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Tensor Graphical Model: Non-convex
Optimization and Statistical Inference

Xiang Lyu, Will Wei Sun, Zhaoran Wang, Han Liu, Jian Yang, Guang Cheng

Abstract—We consider the estimation and inference of graphical models that characterize the dependency structure of
high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we
assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. A critical challenge in the
estimation and inference of this model is the fact that its penalized maximum likelihood estimation involves minimizing a non-convex
objective function. To address it, this paper makes two contributions: (i) In spite of the non-convexity of this estimation problem, we
prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains
an estimator with an optimal statistical rate of convergence. (ii) We propose a de-biased statistical inference procedure for testing
hypotheses on the true support of the sparse precision matrices, and employ it for testing a growing number of hypothesis with false
discovery rate (FDR) control. The asymptotic normality of our test statistic and the consistency of FDR control procedure are
established. Our theoretical results are backed up by thorough numerical studies and our real applications on neuroimaging studies of
Autism spectrum disorder and users’ advertising click analysis bring new scientific findings and business insights. The proposed
methods are encoded into a publicly available R package Tlasso.

Index Terms—asymptotic normality, hypothesis testing, optimality, rate of convergence.
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1 INTRODUCTION

H

IGH-DIMENSIONAL tensor-valued data are observed

in many fields such as personalized recommendation

systems and imaging research [1], [2], [3], [4], [5], [6], [7], [8],

[9]. Traditional recommendation systems are mainly based

on the user-item matrix, whose entry denotes each user’s

preference for a particular item. To incorporate additional

information into the analysis, such as the temporal behav-

ior of users, we need to consider tensor data, e.g., user-

item-time tensor. For another example, functional magnetic

resonance imaging (fMRI) data can be viewed as a three-

way tensor since it contains brain measurements taken on

different locations over time under various experimental

conditions. Also, in the example of microarray study for

aging [10], thousands of gene expression measurements are

recorded on 16 tissue types on 40 mice with varying ages,

which forms a four-way gene-tissue-mouse-age tensor.

In this paper, we study the estimation and inference of

conditional independence structure within tensor data. For

example, in the microarray study for aging we are interested
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in the dependency structure across different genes, tissues,

ages and even mice. Assuming data are drawn from a

tensor normal distribution, a straightforward way to esti-

mate this structure is to vectorize the tensor and estimate

the underlying Gaussian graphical model associated with

the vector. Such an approach ignores the tensor structure

and requires estimating a rather high dimensional precision

matrix with an insufficient sample size. For instance, in

the aforementioned fMRI application the sample size is

one if we aim to estimate the dependency structure across

different locations, time and experimental conditions. To

address such a problem, a popular approach is to assume

the covariance matrix of the tensor normal distribution is

separable in the sense that it is the Kronecker product of

small covariance matrices, each of which corresponds to

one way of the tensor. Under this assumption, our goal is

to estimate the precision matrix corresponding to each way

of the tensor and recover its support. See §1.1 for a detailed

survey of previous work.

The separable normal assumption imposes non-

convexity on the penalized negative log-likelihood function.

However, most existing literatures do not fix this gap be-

tween computational and statistical theory. As we will show

in §1.1, previous work mainly focus on establishing the

existence of a local optimum, rather than offering efficient

algorithmic procedures that provably achieve the desired lo-

cal optima. In contrast, we analyze an alternating minimiza-

tion algorithm, named as Tlasso, that attains a consistent

estimator after only one iteration. This algorithm iteratively

minimizes the non-convex objective function with respect to

each individual precision matrix while fixing the others.

The established theoretical guarantees of the Tlasso algo-

rithm are as follows. Suppose that we have n observations

from a K order tensor normal distribution. We denote by
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mk, sk, dk (k = 1, . . . ,K) the dimension, sparsity, and max

number of non-zero entries in each row of the k-th way

precision matrix. Besides, we define m =

QK
k=1

mk. The

k-th precision matrix estimator from the Tlasso algorithm

achieves a

p

mk(mk + sk) logmk/(nm) convergence rate

in Frobenius norm, which is minimax-optimal in the sense

it is the optimal rate one can obtain even when the rest

K � 1 true precision matrices are known [11]. Moreover,

under an extra irrepresentability condition, we establish a

p

mk logmk/(nm) convergence rate in max norm, which

is also optimal, and a dk
p

mk logmk/(nm) convergence

rate in spectral norm. These estimation consistency results,

together with a sufficiently large signal strength condition,

further imply the model selection consistency of edge recov-

ery. Notably, these results demonstrate that, when K � 3,

the Tlasso algorithm achieves above estimation consistency

even if we only have access to one tensor sample, which

is often the case in practice. This phenomenon was never

observed in the previous work.

The dependency structure in tensor makes support re-

covery very challenging. To the best of our knowledge,

no previous work has been established on tensor precision

matrix inference. In contrast, we propose a multiple testing

method. This method tests all the off-diagonal entries of

precision matrix, built upon the estimator from the Tlasso

algorithm. To further balance the performance of multiple

tests, we develop a false discovery rate (FDR) control pro-

cedure. This procedure selects a sufficiently small critical

value across all tests. In theory, the test statistic is shown to

be asymptotic normal after standardization, and hence pro-

vides a valid way to construct confidence interval for the en-

tries of interest. Meanwhile, FDR asymptotically converges

to a pre-specific level. An interesting theoretical finding is

that our testing method and FDR control are still valid even

for any fixed sample size as long as dimensionality diverges.

This phenomenon is mainly due to the utilization of tensor

structure information corresponding to each mode.

In the end, we conduct extensive experiments to evaluate

the numerical performance of the proposed estimation and

testing procedures. Under the guidance of theory, we also

propose a way to significantly accelerate the alternating

minimization algorithm without sacrificing estimation accu-

racy. In the multiple testing method, we empirically justify

the proposed FDR control procedure by comparing the re-

sults with the oracle inference results which assume the true

precision matrices are known. Additionally, analyses of two

real data, i.e., the Autism spectrum disorder neuroimaging

data and advertisement click data from a major Internet

company, are conducted, in which several interesting find-

ings are revealed. For example, differential brain functional

connectivities appear on postcentral gyrus, thalamus, and

temporal lobe between autism patients and normal controls.

Also, sports news and weather news are strongly dependent

only on PC, while magazines are significantly interchained

only on mobile.

1.1 Related Work and Contribution
A special case of our sparse tensor graphical model (when

K = 2) is the sparse matrix graphical model, which is

studied by [12], [13], [14], [15]. In particular, [12] and [13]

only establish the existence of a local optima with de-

sired statistical guarantees. Meanwhile, [14] considers an

algorithm that is similar to ours. However, the statistical

rates of convergence obtained by [13], [14] are much slower

than ours when K = 2. See Remark 3.6 for a detailed

comparison. For K = 2, our statistical rate of convergence in

Frobenius norm recovers the result of [12]. In other words,

our theory confirms that the desired local optimum studied

by [12] not only exists, but is also attainable by an efficient

algorithm. In addition, for matrix graphical models, [15]

establishes the statistical rates of convergence in spectral

and Frobenius norms for the estimator attained by a similar

algorithm. Their results achieve estimation consistency in

spectral norm with only one matrix observation. However,

their rate is slower than ours with K = 2. See Remark

3.12 for detailed discussions. Furthermore, we allow K to

increase and establish estimation consistency even in Frobe-

nius norm for n = 1. Most importantly, all these results

focus on matrix graphical model and can not handle the

aforementioned motivating applications such as the gene-

tissue-mouse-age tensor dataset.

In the context of sparse tensor graphical model with

a general K , [16] show the existence of a local optimum

with desired rates, but do not prove whether there exists an

efficient algorithm that provably attains such a local opti-

mum. In contrast, we prove that our alternating minimiza-

tion algorithm achieves an estimator with desired statistical

rates. To achieve it, we apply a novel theoretical framework

to consider the population and sample optimizers sepa-

rately, and then establish the one-step convergence for the

population optimizer (Theorem 3.1) and the optimal rate

of convergence for the sample optimizer (Theorem 3.4). A

new concentration result (Lemma S.1) is developed for this

purpose, which is also of independent interest. Moreover,

we establish additional theoretical guarantees including the

optimal rate of convergence in max norm, the estimation

consistency in spectral norm, and the graph recovery con-

sistency of the proposed sparse precision matrix estimator.

In addition to the literature on graphical models, our

work is also related to another line of work about nonconvex

optimization problems. See, e.g., [17], [18], [19], [20], [21],

[22], [23], [24], [25], [26], [27], [28], [29] among others. These

existing results mostly focus on problems such as dictionary

learning, phase retrieval and matrix decomposition. Hence,

our statistical model and analysis are completely different

from theirs.

Our work also connects with a recent line of work on

Bayesian tensor factorization [30], [31], [32], [33], [34], [35],

[36]. In particular, they model covariance structure along

each mode of a single tensor as an intermediate step in

their tensor factorization. These covariance structures are

imposed on core tensor or factor matrices to serve as the

priors. Our work is fundamentally different from these pro-

cedures as they focus on the accuracy of tensor factorization

while we focus on the graphical model structure within

tensor-variate data. In addition, their tensor factorization

is applied on a single tensor while our procedure learns

dependency structure of multiple high-dimensional tensor-

valued data.

In the end, the tensor inference part of our work is

related to the recent high dimensional inference work, [37],
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[38] and [39]. The other two related work are [40] and [41].

To consider the statistical inference in the vector-variate

high-dimensional Gaussian graphical model, [42] proposes

the multiple testing procedure with FDR control, [43] ex-

tend the de-biased estimator to precision matrix estimation,

and [44] consider a scaled-Lasso-based inference procedure.

To extend the inference methods from the vector-variate

Gaussian graphical model to the matrix-variate Gaussian

graphical model, [45], [46] propose multiple testing methods

with FDR control and establish their asymptotic properties.

However, these existing inference work can not be directly

applied to our tensor graphical model.

Notation: In this paper, scalar, vector and matrix are de-

noted by lowercase letter, boldface lowercase letter and

boldface capital letter, respectively. For a matrix A =

(Ai,j) 2 Rd⇥d
, we denote kAk1, kAk

2

, kAkF as its

max, spectral, and Frobenius norm, respectively. We define

kAk
1,off

:=

P

i 6=j |Ai,j | as its off-diagonal `
1

norm and

|||A|||1 := maxi
P

j |Ai,j | as the maximum absolute row

sum. We denote vec(A) as the vectorization of A which

stacks the columns of the matrix A. Let tr(A) be the trace

of A. For an index set S = {(i, j), i, j 2 {1, . . . , d}}, we

define [A]S as the matrix whose entry indexed by (i, j) 2 S
is equal to Ai,j , and zero otherwise. For two matrices

A
1

2 Rm⇥n,A
2

2 Rp⇥q
, we denote A

1

⌦A
2

2 Rmp⇥nq
as

the Kronecker product of A
1

and A
2

. We denote 1d as the

identity matrix with dimension d⇥d. Throughout this paper,

we use C,C
1

, C
2

, . . . to denote generic absolute constants,

whose values may vary from line to line.

