
Information Shaping for Enhanced Goal Recognition of Partially-Informed Agents

Sarah Keren, Haifeng Xu, Kofi Kwapong, David Parkes, Barbara Grosz
School of Engineering and Applied Sciences

Harvard University
skeren@seas.harvard.edu, hxu@seas.harvard.edu, kwapongk@college.harvard.edu, parkes@eecs.harvard.edu, grosz@eecs.harvard.edu

Abstract

We extend goal recognition design by considering a two-
agent setting in which one agent, the actor, seeks to achieve
a goal but has only partial information about its environment.
The second agent, the recognizer, has perfect information and
aims to recognize the actor’s goal from its behavior as quickly
as possible. As a one-time offline intervention the recognizer
can selectively reveal information to the actor. The problem of
selecting which information to reveal, which we call informa-
tion shaping, is challenging because the space of information
shaping options may be extremely large, and because more
information revelation need not make an agent’s goal easier
to recognize. We formally define this problem, and suggest a
pruning approach for efficiently searching the space of infor-
mation shaping options. We demonstrate the ability to facili-
tate recognition via information shaping and the efficiency of
the suggested method on a set of standard benchmarks.

Introduction
Goal recognition is the task of detecting the goal of agents by
observing their behavior (Cohen, Perrault, and Allen 1981;
Kautz and Allen 1986; Ramirez and Geffner 2010; Carberry
2001; Sukthankar et al. 2014). We consider a two-agent goal
recognition setting, where the first agent, the actor, has par-
tial information about a deterministic environment and seeks
to achieve a goal. The second agent, the recognizer, has per-
fect information, and tries to deduce the actor’s goal as early
as possible, by analyzing the actor’s behavior.

As a one time offline intervention, and with the objective
of facilitating the recognition task, the recognizer can ap-
ply a limited number of information shaping modifications,
implemented as changes to the actor’s sensor model. Such
modifications can help to differentiate the actor’s behavior
for different goals, potentially making it easier to interpret.

The ability to quickly understand what an agent is trying
to achieve, without expecting it to explicitly communicate
its objectives, is important in many applications. For exam-
ple, in an assistive cognition setting (Kautz et al. 2003), it
may be critical to know as early as possible when a visually
impaired user is approaching a hot oven, giving the system
time to react to the dangerous situation (e.g., by calling for
help, reducing the heat, etc.). In security applications it may
be important to early detect users aiming at a specific des-
tination (Boddy et al. 2005), giving the system enough time

to send human agents to further investigate potential threats.
Early detection is also important in human-robot collabora-
tive settings (Levine and Williams 2014), where a robot aims
to recognize what component a human user is trying to as-
semble, so it can gather the tools needed for the task in a
timely fashion. Common to all these settings, is that agents
have incomplete information about their environment. This
affects their behavior and is key to the ability to interpret it.
In addition, these settings can be controlled and modified in
various ways. Specifically, it may be possible to modify an
agent’s behavior by manipulating its knowledge and its need
to act in order to acquire new information. Such manipula-
tions may induce behaviors that can be quickly associated to
a specific goal. To demonstrate, in an assisted cognition set-
ting, an auditory signal can inform users about a hot oven.
Early notification potentially causes users aiming at a differ-
ent goal (e.g., the cupboard) to move away from the oven,
supporting early recognition of dangerous situations.

This work extends the goal recognition design (GRD)
framework, which deals with redesigning agent settings in
order to facilitate early goal detection (Keren, Gal, and
Karpas 2014; Wayllace et al. 2016). Until now, GRD work
has assumed that agents have perfect knowledge of their en-
vironment. In this paper, we extend the framework to sup-
port agents with incomplete knowledge. Specifically, we fo-
cus on GRD in deterministic environments, and use contin-
gent planning (Bonet and Geffner 2011; Brafman and Shani
2012a; Muise, Belle, and McIlraith 2014; Albore, Palacios,
and Geffner 2009) to represent the actor. The design objec-
tive is to minimize worst case distinctiveness (wcd) (Keren,
Gal, and Karpas 2014), which represents the longest se-
quence of actions (or path cost) that is possible before the
actor’s goal is recognized. Note that in some instances the
goal may remain unrecognized, and even go unattained, in
which case the wcd is simply the number of actions (or ac-
cumulated action cost) until the end of execution.

To minimize wcd we use information shaping and require
that the information conveyed to the actor is truthful and
cannot mislead. Specifically, we use sensor extensions to
improve information about the value of some environment
variables. This is a challenging problem because the number
of possible design options may be extremely large. Also, as
we demonstrate below, more information need not make an
agent’s goal easier to recognize.

