

where λ = min
q

max
p

M(p,q) is the equilibrium value of the game .

Proof. The following analysis draws heavily upon the work of Freund & Schapire (1997), yet the
precise treatment follows that of Kale (2007).

By guarantees of the Multiplicative Weights algorithm, we have that for any distribution p over [n]
with losses in [0, 1] the following relationship holds:

T

t=1

M(p(t), V (t)) ≤ (1 + ε)

T

i=1

M(p, V (t)) +
lnn

ε

If we divide by T , and note that M(p, V ) ≤ 1, and M(p(t), V (t)) ≥ λ for all t (due to oracle
guarantees), we have that for any distribution p:

λ ≤ 1

T

T

i=1

M(p(t), V (t))

≤ 1

T

T

i=1

M(p, V (t)) + ε+
lnn

εT

If we let p̃ be the optimal strategy for the min player, then M(p̃, V ) ≤ λ for any V . Next, if we
set  = δ

2 and T = ⌈ 4 lnn
δ2 ⌉ we get that:

λ ≤ 1

T

T

i=1

M(p(t), V (t))

≤ 1

T

T

i=1

M(p̃, V (t)) + δ

≤ λ + δ

Therefore p, the uniform distribution over p(1), . . . ,p(T ) is an approximately optimal solution for
the learner.

For the adversary, we know from the previous equations that the following holds for any strategy p
played by the learner:

λ ≤ 1

T

T

i=1

M(p(t), V (t)) ≤ 1

T

T

i=1

M(p, V (t)) + δ
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If we set q to be the distribution that assigns weight |{t:V (t)=V }|
T to the particular set of noise

vectors V then we have that for any distribution p:

λ ≤ 1

T

T

i=1

M(p(t), V (t)) ≤ M(p,q) + δ

Hence q is an approximately optimal strategy for the adversary:

λ − δ ≤ M(p,q)

H EXTENSIONS TO ℓ∞ NORM

While we focus on the ℓ2 norm as the main metric with which to gauge the magnitude of adversarial
noise, our results can be readily extended to function with the ℓ∞ norm. We begin by illustrating
how to extend the best response oracle to use the ℓ∞ norm:
Lemma 3. For linear classifiers, implementing a best response oracle under the ℓ∞ norm reduces
to the problem of finding feasible points in a series of kn convex polytopes.

Proof. The proof is identical to that of Lemma 2. The only change we need to make is to slightly
modify the optimization problem outlined in (7) to the following format. Given a label vector sj and
a point (x, y) we solve for:

min
v∈Rd

0

subject to ci(x+ v) = sj,i ∀i ∈ [k]

vi ≤ α ∀i ∈ [d]

(15)

To generalize gradient methods, we can alter the projection step of gradient descent to constrain
noise to the ℓ∞ ball. The solution space remains convex and hence our theoretical guarantees still
hold.
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