Organization: §2 introduces the main result of sparse tensor

graphical model and its efficient implementation, followed

by the theoretical study of the proposed estimator in §3.

§4 contains all the statistical inference results including a

novel test statistic for constructing confidence interval and

a multiple testing procedure with FDR control. §5 demon-

strates the superior performance of the proposed methods

and performs extensive comparisons with existing methods

in both parameter estimation and statistical inference. §6

illustrates analyses of two real data sets, i.e., the Autism

spectrum disorder neuroimaging data and advertisement

click data from a major Internet company, via the proposed

testing method. §7 summarizes this article and points out

a few interesting future work. Detailed technical proofs are

available in supplementary material.

2 TENSOR GRAPHICAL MODEL

This section introduces our sparse tensor graphical model

and an alternating minimization algorithm for solving the

associated nonconvex optimization problem.

2.1 Preliminary
We first introduce the preliminary background on ten-

sors and adopt the notations used by [47]. Throughout

this paper, higher order tensors are denoted by bold-

face Euler script letters, e.g. T . We consider a K-way

tensor T 2 Rm1⇥m2⇥···⇥mK
. When K = 1 it reduces

to a vector and when K = 2 it reduces to a matrix.

The (i
1

, . . . , iK)-th element of the tensor T is denoted as

Ti1,...,iK . We denote the vectorization of T as vec(T ) :=

(T
1,1,...,1, . . . , Tm1,1,...,1, . . . , T1,m2,...,mK , Tm1,m2,...,mK )

> 2
Rm

with m =

Q

k mk. In addition, we define the Frobenius

norm of a tensor T as

kT kF :=

s

X

i1,...,iK

T 2

i1,...,iK
.

In tensors, a fiber refers to a higher order analogue of

matrix row and column. A fiber is obtained by fixing all

but one of the indices of the tensor, e.g., for a tensor T ,

the mode-k fiber is given by Ti1,...,,ik�1,:,ik+1,...,iK . Matri-

cization, also known as unfolding, is a process to transform

a tensor into a matrix. We denote T
(k) as the mode-k

matricization of a tensor T . It arranges the mode-k fibers

to be the columns of the resulting matrix. Another useful

operation in tensor is the k-mode product. The k-mode

(matrix) product of a tensor T 2 Rm1⇥m2⇥···⇥mK
with a

matrix A 2 RJ⇥mk
is denoted as T ⇥k A and is of the size

m
1

⇥ · · ·⇥mk�1

⇥J⇥mk+1

⇥ · · ·⇥mK . Its entry is defined

as

(T ⇥k A)i1,...,ik�1,j,ik+1,...,iK :=

mk
X

ik=1

Ti1,...,iKAj,ik .

Furthermore, for a list of matrices {A
1

, . . . ,AK} with Ak 2
Rmk⇥mk

, we define

T ⇥ {A
1

, . . . ,AK} := T ⇥
1

A
1

⇥
2

· · ·⇥K AK .

2.2 Statistical Model

A tensor T 2 Rm1⇥m2⇥···⇥mK
follows the tensor nor-

mal distribution with zero mean and covariance matrices

⌃
1

, . . . ,⌃K , denoted as T ⇠ TN(0;⌃
1

, . . . ,⌃K), if its

probability density function is p(T |⌃
1

, . . . ,⌃K) =

(2⇡)
�m
2

⇢ K
Y

k=1

|⌃k|
�m
2mk

�

exp

�� kT ⇥⌃
�1
2 k2F /2

�

, (2.1)

where m =

QK
k=1

mk and ⌃�1/2
:= {⌃�1/2

1

, . . . ,⌃�1/2
K }.

When K = 1, this tensor normal distribution reduces to

the vector normal distribution with zero mean and covari-

ance ⌃
1

. According to [47], it can be shown that T ⇠
TN(0;⌃

1

, . . . ,⌃K) if and only if vec(T ) ⇠ N(vec(0);⌃K⌦
· · ·⌦⌃

1

), where vec(0) 2 Rm
and ⌦ is the matrix Kronecker

product.

We consider the parameter estimation for the tensor

normal model. Assume that we observe independently

and identically distributed tensor samples T
1

, . . . , Tn from

TN(0;⌃⇤
1

, . . . ,⌃⇤
K). We aim to estimate the true covari-

ance matrices (⌃⇤
1

, . . . ,⌃⇤
K) and their corresponding true

precision matrices (⌦⇤
1

, . . . ,⌦⇤
K) where ⌦⇤

k = ⌃⇤�1

k (k =

1, . . . ,K). To address the identifiability issue in the parame-

terization of the tensor normal distribution, we assume that

k⌦⇤
kkF = 1 for k = 1, . . . ,K . This renormalization does not

change the graph structure of the original precision matrix.

A standard approach to estimate ⌦⇤
k, k = 1, . . . ,K , is

to use the maximum likelihood method via (2.1). Up to a

constant, the negative log-likelihood function of the tensor

normal distribution is

`(⌦
1

, . . . ,⌦K) :=

1

2

tr[S(⌦K⌦· · ·⌦⌦
1

)]�1

2

K
X

k=1

m

mk
log |⌦k|,
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where S :=

1

n

Pn
i=1

vec(Ti)vec(Ti)>. To encourage the

sparsity of each precision matrix in the high-dimensional

scenario, we propose a penalized log-likelihood estimator

which minimizes qn(⌦1

, . . . ,⌦K) :=

1

m
tr[S(⌦K ⌦ · · ·⌦⌦

1

)]�
K
X

k=1

1

mk
log |⌦k|+

K
X

k=1

P�k(⌦k),

(2.2)

where P�k(·) is a penalty function indexed by the tuning

parameter �k. In this paper, we focus on the lasso penalty

[48] P�k(⌦k) = �k
P

i 6=j |[⌦k]i,j |. The estimation procedure

applies similarly to a broad family of penalty functions, for

example, the SCAD penalty [49], the adaptive lasso penalty

[50], the MCP penalty [51], and the truncated `
1

penalty [52].

The penalized model from (2.2) is called the sparse

tensor graphical model. It reduces to the m
1

-dimensional

sparse gaussian graphical model [53], [54], [55] when K = 1,

and the sparse matrix graphical model [12], [13], [14], [15]

when K = 2. Our framework generalizes them to fulfill the

demand of capturing the graphical structure of the higher-

order tensor-valued data.

2.3 Estimation
This section introduces the estimation procedure for the

proposed sparse tensor graphical model. A computationally

efficient algorithm is provided to alternatively estimate all

precision matrices.

Recall that in (2.2), qn(⌦1

, . . . ,⌦K) is jointly non-convex

with respect to ⌦
1

, . . . ,⌦K . Nevertheless, it turns out to

be a bi-convex problem since qn(⌦1

, . . . ,⌦K) is convex in

⌦k when the rest K � 1 precision matrices are fixed. The

nice bi-convex property plays a critical role in our algorithm

construction and its theoretical analysis in §3.

Based on the bi-convex property, we propose to solve

this non-convex problem by alternatively updating one

precision matrix with other matrices being fixed. Note that,

for any k = 1, . . . ,K , minimizing (2.2) with respect to ⌦k

while fixing the rest K � 1 precision matrices is equivalent

to minimizing

L(⌦k) :=
1

mk
tr(Sk⌦k)� 1

mk
log |⌦k|+ �kk⌦kk1,off

. (2.3)

Here, Sk :=

mk
nm

Pn
i=1

Vk
i V

k>
i , where Vk

i :=

⇥Ti ⇥
�

⌦
1/2
1

, . . . ,⌦1/2
k�1

,1mk ,⌦
1/2
k+1

, . . . ,⌦1/2
K

 ⇤

(k)
with ⇥ the ten-

sor product operation and [·]
(k) the mode-k matricization

operation defined in §2.1. The result in (2.3) can be shown

by noting that Vk
i = [Ti]

(k)

�

⌦
1/2
K ⌦· · ·⌦⌦

1/2
k+1

⌦⌦
1/2
k�1

⌦· · ·⌦
⌦

1/2
1

�>
according to the properties of mode-k matricization

shown by [47]. Hereafter, we drop the superscript k of

Vk
i if there is no confusion. Note that minimizing (2.3)

corresponds to estimating vector-valued Gaussian graphical

model and can be solved efficiently via the glasso algorithm

[55].

The details of our Tensor lasso (Tlasso) algorithm are

shown in Algorithm 1. It starts with a random initialization

and then alternatively updates each precision matrix until it

converges. In §3, we will illustrate that the statistical proper-

ties of the obtained estimator are insensitive to the choice of

the initialization (see the discussion following Theorem 3.5).

In our numerical experiments, for each k = 1, . . . ,K , we

Algorithm 1 Solve sparse tensor graphical model via Tensor

lasso (Tlasso)

1: Input: Tensor samples T
1

. . . , Tn, tuning parameters

�
1

, . . . ,�K , max number of iterations T .

2: Initialize ⌦
(0)

1

, . . . ,⌦(0)

K randomly as symmetric and

positive definite matrices and set t = 0.

3: Repeat:
4: t = t+ 1.

5: For k = 1, . . . ,K :

6: Given ⌦
(t)
1

, . . . ,⌦(t)
k�1

,⌦(t�1)

k+1

, . . . ,⌦(t�1)

K , solve (2.3)

for ⌦
(t)
k via glasso.

7: Normalize ⌦
(t)
k such that k⌦(t)

k kF = 1.

8: End For
9: Until t = T .

10: Output: b⌦k = ⌦
(T )

k (k = 1, . . . ,K).

set the initialization of k-th precision matrix as 1mk , which

leads to superior numerical performance.

3 THEORY OF STATISTICAL OPTIMIZATION

We first prove the estimation errors in terms of Frobenius

norm, max norm, and spectral norm, and then provide the

model selection consistency of the estimator output from

the Tlasso algorithm. For compactness, we defer the proofs

of theorems to supplementary material.