(a) The goal recognition setting: an
actor to either goal may move up.

(b) Plans executed by an actor aiming at
G1 (solid arrows) andG2 (dashed arrows).

(c) Plans for each goal when the
recognizer reveals (3,1) is safe

(d) Plans for each goal when the recog-
nizer reveals both (3,1) and (1,3) are safe.

Figure 1: An example of a GRD-APK problem

Example 1 As a simple example, consider Figure 1(a), de-
picting a variation of the Wumpus domain (Russell and
Norvig 2016), where a partially informed actor has one
of two goals (indicated by G1 and G2 in the image), and
needs to achieve it without falling into pits or encountering
a deadly wumpus. The actor knows its current position, but
initially does not know the locations of the pits and wum-
puses. When in a cell adjacent to a pit, it senses a ‘breeze’
and it can smell the stench of a wumpus from an adjacent
cell. The recognizer has perfect information: it knows the
locations of the actor, the pits (e.g., the spiral at cell (2, 3))
and the wumpuses (e.g., cell (3, 2)).

The actor starts at ‘Init’. With no breeze or stench, it de-
cuces the adjacent cells are safe. In this example, we will as-
sume the actor is optimistic when planning but conservative
when acting (Bonet and Geffner 2011). For planning, the ac-
tor makes the most convenient assumptions about (chooses
the value of) unknown variables, plans accordingly, and re-
vises the assumptions and re-plans if these assumptions are
refuted during execution. If there are multiple cost-minimal
plans (under optimism), we assume the actor selects one that
requires making as few assumptions as possible (and arbi-
trarily otherwise). Consequently, an agent aiming atG1 will
start by moving up. In contrast, an uninformed agent aiming
at G2 is indifferent to going up or right, and may go either
way. Because of this, moving up from the initial state leaves
the goal unrecognized. Let us suppose (Figure 1b) that plans
to both goals start by moving up two steps. After sensing a
breeze at cell (1,3), not knowing which adjacent cells have
a pit, the actor backtracks and moves right. After sensing a
’breeze’ and ’stench’, the actor deduces there is a wumpus
at cell (3,2), and realizes that it will sense a stench at cell
(3,1), without having the option of verifying that cell (4,1)
is safe. With no more cells to explore, it halts at (2,2) leav-
ing the goal unrecognized even after it terminates execution,
setting wcd to 4.

To promote early recognition, the recognizer can share in-
formation with the actor before it starts execution, for exam-
ple by revealing safe cells. However, suppose there is a bud-
get, limiting the number of facts that can be revealed. If the
recognizer chooses to reveal cell (3, 1) is safe (Figure 1(c)),
an actor aiming atG2 (originally indifferent to moving up or
right) prefers moving right from the initial state. In contrast,

an actor aiming at G1 still prefers moving up. The goal of
the actor becomes clear as soon as the first step is performed
and wcd is minimized (wcd=0). Note that if, in addition, the
recognizer reveals that cell (1, 3) is safe (Figure 1(d)), the
initial situation is recovered, since an actor to either goal
may now choose to move up given its beliefs about minimal
plans. This illustrates the need to carefully select the infor-
mation to reveal in order to facilitate the recognition task.

The contributions of this work are fourfold. First, we ex-
tend the GRD framework to support agents with partial in-
formation. We refer to our extended setting as GRD for
Agents with Partial Knowledge (GRD-APK), and suggest
information shaping modifications that can be applied to
support goal recognition. Second, since our extended design
setting induces a large search space of possible information
shaping modifications and since previous approaches to de-
sign do not apply to our setting, we present a novel pruning
method, and specify the conditions under which it is safe,
so that at least one optimal solution is not pruned. Third,
we implement our suggested approach, using STRIPS (Fikes
and Nilsson 1972) to represent our generic and adaptable re-
design process. Finally, we evaluate the algorithm on a set of
standard benchmarks, and demonstrate both wcd reduction
achievable through information shaping and the efficiency
of our approach.

Background: Planning Under Partial
Observability

To support agents with partial knowledge, we follow Bonet
and Geffner (2011) and consider contingent planning under
partial observability, formulated as follows.

Definition 1 A planning under partial observability with
deterministic actions (PPO-det) problem is a tuple P =
〈F ,A, I, G,O〉 whereF is a set of fluent symbols,A is a set
of actions, I is a set of clauses over fluent-literals defining
the initial situation, G is a set of fluent-literals defining the
goal condition, and O represents the agent sensor model.

An action a ∈ A is associated with a set of preconditions
prec(a), which is the set of fluents that need to hold for a to
be applicable, and conditional effects eff (a), which is a set

of pairs (Fcond ,Feff) s.t.Feff ⊆ F become true ifFcond ⊆
F are true when a is executed.