3.1 Estimation Error in Frobenius Norm
Based on the penalized log-likelihood in (2.2), we define the

population log-likelihood function as q(⌦
1

, . . . ,⌦K) :=

1

m
E
�

tr

⇥

vec(T )vec(T )

>
(⌦K⌦· · ·⌦⌦

1

)

⇤ �
K
X

k=1

1

mk
log |⌦k|.

(3.1)

By minimizing q(⌦
1

, . . . ,⌦K) with respect to ⌦k,

k = 1, . . . ,K , we obtain the population mini-

mization function with the parameter ⌦
[K]�k :=

{⌦
1

, . . . ,⌦k�1

,⌦k+1

, . . . ,⌦K}, i.e.,

Mk(⌦
[K]�k) := argmin

⌦k

q(⌦
1

, . . . ,⌦K). (3.2)

Our first theorem shows an interesting result that the

above population minimization function recovers the true

parameter in only one iteration.

Theorem 3.1. For any k = 1, . . . ,K , if ⌦j (j 6= k) satisfies

tr(⌃⇤
j⌦j) 6= 0, then the population minimization function in

(3.2) satisfies Mk(⌦
[K]�k) = m

⇥

mk
Q

j 6=k tr(⌃⇤
j⌦j)

⇤�1

⌦⇤
k.

Theorem 3.1 indicates that the population minimiza-

tion function recovers the true precision matrix up to a

constant in only one iteration. If ⌦j = ⌦⇤
j , j 6= k, then

Mk(⌦
[K]�k) = ⌦⇤

k. Otherwise, after a normalization such

that kMk(⌦
[K]�k)kF = 1, the normalized population min-

imization function still fully recovers ⌦⇤
k. This observation

suggests that setting T = 1 in Algorithm 1 is sufficient.

Such a theoretical suggestion will be further supported by

our numeric results.

In practice, when the population log-likelihood function

(3.1) is unknown, we can approximate it by its sample
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version qn(⌦1

, . . . ,⌦K) defined in (2.2), which gives rise

to the statistical estimation error. Similar as (3.2), we define

the sample-based minimization function with parameter

⌦
[K]�k = {⌦

1

, . . . ,⌦k�1

,⌦k+1

, . . . ,⌦K} as

cMk(⌦
[K]�k) := argmin

⌦k

qn(⌦1

, . . . ,⌦K). (3.3)

In order to derive the estimation error, it remains to

quantify the statistical error induced from finite samples.

The following two regularity conditions are assumed for this

purpose.

Condition 3.2 (Bounded Eigenvalues). For any k =

1, . . . ,K , there is a constant C
1

> 0 such that,

0 < C
1

 �
min

(⌃⇤
k)  �

max

(⌃⇤
k)  1/C

1

< 1,

where �
min

(⌃⇤
k) and �

max

(⌃⇤
k) refer to the minimal and

maximal eigenvalue of ⌃⇤
k, respectively.

Condition 3.2 has been commonly assumed in the pre-

cision matrix estimation literature in order to facilitate the

proof of estimation consistency [56], [57], [58].

Condition 3.3 (Tuning). For any k = 1, . . . ,K and some

constant C
2

> 0, the tuning parameter �k satisfies

1/C
2

p

logmk/(nmmk)  �k  C
2

p

logmk/(nmmk).

Before characterizing the statistical error, we define a

sparsity parameter for ⌦⇤
k, k = 1, . . . ,K . Let Sk := {(i, j) :

[⌦⇤
k]i,j 6= 0}. Denote the sparsity parameter sk := |Sk|�mk,

which is the number of nonzero entries in the off-diagonal

component of ⌦⇤
k. For each k = 1, . . . ,K , we define B(⌦⇤

k)

as the set containing ⌦⇤
k and its neighborhood for some

sufficiently large radius ↵ > 0, i.e., B(⌦⇤
k) :=

{⌦ 2 Rmk⇥mk
: ⌦ = ⌦>

;⌦ � 0; k⌦�⌦⇤
kkF  ↵}. (3.4)

Theorem 3.4. Suppose that Conditions 3.2 and 3.3 hold. For

any k = 1, . . . ,K , the statistical error of the sample-based

minimization function defined in (3.3) satisfies that, for any

fixed ⌦j 2 B(⌦⇤
j ) (j 6= k),

�

�

cMk(⌦
[K]�k)�Mk(⌦

[K]�k)
�

�

F

= OP

0

@

s

mk(mk + sk) logmk

nm

1

A , (3.5)

where Mk(⌦
[K]�k) and

cMk(⌦
[K]�k) are defined in (3.2)

and (3.3), and m =

QK
k=1

mk.

Theorem 3.4 establishes the estimation error associated

with

cMk(⌦
[K]�k) for arbitrary ⌦j 2 B(⌦⇤

j ) with j 6= k.

In comparison, previous work on the existence of a local

solution with desired statistical property only establishes

theorems similar to Theorem 3.4 for ⌦j = ⌦⇤
j with j 6= k.

The extension to an arbitrary ⌦j 2 B(⌦⇤
j ) involves non-

trivial technical barriers. Specifically, we first establish the

rate of convergence of the difference between a sample-

based quadratic form and its expectation (Lemma S.1) via

Talagrand’s concentration inequality [59]. This result is also

of independent interest. We then carefully characterize the

rate of convergence of Sk defined in (2.3) (Lemma S.2).

Finally, we develop (3.5) using the results for vector-valued

graphical models developed by [60].

According to Theorem 3.1 and Theorem 3.4, we obtain

the rate of convergence of the Tlasso estimator in terms of

Frobenius norm, which is our main result.

Theorem 3.5. Assume that Conditions 3.2 and 3.3 hold. For

any k = 1, . . . ,K , if the initialization satisfies ⌦
(0)

j 2 B(⌦⇤
j )

for any j 6= k, then the estimator

b⌦k from Algorithm 1 with

T = 1 satisfies,

�

�

b⌦k �⌦⇤
k

�

�

F
= OP

 

s

mk(mk + sk) logmk

nm

!

, (3.6)

where m =

QK
k=1

mk and B(⌦⇤
j ) is defined in (3.4).

Theorem 3.5 suggests that as long as the initialization

is within a constant distance to the truth, the Tlasso algo-

rithm attains a consistent estimator after only one iteration.

This consistency is insensitive to the initialization since the

constant ↵ in (3.4) can be arbitrarily large. In literature,

[16] show that there exists a local minimizer of (2.2) whose

convergence rate can achieve (3.6). However, it is unknown

if their algorithm can find such a minimizer since there

could be many other local minimizers.

A notable implication of Theorem 3.5 is that, when

K � 3, the estimator from the Tlasso algorithm can achieve

estimation consistency even if we only have access to one

observation, i.e., n = 1, which is often the case in practice. To

see it, suppose that K = 3 and n = 1. When the dimensions

m
1

,m
2

, and m
3

are of the same order of magnitude and

sk = O(mk) for k = 1, 2, 3, all the three error rates

corresponding to k = 1, 2, 3 in (3.6) converge to zero.

Theorem 3.5 implies that the estimation of the k-th preci-

sion matrix takes advantage of the information from the j-th

way (j 6= k) of the tensor data. Consider a simple case that

K = 2 and one precision matrix ⌦⇤
1

= 1m1 is known. In this

scenario the rows of the matrix data are independent and

hence the effective sample size for estimating ⌦⇤
2

is in fact

nm
1

. The optimality result for the vector-valued graphical

model [11] implies that the optimal rate for estimating ⌦⇤
2

is

p

(m
2

+ s
2

) logm
2

/(nm
1

), which is consistent with our

result in (3.6). Therefore, the rate in (3.6) obtained by the

Tlasso estimator is minimax-optimal since it is the best rate

one can obtain even when ⌦⇤
j (j 6= k) were known. As far

as we know, this phenomenon has not been discovered by

any previous work in tensor graphical model.

Remark 3.6. For K = 2, our tensor graphical model re-

duces to matrix graphical model with Kronecker prod-

uct covariance structure [12], [13], [14], [15]. In this

case, the rate of convergence of

b⌦
1

in (3.6) reduces

to

p

(m
1

+ s
1

) logm
1

/(nm
2

), which is much faster than

p

m
2

(m
1

+ s
1

)(logm
1

+ logm
2

)/n established by [13]

and

p

(m
1

+m
2

) log[max(m
1

,m
2

, n)]/(nm
2

) established

by [14]. In literature, [12] shows that there exists a local

minimizer of the objective function whose estimation errors

match ours. However, it is unknown if their estimator can

achieve such convergence rate. On the other hand, our

theorem confirms that our algorithm is able to find such

estimator with an optimal rate of convergence.
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3.2 Estimation Error in Max Norm and Spectral Norm

We next derive the estimation error in max norm and spec-

tral norm. Trivially, these estimation errors are bounded by

that in Frobenius norm shown in Theorem 3.5. To develop

improved rates of convergence in max and spectral norms,

we need to impose stronger conditions on true parameters.

We first introduce some important notations. Denote dk
as the maximum number of non-zeros in any row of the true

precision matrices ⌦⇤
k, that is,

dk := max

i2{1,...,mk}

�

�{j 2 {1, . . . ,mk} : [⌦⇤
k]i,j 6= 0}��, (3.7)

with | · | the set cardinality. For each covariance matrix ⌃⇤
k,

we define 
⌃

⇤
k
:= |||⌃⇤

k|||1. Denote the Hessian matrix �⇤
k :=

⌦⇤�1

k ⌦ ⌦⇤�1

k 2 Rm2
k⇥m2

k
, whose entry [�⇤

k](i,j),(s,t) corre-

sponds to the second order partial derivative of the objective

function with respect to [⌦k]i,j and [⌦k]s,t. We define its

sub-matrix indexed by Sk as [�⇤
k]Sk,Sk = [⌦⇤�1

k ⌦⌦⇤�1

k ]Sk,Sk ,

which is the |Sk| ⇥ |Sk| matrix with rows and columns

of �⇤
k indexed by Sk and Sk, respectively. Moreover, we

define 
�

⇤
k
:=

�

�

�

�

�

�

([�⇤
k]Sk,Sk)

�1

�

�

�

�

�

�

1. In order to establish the

rate of convergence in max norm, we need to impose an

irrepresentability condition on the Hessian matrix.

Condition 3.7 (Irrepresentability). For each k = 1, . . . ,K ,

there exists some ↵k 2 (0, 1] such that

max

e2Sck

�

�

[�⇤
k]e,Sk

�

[�⇤
k]Sk,Sk

��1

�

�

1

 1� ↵k.

Condition 3.7 controls the influence of the non-connected

terms in Sck on the connected edges in Sk. This condition

has been widely applied for developing the theoretical

properties of lasso-type estimator [43], [61], [62].

Condition 3.8 (Bounded Complexity). For each k =

1, . . . ,K , the parameters 
⌃

⇤
k

and 
�

⇤
k

are bounded and the

parameter dk in (3.7) satisfies dk = o
�p

nm/(mk logmk)
�

.

Theorem 3.9. Suppose Conditions 3.2, 3.3, 3.7 and 3.8 hold.

Assume sk = O(mk) for k = 1, . . . ,K and assume m0
ks are

in the same order, i.e., m
1

⇣ m
2

⇣ · · · ⇣ mK . For each k, if

the initialization satisfies ⌦
(0)

j 2 B(⌦⇤
j ) for any j 6= k, then

the estimator

b⌦k from Algorithm 1 with T = 2 satisfies,

�

�

b⌦k �⌦⇤
k

�

�

1 = OP

 

r

mk logmk

nm

!

. (3.8)

In addition, the edge set of

b⌦k is a subset of the true edge

set of ⌦⇤
k, that is, supp(

b⌦k) ✓ supp(⌦⇤
k).

Theorem 3.9 shows that the Tlasso estimator achieves

the optimal rate of convergence in max norm [11]. Here we

consider the estimator obtained after two iterations since we

require a new concentration inequality (Lemma S.3) for the

sample covariance matrix, which is built upon the estimator

in Theorem 3.5.

Remark 3.10. Theorem 3.9 ensures that the estimated pre-

cision matrix correctly excludes all non-informative edges

and includes all the true edges (i, j) with |[⌦⇤
k]i,j | >

C
p

mk logmk/(nm) for some constant C > 0. There-

fore, in order to achieve the variable selection consistency

sign

�

b⌦k

�

= sign(⌦⇤
k), a sufficient condition is to as-

sume that the minimal signal min

(i,j)2supp(⌦

⇤
k)
|[⌦⇤

k]i,j | �
C
p

mk logmk/(nm) for each k. This confirms that the

Tlasso estimator is able to correctly recover the graphical

structure of each way of the high-dimensional tensor data.

A direct consequence from Theorem 3.9 is the estimation

error in spectral norm.

Corollary 3.11. Suppose the conditions of Theorem 3.9 hold,

for any k = 1, . . . ,K , we have

�

�

b⌦k �⌦⇤
k

�

�

2

= OP

 

dk

r

mk logmk

nm

!

. (3.9)

Remark 3.12. Now we compare our obtained rate

of convergence in spectral norm for K = 2 with

that established in the sparse matrix graphical model

literature. In particular, [15] establishes the rate of

OP

�

p

mk(sk _ 1) log(m
1

_m
2

)/(nmk)
�

for k = 1, 2.

Therefore, when d2k  (sk _ 1), which holds for example

in the bounded degree graphs, our obtained rate is faster.

However, our faster rate comes at the price of assuming the

irrepresentability condition. Using recent advance in non-

convex regularization [63], we can actually eliminate the

irrepresentability condition. We leave this to future work.

4 TENSOR INFERENCE

This section introduces a statistical inference procedure for

sparse tensor graphical models. In particular, built on Tlasso

algorithm, a consistent test statistic is constructed for hy-

pothesis

H
0k,ij : [⌦⇤

k]i,j = 0 v.s. H
1k,ij : [⌦⇤

k]i,j 6= 0, (4.1)

81  i < j  mk and k = 1, . . . ,K . Also, to simultaneously

test all off-diagonal entries, a multiple testing procedure is

developed with false discovery rate (FDR) control.

4.1 Construction of Test Statistic

Without loss of generality, we focus on testing ⌦⇤
1

. For a

tensor T 2 Rm1⇥···⇥mK
, denote T�i1,i2,...,iK 2 Rm1�1

as

the vector by removing the i
1

-th entry of T
:,i2,...,iK . Given

that T follows a tensor normal distribution (2.1), we have,

8i
1

2 m
1

, Ti1,i2,...,iK |T�i1,i2,...,iK ⇠

N

 

�[⌦⇤
1

]

�1

i1,i1 [⌦
⇤
1

]i1,�i1T�i1,i2,...,iK ; [⌦⇤
1

]

�1

i1,i1

K
Y

k=2

[⌃⇤
k]ik,ik

!

.

(4.2)

Inspired by (4.2), our tensor graphical model can be re-

formulated into a linear regression. Specifically, for tensor

sample Tl, l = 1, . . . , n, (4.2) implies that,

Tl;i1,i2,...,iK = T >
l;�i1,i2,...,iK✓i1 + ⇠l;i1,i2,...,iK , (4.3)

where regression parameter ✓i1 = �[⌦⇤
1

]

�1

i1,i1 [⌦
⇤
1

]i1,�i1 , and

noise

⇠l;i1,i2,...,iK ⇠ N(0 ; [⌦⇤
1

]

�1

i1,i1

K
Y

k=2

[⌃⇤
k]ik,ik). (4.4)

Let

b⌦
1

be an estimate of ⌦
1

obtained from Tlasso

algorithm. Naturally, a plug-in estimate of ✓i1 follows, i.e.,
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b✓i1 = (

b✓
1,i1 , . . . ,

b✓m1�1,i1)
>
:= �[

b⌦
1

]

�1

i1,i1 [
b⌦
1

]i1,�i1 . Denote

a residual of (4.3) as

b⇠l;i1,i2,...,iK :=

Tl;i1,i2,...,iK � ¯Ti1,i2,...,iK �(Tl;�i1,i2,...,iK � ¯T�i1,i2,...,iK )

>
b✓i1 ,

where

¯T =

Pn
l=1

Tl/n. Correspondingly, its sample covari-

ance is, 81  i < j  m
1

,

b%i,j =

m
1

(n� 1)m

n
X

l=1

m2
X

i2=1

· · ·
mK
X

iK=1

b⇠l;i,i2,...,iK
b⇠l;j,i2,...,iK .

In light of (4.4), information of [⌦⇤
1

]i,j is encoded in

b%i,j .

In this sense, a test statistic is proposed, i.e.,

⌧i,j =
b%i,j + µi,j

$
, 81  i < j  m

1

. (4.5)

Intuition of ⌧i,j is extracting knowledge of [⌦⇤
1

]i,j from

b%i,j
via two-step correction. Notably, bias correction term µi,j :=

b%i,ib✓i,j +

b%j,jb✓j�1,i reduces bias resulting from estimation

error of

b✓i and

b✓j . In addition, variance correction term

$2

:=

m · kbS
2

k2F · · · kbSKk2F
m

1

· [tr(bS
2

)]

2 · · · [tr(bSK)]

2

, (4.6)

eliminates extra variation introduced by the rest

K � 1 modes (see (4.4)). Here

bSk :=

mk
nm

Pn
i=1

bVi
bV>
i

is an estimate of ⌃k, where

bVi :=

⇥Ti ⇥
�

b⌦
1/2
1

, . . . , b⌦1/2
k�1

,1mk ,
b⌦
1/2
k+1

, . . . , b⌦1/2
K

 ⇤

(k)
with

b⌦k

from Tlasso algorithm.

Theorem 4.1 establishes asymptotic normality of ⌧i,j .

Symmetrically, such normality can be extended to the rest

K � 1 modes.

Theorem 4.1. Assume the same assumptions of Theorem

3.9, we have, under null (4.1),

e⌧i,j :=

s

(n� 1)m

m
1

b%i,ib%j,j
⌧i,j ! N(0; 1)

in distribution, as nm/m
1

! 1.

Theorem 4.1 implies that, when K � 2, asymptotic

normality holds even if we have a constant number of

observations, which is often the case in practice. For ex-

ample, let n = 2 and m
1

⇣ m
2

, nm/m
1

still goes to

infinity as m
1

,m
2

diverges . This result reflects an inter-

esting phenomenon specifically in tensor graphical models.

Particularly, hypothesis testing for certain mode’s precision

matrix could take advantage of information from the rest

modes in tensor data. As far as we know, this phenomenon

has not been discovered by any previous work in tensor

graphical models.

4.2 FDR Control Procedure

Though our test statistic enjoys consistency on single entry,

simultaneously testing all off-diagonal entries is more of

practical interest. Thus, in this subsection, a multiple testing

procedure with false discovery rate (FDR) control is devel-

oped.

Given a thresholding level & , denote '&(e⌧i,j) :=

1{|e⌧i,j | � &}. Null is rejected if '&(e⌧i,j) = 1. Correspond-

ingly, false discovery proportion (FDP) and FDR are defined

as

FDP =

|{(i, j) 2 H
0

: '&(e⌧i,j) = 1}|
|{(i, j) : 1  i < j  m

1

,'&(e⌧i,j) = 1}| _ 1

,

and FDR = E(FDP). Here H
0

= {(i, j) : [⌦⇤
1

]i,j = 0, 1 
i < j  m

1

}. A sufficient small & is ideal that significantly

enhances power, meanwhile controls FDP under a pre-

specific level � 2 (0, 1). In particular, the ideal thresholding

value is

&⇤ := inf{& > 0 : FDP  �}.
However, in practice, &⇤ is not attainable due to un-

known H
0

in FDP. Therefore, we approximate &⇤ by

the following heuristics. Firstly, Theorem 4.1 implies that

P ('&(e⌧i,j) = 1) is close to 2(1 � �(&)) asymptotically. So

the numerator of FDP is approximately 2(1 � �(&))|H
0

|.
Secondly, sparsity indicates that most entries are zero. Con-

sequently, |H
0

| is nearly w := m
1

(m
1

� 1)/2. Under the

above concerns, an approximation of &⇤ is

b& =

inf

⇢

& > 0 :

2(1� �(&))w

|{(i, j) : i < j,'&(e⌧i,j) = 1}| _ 1

 �

�

, (4.7)

which is a trivial one-dimensional search problem.

Algorithm 2 Support recovery with FDR control for sparse

tensor graphical models

1: Input: Tensor samples T
1

. . . , Tn, {b⌦k}Kk=1

from Algo-

rithm 1, and a pre-specific level �.

2: Initialize: Support S = ;.

3: Compute test statistic

e⌧i,j , 81  i < j  m
1

, defined in

Theorem 4.1.

4: Compute thresholding level

b& in (4.7).

5: If

e⌧i,j > b& , 81  i < j  m
1

, reject null hypothesis and

set S = S [ {(i, j), (j, i)}.

6: Output: S [ {(i, i) : 1  i  m
1

}.