The sensor model O is a set of observations o ∈ O rep-
resented as pairs (C,L) where C is a set of fluents and L is
a positive fluent, indicating that the value of L is observable
when C is true. Each observation o = (C,L) can be con-
ceived as a sensor on the value of L that is activated when C
is true.

A state s is a truth valuation over the fluents F (‘true’ or
‘false’). For an agent, the value of a fluent may be known
or unknown. A fluent is hidden if its true value is unknown.
A belief state b is a non-empty collection of states the agent
deems possible at some point. A formula F holds in b if it
holds for every state s ∈ b. An action a is applicable in b
if the preconditions of a hold in b, and the successor belief
state b

′
is the set of states that results from applying the ac-

tion a to each state s in b. When an observation o = (C,L)
is activated, the successor belief is the maximal set of states
in b that agree on L. The initial belief is the set of states
that satisfy I , and the goal belief are those that satisfy G.
A formula is invariant if it is true in each possible initial
state, and remains true in any state that can be reached from
the initial state. A history is a sequence of actions and be-
liefs h = b0, a0, b1, a1, . . . , bn, an, bn+1. It is complete if
the performing agent reaches a goal belief state.

A solution to a PPO-det problem P is a policy π, which
is a partial function from beliefs to actions. A policy is de-
terministic if any belief b is mapped to at most one action.
Otherwise it is non-deterministic. A history h satisfies π, if
∀i 0 ≤ i ≤ n, ai ∈ π(bi). There are three types of poli-
cies: weak, when there is at least one complete history that
satisfies the policy, strong, where a goal belief is guaranteed
to be achieved within a fixed number of steps, and strong
cyclic, where a goal belief is guaranteed to be achieved, but
with no upper bound on the cost (length) of the solution. Our
framework, suggested next, supports all three policy types.

Goal Recognition Design for Agents with
Partial Knowledge (GRD-APK)

The goal recognition design for agents with partial knowl-
edge problem (GRD-APK) consists of an initial goal recog-
nition setting, a measure by which a setting is evaluated,
and a design model, which specifies the information shap-
ing modifications that can be applied. We first define each
component separately.

Goal Recognition
A goal recognition setting can be defined in various
ways (Sukthankar et al. 2014), but typically includes a de-
scription of the underlying environment, the way agents be-
have in it to achieve their goal, and the observations col-
lected by the goal recognizing agent. Accordingly, our goal
recognition model supports two agents; a partially informed
contingent planning actor (Definition 1) with a goal, that ex-
ecutes history h until reaching a goal belief or halting when
no action is applicable. The second agent is a perfectly in-
formed recognizer, that analyzes the actor’s state transitions
in order to recognize the actor’s goal.

Definition 2 A goal recognition for agents with par-
tial knowledge problem (GR-APK) is a tuple R =
〈E,G,Oac, {Π(G)}G∈G〉 where:
• E = 〈F ,A, I〉 is the environment, which consists of the

fluents F , actions A and initial state I as defined in Def-
inition 1 (a cost C(a) for each action a ∈ A may also be
specified),

• G is a set of possible goals G, s.t. |G| ≥ 2 and G ⊆ F ,
• Oac is the actor’s sensor model (Definition 1), and
• {Π(G)}G∈G are the set of policiesΠ(G) an agent aiming

at goal G ∈ G may follow.

The cost of history h, denoted Ca(h) = ΣiC(ai), is the
accumulated cost of the performed actions (equal to path
length when action cost is uniform). In executing h, the ac-
tor follows a possibly non-deterministic policy π from the
set Π(G) of possible policies to its goal.

The set Π(G) of policies to each goal is typically implic-
itly defined via the solver used by the actor to decide how
to act in each belief state. In Example 1 we described an
example of such a solver, which we will formally define in
the next section. The GRD-APK framework is well defined
for any solver that provides a mapping B → 2A, specify-
ing the set of possible actions an agent may execute at each
reachable belief state b ∈ B (e.g., (Bonet and Geffner 2011;
Muise, Belle, and McIlraith 2014).

In our setting, the actor and recognizer both know the en-
vironment E and the set G of possible goals. While the par-
tially informed actor needs to collect information about the
environment via its sensor model Oac in order to achieve its
premeditated goal, the recognizer knows the true state of the
world and the actor’s solver and sensor, but does not know
the actor’s goal. The recognizer observes the actor’s tran-
sitions between belief states and analyzes them in order to
recognize the actor’s goal.1

Evaluating a GR-APK model
The worst case distinctiveness (wcd) measure represents the
maximum number of actions an actor can perform (in gen-
eral, maximum total cost incurred by the actor) before its
goal is revealed. To define wcd we first define the relation-
ship between the observations collected by the recognizer
when an actor follows history h, which in our case corre-
spond to the actor’s transitions between belief states, and a
goal. As mentioned above, we say that a history satisfies a
policy, if it is a possible execution of the policy. In addition,
a history satisfies a goal, if satisfies a possible policy to the
goal.