Algorithm 2 describes our multiple testing procedure

with FDR control for support recovery of ⌦⇤
1

. Extension to

the rest K � 1 modes is symmetric. Clearly, FDR and FDP

for ⌦⇤
1

from Algorithm 2 are

FDP

1

=

|{(i, j) 2 H
0

: 'b&(e⌧i,j) = 1}|
|{(i, j) : 1  i < j  m

1

,'b&(e⌧i,j) = 1}| _ 1

,

and FDR

1

= E(FDP

1

). To depict their asymptotic behavior,

two additional conditions are imposed related to size of true

alternatives and sparsity.

Condition 4.2 (Alternative Size). Denote $2

0

= m ·
k⌃⇤

2

k2F · · · k⌃⇤
Kk2F /(m1

· (tr(⌃⇤
2

) · · · tr(⌃⇤
K))

2

). It holds that

�

�

�

(i, j) : 1  i < j  m
1

, |[⌦⇤
1

]i,j |/
p

[⌦⇤
1

]i,i[⌦⇤
1

]j,j �
4

p

$
0

m
1

logm
1

/((n� 1)m)

 

�

� � p
log logm

1

.

Condition 4.3 (Sparsity). For some ⇢ < 1/2 and � > 0,

there exists a positive constant C such that max

1im1

�

�

�

j : 1 
j  m

1

, j 6= i, |[⌦⇤
1

]i,j | � (logm
1

)

�2��
 

�

�  Cm⇢
1

.

Notably, Condition 4.2 and 4.3 imply an interesting

interplay between sparsity and number of true alternatives.

In addition, Condition 4.2 is nearly necessary in the sense

that FDR control for large-scale multiple testing fails if

number of true alternatives is fixed [64]. Also, if |H
0

| = o(w)
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(Condition 4.3 fails), most hypotheses would be rejected,

and FDP

1

! 0. Thus FDR control makes no sense anymore.

Theorem 4.4 characterizes asymptotic properties of FDP

1

and FDR

1

. For simplicity, we denote w
0

= |H
0

|.
Theorem 4.4. Assume the same assumptions of Theorem

4.1, together with Condition 4.2 & 4.3. If m
1

 (nm/m
1

)

r

and w
0

� cw for some positive constants r and c, we have

FDP

1

w/�w
0

! 1, and FDR

1

w/�w
0

! 1

in probability as nm/m
1

! 1.

Theorem 4.4 shows that our FDR control procedure is

still valid even when sample size is constant and dimension-

ality diverges. Similar to Theorem 4.1, this phenomenon is

specific to tensor graphical models.

Remark 4.5. Theorem 4.4 can be utilized to control FDR and

FDP of testing Kronecker product ⌦⇤
1

⌦ · · ·⌦⌦⇤
K . Consider

a simple example with K = 3, denote f
1

, f
2

, f
3

as numbers

of false discoveries of testing ⌦⇤
1

,⌦⇤
2

,⌦⇤
3

respectively, and

d
1

, d
2

, d
3

as numbers of corresponding off-diagonal discov-

eries. FDP and FDR of testing ⌦⇤
1

⌦⌦⇤
2

⌦⌦⇤
3

are

FDPc =
↵
0

(m
3

+ d
3

) + (↵� ↵
0

+m
1

m
2

)f
3

[

Q

3

k=1

(dk +mk)�m
1

m
2

m
3

] _ 1

,

and FDRc = E(FDPc), where ↵
0

= f
1

(m
2

+ d
2

) + (d
1

�
f
1

+ m
1

)f
2

and ↵ = (d
1

+ m
1

)(d
2

+ m
2

) � m
1

m
2

. In

practice, values of fk, k 2 {1, 2, 3}, can be estimated by �dk
by Theorem 4.4, given that all precision matrices are sparse

enough. Therefore, define

⌧ =

↵0
0

(m
3

+ d
3

) + (↵� ↵0
0

+m
1

m
2

)�d
3

[

Q

3

k=1

(dk +mk)�m
1

m
2

m
3

] _ 1

,

where ↵0
0

= �d
1

(m
2

+ 2d
2

) + (m
1

� �d
1

)�d
2

. Similar

arguments of Theorem 4.4 imply that FDPc/⌧ ! 1 and

FDRc/⌧ ! 1.

5 SIMULATIONS

In this section, we demonstrate superior empirical perfor-

mance of proposed estimation and inference procedures

for sparse tensor graphical models. These procedures are

implemented into R package Tlasso.

At first, we present numerical study of the Tlasso

algorithm with iteration T = 1 and compare it with

two alternative approaches. The first alternative method

is graphical lasso (Glasso) approach [55] that applies to

vectorized tensor data. This method ignores tensor structure

of observed samples, and estimates Kronecker product of

precision matrices ⌦⇤
1

⌦ · · · ⌦ ⌦⇤
K directly. The second

alternative method is iterative penalized maximum like-

lihood method (P-MLE) proposed by [16]. This method

iteratively updates each precision matrix by solving an

individual graphical lasso problem while fixing all other

precision matrices until a pre-specified termination condi-

tion

PK
k=1

kb⌦(t)
k � b⌦

(t�1)

k kF /K  0.001 is met.

In the Tlasso algorithm, the tuning parameter for updat-

ing

b⌦k is set in the form of C
p

logmk/(nmmk) as assumed

in Condition 3.3. Throughout all the simulations and real

data analysis, we set C = 20. Sensitivity analysis in §S.4 of

the online supplement shows that the performance of Tlasso

is relatively robust to the value of C . For a fair comparison,

the same tuning parameter is applied in P-MLE method for

k = 1, . . . ,K . Individual graphical lasso problems in both

Tlasso and P-MLE method are computed via huge . In the

direct Glasso approach, its single tuning parameter is chosen

by cross-validation automatically via huge .

In order to measure estimation accuracy of each method,

three error criteria are selected. The first one is Frobenius

estimation error of Kronecker product of precision matrices,

i.e.,

1

m

�

�

b⌦
1

⌦ · · ·⌦ b⌦K �⌦⇤
1

⌦ · · ·⌦⌦⇤
K

�

�

F
, (5.1)

and the rest two are averaged estimation errors in Frobenius

norm and max norm, i.e.,

1

K

K
X

k=1

�

�

b⌦k �⌦⇤
k

�

�

F
,

1

K

K
X

k=1

�

�

b⌦k �⌦⇤
k

�

�

1. (5.2)

Note that the last two criteria are only available to P-MLE

method and Tlasso.

Two simulations are considered for a third order tensor,

i.e., K = 3. In Simulation 1, we construct a triangle graph; in

Simulation 2, a four nearest neighbor graph is adopted for

each precision matrix. An illustration of generated graphs

are shown in Figure 1. Detailed generation procedures for

the two graphs are as follows.

Triangle: For each k = 1, . . . ,K , we construct covari-

ance matrix ⌃k 2 Rmk⇥mk
such that its (i, j)-th entry is

[⌃k]i,j = exp(�|hi � hj |/2) with h
1

< h
2

< · · · < hmk .

The difference hi � hi�1

, i = 2, . . . ,mk, is generated i.i.d.

from Unif(0.5, 1). This generated covariance matrix mimics

autoregressive process of order one, i.e., AR(1). We set

⌦⇤
k = ⌃�1

k . Similar procedure has also been used by [60].

Nearest Neighbor: For each k = 1, . . . ,K , we construct

precision matrix ⌦k 2 Rmk⇥mk
directly from a four nearest-

neighbor network. Firstly, mk points are randomly picked

from an unit square and all pairwise distances among

them are computed. We then search for the four nearest-

neighbors of each point and a pair of symmetric entries in

⌦k corresponding to a pair of neighbors that has a randomly

chosen value from [�1,�0.5][ [0.5, 1]. To ensure its positive

definite property, the final precision matrix is designed as

⌦⇤
k = ⌦k + (|�

min

(⌦k) + 0.2| · 1mk), where �
min(·) refers

to the smallest eigenvalue. Similar procedure has also been

studied by [65].

Fig. 1. An illustration of generated triangle graph (left) in Simulations
1 and four nearest neighbor graph (right) in Simulations 2. In this
illustration, the dimension is 100.

In each simulation, we consider three scenarios as fol-

lows. Each scenario is repeated 100 times. Averaged compu-
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tational time, and averaged criteria for estimation accuracy

and variable selection consistency are computed.

• Scenario s1: sample size n = 50 and dimension

(m
1

,m
2

,m
3

) = (10, 10, 10).
• Scenario s2: sample size n = 80 and dimension

(m
1

,m
2

,m
3

) = (10, 10, 10).
• Scenario s3: sample size n = 50 and dimension

(m
1

,m
2

,m
3

) = (10, 10, 20).

We first compare averaged computational time of all

methods, see the first row of Figure 2. Clearly, Tlasso is

dramatically faster than both competing methods. In par-

ticular, in Scenario s3, Tlasso takes about three seconds for

each replicate. P-MLE takes about one minute while the

direct Glasso method takes more than half an hour and is

omitted in the plot. As we will show below, Tlasso algorithm

is not only computationally efficient but also enjoys good

estimation accuracy and support recovery performance.
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(s
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Fig. 2. The first row: averaged computational time of each method in
Simulations 1&2, respectively. The second row: averaged estimation
error of Kronecker product of precision matrices of each method in
Simulations 1&2, respectively. Results for the direct Glasso method in
Scenario s3 is omitted due to its extremely slow computation.

In the second row of Figure 2, we compute averaged es-

timation errors of Kronecker product of precision matrices.

Clearly, with respect to tensor graphical structure, the direct

Glasso method has significantly larger errors than Tlasso

and P-MLE method. Tlasso outperforms P-MLE in Scenarios

s1 and s2 and is comparable to P-MLE in Scenario s3. It is

worth noting that, in Scenario s3, P-MLE is 20 times slower

than Tlasso.

Next, we evaluate averaged estimation errors of preci-

sion matrices in Frobenius norm and max norm for Tlasso

and P-MLE method. The direct Glasso method only esti-

mate the whole Kronecker product, hence can not produce

estimate for each precision matrix. Recall that, as we show

in Theorem 3.5 and Theorem 3.9, estimation error for the k-

th precision matrix is OP (
p

mk(mk + sk) logmk/(nm)) in

Frobenius norm and OP (
p

mk logmk/(nm)) in max norm,

where m = m
1

m
2

m
3

in this example. These theoretical

findings are supported by numerical results in Figure 3. In

particular, as sample size n increases from Scenario s1 to s2,

estimation errors in both Frobenius norm and max norm ex-

pectedly decrease. From Scenario s1 to s3, one dimension m
3

increases from 10 to 20, and other dimensions m
1

,m
2

keep

the same, in which case averaged estimation error in max

norm decreases, while error in Frobenius norm increases

due to its additional

p
mk + sk effect. Moreover, compared

with P-MLE method, Tlasso demonstrates significant better

performance in all three scenarios in terms of both Frobenius

norm and max norm.
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Fig. 3. Averaged estimation errors of precision matrices in Frobenius
norm and max norm of each method in Simulations 1&2, respectively.
The first row is for Simulation 1, and the second row is for Simulation 2.

From here, we turn to numerical study of the proposed

inference procedure. Estimation of precision matrices in the

inference procedure is conducted under the same setting as

the former numerical study of Tlasso algorithm. Similarly,

two simulations are considered, i.e., triangle graph and

nearest neighbor graph. In both simulations, third-order

tensors are constructed, adopting the same three scenarios

as above: Scenario s1, s2, and s3. Each scenario repeats 100

times.

We first evaluate asymptotic normality of our test statis-

tic

e⌧i,j . Figure 4 demonstrates QQ plots of test statistic

for fixed zero entry [⌦⇤
1

]

6,1. Some other zero entries have

been selected, and their simulation results are similar. So we

only present results of [⌦⇤
1

]

6,1 in this section. As shown in

Figure 4, our test statistic behaves very similar to standard

normal even when sample size is small and dimensionality

is high. It results from the fact that our inference method

fully utilizes tensor structure.

Then we investigate the validity of our FDR control

procedure. Table 1 contains FDP, its theoretical limit ⌧ (see

Remark 4.5), and power (all in %) for Kronecker product

of precision matrices under FDR control. Oracle procedure

utilizes true covariance and precision matrices to compute

test statistic. Each mode has the same pre-specific level

� = 5% or 10%. As show in Table 1, powers are almost

one and FDPs are small under poor conditions, i.e, small

sample size or large dimensionality. It implies that our in-

ference method has superior support recovery performance.

Besides, empirical FDPs get closer to their theoretical limits

if either of dimensionality and sample size is larger. This
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Fig. 4. QQ plots for fixed zero entry [⌦⇤
1]6,1. From left column to right

column is scenario s1, s2 and s3. The first row is simulation 1, and the
second is simulation 2.

phenomenon backs up the theoretical justification in Theo-

rem 4.4. Thanks to fully utilizing tensor structure, difference

between oracle FPR and our data-driven FDP decreases as

either dimensionality or sample size grows.

TABLE 1
Empirical FDP, its theoretical limit ⌧ , and power (all in %) of our

inference procedure under FDP control for the Kronecker product of
precision matrices in scenario s1, s2, and s3.

Sim1 Sim2

� s1 s2 s3 s1 s2 s3

Empirical FDP (⌧ )

5

oracle 7.8 8.7 7.3 7.6 7.3 6.9

data-

driven

6.7

(9.9)

7.4

(9.9)

7.2

(9.9)

6.9

(11.1)

7

(11.1)

7.3

(11.1)

10

oracle 15.7 16.2 14.9 15.1 14.5 14.7

data-

driven

13.8

(19.3)

15.4

(19.3)

15.1

(19.4)

13.8

(21.4)

13.9

(21.4)

14.9

(21.4)

Empirical Power

5

oracle 100 100 100 99.9 100 99.9

data-

driven

100 100 100 99.8 100 99.8

10

oracle 100 100 100 100 100 100

data-

driven

100 100 100 99.9 100 99.9

In the end, we evaluate the true positive rate (TPR) and

the true negative rate (TNR) of the Kronecker product of

precision matrices for Glasso, P-MLE, and our FDP control

procedure to compare their model selection performance.

Specifically, let a⇤i,j be the (i, j)-th entry of ⌦⇤
1

⌦ · · · ⌦ ⌦⇤
K

and

bai,j be the (i, j)-th entry of

b⌦
1

⌦ · · · ⌦ b⌦K , TPR

and TNR of the Kronecker product are

P

i,j 1(bai,j 6=
0, a⇤i,j 6= 0)/

P

i,j 1(a
⇤
i,j 6= 0), and

P

i,j 1(bai,j = 0, a⇤i,j =

0)/
P

i 1(a
⇤
i,j = 0). Pre-specific FDP level is � = 5%. Table 2

shows the model selection performance of all three methods.

A good model selection procedure should produce large

TPR and TNR. Our FDP control procedure has dominating

TPR and TNR against the rest methods, i.e., almost all edges

are identified and few non-connected edges are included.

In short, the superior numerical performance and cheap

computational cost in these simulations suggest that our

method could be a competitive estimation and inferential

TABLE 2
Model selection performance comparison among Glasso, P-MLE, and

our FDP control procedure. Here TPR and TNR denote the true
positive rate and true negative rate of the Kronecker product of

precision matrices.

Scenarios

Glasso P-MLE Our FDP control

TPR TNR TPR TNR TPR TNR

s1 0.343 0.930 1 0.893 1 0.935

Sim1 s2 0.333 0.931 1 0.894 1 0.932

s3 0.146 0.969 1 0.941 1 0.929

s1 0.152 0.917 1 0.854 0.999 0.926

Sim2 s2 0.119 0.938 1 0.851 1 0.926

s3 0.078 0.962 1 0.937 0.998 0.928

tool for tensor graphical model in real-world applications.

6 REAL DATA ANALYSIS

In this section, we apply our inference procedure on two

real data sets. In particular, the first data set is from the

Autism Brain Imaging Data Exchange (ABIDE), a study

for autism spectrum disorder (ASD); the second set collects

users’ advertisement clicking behaviors from a major Inter-

net company.

6.1 ABIDE
In this subsection, we analyze a real ASD neuroimaging

dataset, i.e., ABIDE, to illustrate proposed inference pro-

cedure. As an increasingly prevalent neurodevelopmental

disorder, symptoms of ASD are social difficulties, commu-

nication deficits, stereotyped behaviors and cognitive delays

[66]. It is of scientific interest to understand how connectiv-

ity pattern of brain functional architecture differs between

ASD subjects and normal controls. After preprocessing,

ABIDE consists of the resting-state functional magnetic res-

onance imaging (fMRI) of 1071 subjects, of which 514 have

ASD, and 557 are normal controls. fMRI image from each

subject takes the form of a 30⇥ 36⇥ 30-dimensional tensor

of fractional amplitude of low-frequency fluctuations (fALFF),

calculated at each brain voxels. In other words, ABIDE has

514+557 tensor images (each of dimension 30⇥36⇥30) from

ASD and controls, and these tensor images are 3D scans of

human brain, whose entry values are fALFF of brain voxels

at corresponding spatial locations. fALFF is a metric charac-

terizing intensity of spontaneous brain activities, and thus

quantifies functional architecture of the brain [67]. Therefore

the support of precision matrix of fALFF fMRI images along

each mode encodes the connectivity pattern of brain func-

tional architecture. Dissimilarity in the supports between

ASD and controls reveals potentially differential connectiv-

ity pattern. In this problem, vectorization methods, such

as Glasso, will lose track of mode-specific structures, and

thus can not be applied. Due to high dimensionality, false

positive becomes a critical issue. However, P-MLE fails to

guarantee FDP control as demonstrated in the simulation

studies.

We apply the proposed inference procedure to recover

the support of mode precision matrices of fALFF fMRI im-

ages of ASD group (514 image tensors) and normal control

group (557 image tensors), respectively. Pre-specific FDP

level is set as 0.01%. The rest setup is the same as in §5.

Among the rejected entries of each group, we choose top 60



SUBMITTED TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

significant ones (smallest p-values) along each mode. All the

selected entries show p-values less than 0.01%. Positions of

differential entries between ASD and controls are recorded

and mapped back to corresponding brain voxels. We further

locate the voxels in the commonly used Anatomical Auto-

matic Labeling (AAL) atlas [68], which consists of 116 brain

regions of interest. Brain regions including the voxels, listed

in Table 3, are suspected to have differential connectivity

patterns between ASD and normal controls.

Our results in general match the established literature.

For example, postcentral gyrus agrees with [69], which

identifies postcentral gyrus as a key region where brain

structure differs in autism. Also, [70] suggests that thalamus

plays a role in motor abnormalities reported in autism

studies. Moreover, temporal lobe demonstrates differential

brain activity and brain volume in autism subjects [71].

TABLE 3
Brain regions of potentially differential connectivity pattern identified by

our inference procedure.

Hippocampus L ParaHippocampal R Hippocampus R

Temporal Sup L Amygdala L Temporal Sup R

Insula L Amygdala R Insula R

Frontal Mid R Thalamus L Thalamus R

Pallidum L Putamen L Caudate R

Precentral L Frontal Inf Oper L Frontal Inf Oper R

Precentral R Postcentral L Postcentral R

Temporal Pole Sup R

6.2 Advertisement Click Data
In this subsection, we apply the proposed inference method

to an online advertising data set from a major Internet

company. This dataset consists of click-through rates (CTR),

i.e., the number of times a user has clicked on an advertise-

ment from a certain device divided by the number of times

the user has seen that advertisement from the device, for

advertisements displayed on the company’s webpages from

May 19, 2016 to June 15, 2016. It tracks clicking behaviors of

814 users for 16 groups of advertisement from 19 publishers

on each day of weeks, conditional on two devices, i.e., PC

and mobile. Thus, two 16⇥ 19⇥ 7⇥ 814 tensors are formed

by computing CTR corresponds to each (advertisement,

publisher, dayofweek, users) quadruplet, conditional

on PC and mobile respectively. However, more than 95%

entries of either CTR tensor are missing. Hence, an alter-

nating minimization tensor completion algorithm [72] is

first conducted on the two tensors. Differential dependence

structures within advertisements, publishers, and days of

weeks between PC and mobile are of particular business

interest. Therefore, we apply the proposed inference pro-

cedure to advertisement, publisher, and dayofweek

modes of completed PC and mobile tensors respectively.

Setup is the same as in §6.1. Among the rejected entries

of each device, top (30, 12, 10) significant ones in mode

(advertisement, publisher, dayofweek) are selected.

All the selected entries show p-values less than 0.01%. Pairs

of entities, represented by the positions of differential entries

between PC and mobile, are suspected to display dissimilar

dependence when switching device.