Definition 3 Given a GR-APK model R, history h satisfies
policy π in R, if ∀i 0 ≤ i ≤ n, ai ∈ π(bi). In addition, h
satisfies goal G ∈ G in R if ∃π ∈ Π(G) s.t. h satisfies π.

1Since we are analyzing the goal recognition setting, and need
to account for all possible observations of agent behavior, we do
not specify a particular history to be analyzed, which is a typical
component in goal recognition models (e.g., (Ramirez and Geffner
2010; Pereira, Oren, and Meneguzzi 2017). Instead, in facilitating
goal recognition via design, our model characterizes the different
actor behaviors in the system, and the way they are perceived by
the recognizer.

Let Grec(h) represent the set of goals that history h sat-
isfies, i.e., the set of goals the recognizer deems as possible
actor goals. We define a history as non-distinctive if it satis-
fies more than one goal.

Definition 4 Given a GR-APK model R, a history h is non
distinctive in R, if exists G,G′ ∈ G s.t. G 6= G′, and h
satisfies G and G′. Otherwise, it is distinctive.

We denote the set of non-distinctive histories of a GR-
APK model R by Hnd(R).

Definition 5 The worst case distinctiveness of a model R,
denoted by wcd(R) is:

wcd(R) =

{
max

h∈Hnd(R)
Ca(h) Hnd(R) 6= ∅

0 otherwise

That is, wcd is the maximum cost history for which the
goal is not determined, or zero if there is no such history.
Recall that in some instances the goal may remain unrec-
ognized, and even go unattained, in which case the wcd is
simply the number of actions (or accumulated action cost)
until the end of execution. Also recall that a policy may be
strong cyclic, potentially containing infinite loops. A pol-
icy with such a cycle is considered to have a history with
infinite cost. In particular, since such a history may be non-
distinctive, this means wcd in this setting may be infinite.

Information Shaping
Our interest here is in modulating the behavior of the ac-
tor through information shaping. By changing the actor’s
knowledge, we can potentially change its behavior and the
way by which it acquires the information needed to achieve
it’s goal. We restrict the information shaping interventions
to be truthful so that they cannot convey false informa-
tion. In the context of contingent, partially-informed plan-
ning agents, this requirement is naturally implemented by re-
quiring that we may only improve the actor’s sensor model,
i.e., improving its ability to access the value of some envi-
ronment feature. We define sensor extension modifications,
which add a single observation to a sensor model, using O
to denote the set of all sensor models.

Definition 6 A modification δ : O → O is a sensor ex-
tension if δ(O) = O ∪ {o}, for all O ∈ O, and for some
o = (C,L).

Sensor extensions correspond to adding new sensors to
the environment, or, as a special case, communicating to the
actor the value of a feature (setting C = ∅).

To demonstrate, in Example 1 the recognizer can allow
the actor to sense a stench in cell (1, 2), two (rather than
one) cells away from the wumpus in cell (3,2). This exten-
sion is implemented by adding the observation o = (C =
AgentAtCell(1, 2), L = BreezeInCell(2, 2)) to the ac-
tor’s sensor model. This could be realized through a vi-
sual indication or sign, similar to the auditory signal indi-
cating the oven is hot in the assisted cognition example.
The recognizer could also directly communicate with the

actor and inform it about the location of a wumpus, or re-
veal a location without a wumpus. (e.g., (C = True, L =
WumpusAtCell(4, 4)).

We are now ready to define a GRD-APK problem.
Definition 7 A goal recognition design for agents with
partial knowledge problem (GRD-APK) is defined as a
tuple T = 〈R0,∆, β〉 where:
• R0 is the initial goal recognition model,
• ∆ are the possible sensor extensions, and
• β is a budget on the number of allowed extensions.

We want to find a set ∆ ⊆∆ of up to β sensor extensions
to apply to R0 offline to minimize the wcd. This objective is
formally defined below, where wcdmin(T) is the minimum
wcd achievable in a GRD-APK model T , andR∆ is the goal
recognition model that results from applying set ∆ to R.

wcdmin(T) = min
∆⊆∆

wcd(R∆
0)

s.t.|∆| ≤ β
(1)

Any solution to Equation 1 is optimal, i.e., it achieves the
minimal wcd possible. It is strongly optimal if it has mini-
mum size among all optimal solutions, i.e., it includes the
minimal number of extensions needed to minimize wcd.