Figure 5 demonstrates differential dependence patterns

between PC and mobile in terms of advertisement, pub-

lishers, and days of weeks. Note that red lines indicate

dependence only on PC, and black lines stand for those

only on mobile. Due to confidential reason, description on

specific entity of advertisement and publisher is not

presented. We only provide general interpretations on the

identified differential dependence patterns as follows. In

advertisement mode, credit card ads and mortgage ads

are linked on mobile. Such dependence is reasonable that

people involved in mortgage would be more interested in

credit card ads. On PC, uber share and solar energy are

interchained. It can be interpreted in the sense that both

uber share and solar energy are attractive for customers with

energy-saving awareness. As for publisher mode, sport

news publisher and weather news publisher are shown to

be dependent on PC. This phenomenon can be accounted

by the fact that sports and weather are the two most popu-

lar news choices when browsing websites. Also, magazine

publishers (e.g., beauty magazines, tech magazines, and TV

magazines) are connected on mobile. It is reasonable in the

sense that people tend to read several casual magazines

on mobiles for relaxing or during waiting. In dayofweek

mode, strong dependence is demonstrated among week-

days, say from Tuesday to Friday, on PC. However, no

clear pattern is showed on mobile. It can be explained that

employees operate PC mostly at work on weekdays but use

mobile every day.

Fig. 5. Analysis of the advertisement clicking data. Shown are differential
dependence patterns between PC (red lines) and mobile (black lines)
identified by our inference procedure. From left to right are advertise-
ments, publishers, days of weeks.

7 DISCUSSION

In this paper, we propose a novel sparse tensor graphical

model to analyze graphical structure of high-dimensional

tensor data. An efficient Tlasso algorithm is developed,

which attains an estimator with minimax-optimal conver-

gence rate in estimation. Tlasso algorithm not only is much

faster than alternative approaches but also demonstrates

superior estimation accuracy. In order to recover graph con-

nectivity, we further develop an inference procedure with

FDP control. Its asymptotic normality and validity of FDP

control is rigorously justified. Numerical studies demon-

strate its superior model selection performance. The above

evidences motivate our methods more practically useful in

comparison to other alternatives on real-life applications.

In Tlasso algorithm, graphical lasso penalty is applied

for updating each precision matrix of tensor data. Lasso
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penalty is conceptually simple and computationally effi-

cient. However, it is known to induce additional bias in es-

timation. In practice, other non-convex penalties, like SCAD

[49], MCP [51], or Truncated `
1

[52], are able to correct such

bias. Optimization properties of non-convex penalized high-

dimensional models have recently been studied by [73],

which enables theoretical analysis of sparse tensor graphical

model with non-convex penalties.

ACKNOWLEDGEMENT

Han Liu is grateful for the support of NSF CAREER

Award DMS1454377, NSF IIS1408910, NSF IIS1332109, NIH

R01MH102339, NIH R01GM083084, and NIH R01HG06841.

Guang Cheng’s research is sponsored by NSF CAREER

Award DMS-1151692, NSF DMS-1418042, DMS-1712907, Si-

mons Fellowship in Mathematics, Office of Naval Research

(ONR N00014-15-1-2331). Will Wei Sun was visiting Prince-

ton and Guang Cheng was on sabbatical at Princeton while

this work was carried out; Will Wei Sun and Guang Cheng

would like to thank Princeton ORFE department for their

hospitality and support.

REFERENCES

[1] J. Jia and C.-K. Tang, “Tensor voting for image correction by

global and local intensity alignment,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 27, no. 1, pp. 36–50, 2005.

[2] N. Zheng, Q. Li, S. Liao, and L. Zhang, “Flickr group recommenda-

tion based on tensor decomposition,” in International ACM SIGIR
Conference, 2010.

[3] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Mul-

tiverse recommendation: n-dimensional tensor factorization for

context-aware collaborative filtering,” in ACM Recommender Sys-
tems, 2010.

[4] S. Rendle and L. Schmidt-Thieme, “Pairwise interaction tensor fac-

torization for personalized tag recommendation,” in International
Conference on Web Search and Data Mining, 2010.

[5] G. Allen, “Sparse higher-order principal components analysis,” in

International Conference on Artificial Intelligence and Statistics, 2012.

[6] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for

estimating missing values in visual data,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 35, pp. 208–220, 2013.

[7] Y. Wang, L. Yuan, J. Shi, A. Greve, J. Ye, A. W. Toga, A. L. Reiss,

and P. M. Thompson, “Applying tensor-based morphometry to

parametric surfaces can improve mri-based disease diagnosis,”

Neuroimage, vol. 74, pp. 209–230, 2013.

[8] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for

estimating missing values in visual data,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 208–

220, 2013.

[9] P. Chu, Y. Pang, E. Cheng, Y. Zhu, Y. Zheng, and H. Ling, Structure-
Aware Rank-1 Tensor Approximation for Curvilinear Structure Tracking
Using Learned Hierarchical Features. Springer International Pub-

lishing, 2016, pp. 413–421.

[10] J. Zahn, S. Poosala, A. Owen, D. Ingram et al., “AGEMAP: A gene

expression database for aging in mice,” PLOS Genetics, vol. 3, pp.

2326–2337, 2007.

[11] T. Cai, W. Liu, and H. Zhou, “Estimating sparse precision matrix:

Optimal rates of convergence and adaptive estimation,” Annals of
Statistics, 2015.

[12] C. Leng and C. Tang, “Sparse matrix graphical models,” Journal of
the American Statistical Association, vol. 107, pp. 1187–1200, 2012.

[13] J. Yin and H. Li, “Model selection and estimation in the matrix

normal graphical model,” Journal of Multivariate Analysis, vol. 107,

pp. 119–140, 2012.

[14] T. Tsiligkaridis, A. O. Hero, and S. Zhou, “On convergence of

Kronecker graphical Lasso algorithms,” IEEE Transactions on Signal
Processing, vol. 61, pp. 1743–1755, 2013.

[15] S. Zhou, “Gemini: Graph estimation with matrix variate normal

instances,” Annals of Statistics, vol. 42, pp. 532–562, 2014.

[16] S. He, J. Yin, H. Li, and X. Wang, “Graphical model selection and

estimation for high dimensional tensor data,” Journal of Multivari-
ate Analysis, vol. 128, pp. 165–185, 2014.

[17] P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix comple-

tion using alternating minimization,” in Symposium on Theory of
Computing, 2013, pp. 665–674.

[18] A. Agarwal, A. Anandkumar, P. Jain, and P. Netrapalli, “Learning

sparsely used overcomplete dictionaries via alternating minimiza-

tion,” arXiv:1310.7991, 2013.

[19] P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alter-

nating minimization,” in Advances in Neural Information Processing
Systems, 2013, pp. 2796–2804.

[20] X. Yi, C. Caramanis, and S. Sanghavi, “Alternating minimization

for mixed linear regression,” arXiv:1310.3745, 2013.

[21] S. Arora, R. Ge, and A. Moitra, “New algorithms for learning

incoherent and overcomplete dictionaries,” arXiv:1308.6273, 2013.

[22] M. Hardt, “Understanding alternating minimization for matrix

completion,” in Symposium on Foundations of Computer Science,

2014, pp. 651–660.

[23] M. Hardt, R. Meka, P. Raghavendra, and B. Weitz, “Computational

limits for matrix completion,” arXiv:1402.2331, 2014.

[24] M. Hardt and M. Wootters, “Fast matrix completion without the

condition number,” arXiv:1407.4070, 2014.

[25] S. Arora, A. Bhaskara, R. Ge, and T. Ma, “More algorithms for

provable dictionary learning,” arXiv:1401.0579, 2014.

[26] J. Sun, Q. Qu, and J. Wright, “Complete dictionary recovery over

the sphere,” arXiv:1504.06785, 2015.

[27] S. Arora, R. Ge, T. Ma, and A. Moitra, “Simple, efficient, and neural

algorithms for sparse coding,” arXiv:1503.00778, 2015.

[28] B. D. Haeffele and R. Vidal, “Global optimality in tensor factoriza-

tion, deep learning, and beyond,” arXiv preprint arXiv:1506.07540,

2015.

[29] Q. Sun, K. M. Tan, H. Liu, and T. Zhang, “Graphical nonconvex

optimization for optimal estimation in gaussian graphical mod-

els,” arXiv preprint arXiv:1706.01158, 2017.

[30] W. Chu and Z. Ghahramani, “Probabilistic models for incomplete

multi-dimensional arrays,” in Artificial Intelligence and Statistics,

2009, pp. 89–96.

[31] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell,

“Temporal collaborative filtering with bayesian probabilistic ten-

sor factorization,” in Proceedings of the 2010 SIAM International
Conference on Data Mining. SIAM, 2010, pp. 211–222.

[32] P. Hoff, “Separable covariance arrays via the Tucker product, with

applications to multivariate relational data,” Bayesian Analysis,

vol. 6, pp. 179–196, 2011.

[33] Z. Xu, F. Yan, and Y. Qi, “Infinite tucker decomposition: nonpara-

metric bayesian models for multiway data analysis,” in Proceedings
of the 29th International Coference on International Conference on
Machine Learning. Omnipress, 2012, pp. 1675–1682.

[34] P. Rai, Y. Wang, S. Guo, G. Chen, D. Dunson, and L. Carin, “Scal-

able bayesian low-rank decomposition of incomplete multiway

tensors,” in International Conference on Machine Learning, 2014, pp.

1800–1808.

[35] P. D. Hoff et al., “Equivariant and scale-free tucker decomposition

models,” Bayesian Analysis, vol. 11, no. 3, pp. 627–648, 2016.

[36] Q. Zhao, L. Zhang, and A. Cichocki, “Bayesian cp factorization

of incomplete tensors with automatic rank determination,” IEEE
transactions on pattern analysis and machine intelligence, vol. 37, no. 9,

pp. 1751–1763, 2015.

[37] C. Zhang and S. Zhang, “Confidence intervals for low dimensional

parameters in high dimensional linear models,” Journal of the Royal
Statistical Society, Series B, vol. 76, pp. 217–242, 2014.

[38] S. van de Geer, P. Buhlmann, Y. Ritov, and R. Dezeure, “On

asymptotically optimal confidence regions and tests for high-

dimensional models,” Annals of Statistics, vol. 42, pp. 1166–1202,

2014.

[39] A. Javanmard and A. Montanari, “De-biasing the lasso: Optimal

sample size for gaussian designs,” arXiv preprint arXiv:1508.02757,

2015.

[40] Y. Ning and H. Liu, “A general theory of hypothesis tests and

confidence regions for sparse high dimensional models,” Annals of
Statistics, p. To Appear, 2016.

[41] X. Zhang and G. Cheng, “Simultaneous inference for high-

dimensional linear models,” Journal of the American Statistical As-
sociation, no. just-accepted, 2016.



SUBMITTED TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

[42] W. Liu, “Gaussian graphical model estimation with false discovery

rate control,” The Annals of Statistics, vol. 41, no. 6, pp. 2948–2978,

2013.

[43] J. Jankova and S. van de Geer, “Confidence intervals for high-

dimensional inverse covariance estimation,” arXiv:1403.6752, 2014.

[44] Z. Ren, T. Sun, C.-H. Zhang, and H. H. Zhou, “Asymptotic nor-

mality and optimalities in estimation of large gaussian graphical

model,” Annals of Statistics, p. To Appear, 2015.

[45] X. Chen and W. Liu, “Statistical inference for matrix-variate

gaussian graphical models and false discovery rate control,”

arXiv:1509.05453, 2015.

[46] Y. Xia and L. Li, “Hypothesis testing of matrix graph model with

application to brain connectivity analysis,” arXiv:1511.00718, 2015.

[47] T. Kolda and B. Bader, “Tensor decompositions and applications,”

SIAM Review, vol. 51, pp. 455–500, 2009.

[48] R. Tibshirani, “Regression shrinkage and selection via the Lasso,”

Journal of the Royal Statistical Society, Series B, vol. 58, pp. 267–288,

1996.

[49] J. Fan and R. Li, “Variable selection via nonconcave penalized like-

lihood and its oracle properties,” Journal of the American Statistical
Association, vol. 96, pp. 1348—1360, 2001.

[50] H. Zou, “The adaptive Lasso and its oracle properties,” Journal of
the American Statistical Association, vol. 101, pp. 1418—1429, 2006.

[51] C. Zhang, “Nearly unbiased variable selection under minimax

concave penalty,” Annals of Statistics, vol. 38, pp. 894—942, 2010.

[52] X. Shen, W. Pan, and Y. Zhu, “Likelihood-based selection and

sharp parameter estimation,” Journal of the American Statistical
Association, vol. 107, pp. 223–232, 2012.

[53] M. Yuan and Y. Lin, “Model selection and estimation in the

gaussian graphical model,” Biometrika, vol. 94, pp. 19–35, 2007.

[54] O. Banerjee, L. Ghaoui, and A. d’Aspremont, “Model selection

through sparse maximum likelihood estimation for multivariate

gaussian or binary data,” Journal of Machine Learning Research,

vol. 9, pp. 485–516, 2008.

[55] J. Friedman, H. Hastie, and R. Tibshirani, “Sparse inverse covari-

ance estimation with the graphical Lasso,” Biostatistics, vol. 9, pp.

432–441, 2008.

[56] P. Bickel and E. Levina, “Covariance regularization by threshold-

ing,” Annals of Statistics, vol. 36, pp. 2577–2604, 2008.

[57] A. J. Rothman, P. J. Bickel, E. Levina, and J. Zhu, “Sparse permuta-

tion invariant covariance estimation,” Electronic Journal of Statistics,

vol. 2, pp. 494–515, 2008.

[58] C. Lam and J. Fan, “Sparsistency and rates of convergence in

large covariance matrix estimation,” Annals of Statistics, vol. 37,

pp. 4254–4278, 2009.

[59] M. Ledoux and M. Talagrand, Probability in Banach Spaces:
Isoperimetry and Processes. Springer, 2011.

[60] J. Fan, Y. Feng, and Y. Wu., “Network exploration via the adaptive

Lasso and scad penalties,” Annals of Statistics, vol. 3, pp. 521–541,

2009.

[61] P. Zhao and B. Yu, “On model selection consistency of Lasso,”

Journal of Machine Learning Research, vol. 7, pp. 2541–2567, 2006.

[62] P. Ravikumar, M. Wainwright, G. Raskutti, and B. Yu, “High-

dimensional covariance estimation by minimizing `1-penalized

log-determinant divergence,” Electronic Journal of Statistics, vol. 5,

pp. 935–980, 2011.

[63] P.-L. Loh and M. J. Wainwright, “Support recovery without in-

coherence: A case for nonconvex regularization,” arXiv:1412.5632,

2014.

[64] W. Liu and Q.-M. Shao, “Phase transition and regularized boot-

strap in large-scale t-tests with false discovery rate control,” Annals
of Statistics, vol. 42, no. 5, pp. 2003–2025, 2014.

[65] W. Lee and Y. Liu, “Joint estimation of multiple precision matrices

with common structures,” Journal of Machine Learning Research, p.

To Appear, 2015.

[66] J. D. Rudie, J. Brown, D. Beck-Pancer, L. Hernandez, E. Dennis,

P. Thompson, S. Bookheimer, and M. Dapretto, “Altered functional

and structural brain network organization in autism,” NeuroImage:
clinical, vol. 2, pp. 79–94, 2013.

[67] R. Shi and J. Kang, “Thresholded multiscale gaussian processes

with application to bayesian feature selection for massive neu-

roimaging data,” arXiv:1504.06074, 2015.

[68] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello,

O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot, “Automated

anatomical labeling of activations in spm using a macroscopic

anatomical parcellation of the mni mri single-subject brain,” Neu-
roimage, vol. 15, no. 1, pp. 273–289, 2002.

[69] K. L. Hyde, F. Samson, A. C. Evans, and L. Mottron, “Neu-

roanatomical differences in brain areas implicated in perceptual

and other core features of autism revealed by cortical thickness

analysis and voxel-based morphometry,” Human brain mapping,

vol. 31, no. 4, pp. 556–566, 2010.

[70] A. Nair, J. M. Treiber, D. K. Shukla, P. Shih, and R.-A. M ¨uller, “Im-

paired thalamocortical connectivity in autism spectrum disorder:

a study of functional and anatomical connectivity,” Brain, vol. 136,

no. 6, pp. 1942–1955, 2013.

[71] S. Ha, I.-J. Sohn, N. Kim, H. J. Sim, and K.-A. Cheon, “Characteris-

tics of brains in autism spectrum disorder: Structure, function and

connectivity across the lifespan,” Experimental neurobiology, vol. 24,

no. 4, pp. 273–284, 2015.

[72] P. Jain and S. Oh, “Provable tensor factorization with missing

data,” in Advances in Neural Information Processing Systems, 2014,

pp. 1431–1439.

[73] Z. Wang, H. Liu, and T. Zhang, “Optimal computational and

statistical rates of convergence for sparse nonconvex learning

problems,” Annals of Statistics, vol. 42, pp. 2164–2201, 2014.

[74] A. Gupta and D. Nagar, Matrix variate distributions. Chapman and

Hall/CRC Press, 2000.

[75] A. Dawid, “Some matrix-variate distribution theory: Notational

considerations and a bayesian application,” Biometrika, vol. 68, pp.

265–274, 1981.

[76] J. Peng, P. Wang, N. Zhou, and J. Zhu, “Partial correlation esti-

mation by joint sparse regression models,” Journal of the American
Statistical Association, 2012.

[77] T. Cai and W. Liu, “Adaptive thresholding for sparse covariance

matrix estimation,” Journal of the American Statistical Association,

vol. 106, no. 494, pp. 672–684, 2011.

[78] S. Negahban and M. Wainwright, “Estimation of (near) low-

rank matrices with noise and high-dimensional scaling,” Annals
of Statistics, vol. 39, pp. 1069–1097, 2011.

Xiang Lyu received his B.Economics degree
from Renmin University, Beijing, China in 2016.
He is currently working towards M.S. degree in
Department of Statistics at Purdue University.
His research interests include high-dimensional
inference, tensor-valued data, graphical models,
and non-convex optimization.

Will Wei Sun received BS degree in Statistics
from Nankai University, China, in 2009, MS de-
gree from University of Illinois at Chicago in
2011, and PhD degree from Purdue University
in 2015. He then joined the advertising science
team at Yahoo labs as a research scientist. He
is currently an assistant professor in the Depart-
ment of Management Science, University of Mi-
ami School of Business Administration, Florida.
His research focuses on machine learning with
applications in computational advertising, per-

sonalized recommendation system, and Neuroimaging analysis.



SUBMITTED TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

Zhaoran Wang will be joining Northwestern
IEMS as an assistant professor in 2018. He
works at the interface of machine learning,
statistics, and optimization. He is the recipient of
the AISTATS (Artificial Intelligence and Statistics
Conference) notable paper award, ASA (Ameri-
can Statistical Association) best student paper in
statistical learning and data mining, INFORMS
(Institute for Operations Research and the Man-
agement Sciences) best student paper finalist in
data mining, and the Microsoft fellowship.

Han Liu received a joint Ph.D. degree in Ma-
chine Learning and Statistics from the Carnegie
Mellon University, Pittsburgh, PA, USA in 2011.
He is currently the director of Reinforcement
Learning Center at Tencent AI Lab. Beginning
on September 1, 2018, he would be an As-
sociate Professor of Electrical Engineering and
Computer Science and Statistics at Northwest-
ern University, Evanston, IL. He is also an ad-
junct Professor in the Department of Biostatistics
and Department of Computer Science at Johns

Hopkins University. From 2012-2017, he was an Assistant Professor of
Statistical Machine Learning in the Department of Operations Research
and Financial Engineering at Princeton University, Princeton, NJ. He
built and is serving as the principal investigator of the Statistical Machine
Learning (SMiLe) lab at Princeton University. His research interests
include high dimensional semiparametric inference, statistical optimiza-
tion, Big Data inferential analysis.

Jian Yang is a Senior Director of Advertising
Sciences at Yahoo Research. He holds Ph.D.
degree in Electrical and Computer Engineering
from University of California, Davis. His research
interests include optimization, forecasting and
machine learning with applications in online ad-
vertising, pricing and revenue management, and
supply chain management.

Guang Cheng received BA degree in Eco-
nomics from Tsinghua University, China, in
2002, and PhD degree from University of
Wisconsin–Madison in 2006. He then joined
Dept of Statistics at Duke University as Visit-
ing Assisitant Professor and Postdoc Fellow in
SAMSI. He is currently Professor in Statisics
at Purdue University, directing Big Data Theory
research group, whose main goal is to develop
computationally efficient inferential tools for big
data with statistical guarantees.


	Introduction
	Related Work and Contribution

	Tensor Graphical Model
	Preliminary
	Statistical Model
	Estimation

	Theory of Statistical Optimization
	Estimation Error in Frobenius Norm
	Estimation Error in Max Norm and Spectral Norm

	Tensor Inference
	Construction of Test Statistic
	FDR Control Procedure

	Simulations
	Real Data Analysis
	ABIDE
	Advertisement Click Data

	Discussion
	References
	Biographies
	Xiang Lyu
	Will Wei Sun
	Zhaoran Wang
	Han Liu
	Jian Yang
	Guang Cheng

	Proof of Main Theorems
	Proof of key lemmas
	Auxiliary lemmas
	Sensitivity Analysis of Tuning Parameter
	Effect of Sample Size and Dimensionality