The k-planner and Kprudent(P) Translation
A variety of solvers have been developed to solve a PPO-
det problem (e.g., (Bonet and Geffner 2011; Muise, Belle,
and McIlraith 2014; Brafman and Shani 2012b)), all of
which can be used to represent the actor (and its set of pos-
sible policies) described in Definition 2. Specifically, Bonet
and Geffner (2011) suggest the k-planner that follows the
planning under optimism approach; the actor plans while
making the most convenient assumptions about the values of
(i.e., assigns a value to) hidden variables, executes the plan
that is obtained from the resulting classical planning prob-
lem, and revises the assumptions and re-plans, if during the
execution, an observation refutes the assumptions made.

To transform the PPO-det problem into a classical plan-
ning problem, the k-planner uses the K(P) translation. At
the core of the translation is the substitution of each literal L
in the original problem with a pair of fluents KL and K¬L,
representing whether L is known to be true or false, respec-
tively (Albore, Palacios, and Geffner 2009). Each original
action a ∈ A is transformed into an equivalent action that
replaces the use of every literal L (¬L), with its correspond-
ing fluentKL (K¬L). Each observation (C,L) is translated
into two deterministic sensing actions, one for each possi-
ble value of L. These sensing actions allow the solver to
compute a plan while choosing preferred values of (mak-
ing assumptions about) the unknown variables. For example,
the actor can assume that a cell on its planned path has no
pit (e.g., K¬PitAt(4, 1) = True). Each invariant clause
is translated into a set of actions, which we call ramifica-
tion actions. These actions can be used to set the truth value
of some variable, as new sensing information is collected
from the environment. For example, a ramification action
can be activated to deduce that a cell is safe when no breeze
or stench is sensed in an adjacent cell.

The action set in the transformed problem is therefore
A′ = A′

exe∪A
′

sen∪A
′

ram, whereA′

exe represents the trans-
formed original set of actions, A′

sen are the sensing actions
and A′

ram are the ramification actions. This representation
captures the underlying planning problem at the knowledge
level, accounting for the exploratory behavior of a partially
informed agent.

Bonet and Geffner (2011) show that this linear transla-
tion of a PPO-det problem into a classical planning prob-
lem is sound and complete for simple PPO-det models with
a connected state space. A PPO-det model is simple if the
non-unary clauses in I are all invariant, and no hidden flu-
ent appears in the body of a conditional effect. In connected
state spaces every state is reachable from any other. In sim-
ple problems there is no information loss and the model is
monotonic, i.e., for every fluent f ∈ F , if f is known in
a belief state b and b

′
is a belief reachable from b, then f

is known in b
′
. As a consequence, for every policy π and

history h of length n it follows that the number of states in
beliefs bi is a monotonically decreasing function, i.e., |bi| ≥
|bi+1| for every 0 ≤ i < n.

A key issue to note about the K(P) compilation is that
all its actions, including sensing and ramification actions,
have equal cost. This means that a cost-minimizing solution
to the resulting classical planning problem may be one that
favors increasing the cost to goal over the use of multiple
ramification actions. As described in Example 1, we want a
solver that can make optimistic assumptions, but chooses a
minimal cost plan that requires making as few assumptions
as possible. In addition, ramifications are not to be consid-
ered when calculating the cost to goal. We therefore suggest
theKprudent(P) translation, which extends the uniform cost
K(P) translation by associating a cost function to each ac-
tion in A′. Specifically, every transformed action a ∈ A′

exe
is assigned a cost of 1, every sensing action (assumption)
a ∈ A′

sen is assigned a small cost of ε, and every ramifica-
tion action a ∈ A′

ram has 0 cost. When ε is small enough
such that the accumulated cost of assumptions of any gener-
ated plan is guaranteed to be smaller than minimal diversion
from an optimal plan, the cost-minimal plan achieved using
this formulation complies with our requirements.

Methods for Information Shaping
In our search for an optimal design solution, we consider a
sensor extension as useful with regards to a goal recognition
model if it reduces wcd. Given a goal recognition model R
and a sensor extension δ, we let Rδ denote the model that
results from applying δ to the actor’s sensor model O, and
define useful sensor extensions as follows.

Definition 8 A modification δ is useful with regards to goal
recognition model R if wcd(Rδ) < wcd(R).

The challenge in information shaping comes from two
sources. First, the number of possible information shap-
ing options may be large, and evaluating the effect of
each change may be costly, making it important to develop
efficient search techniques. Second, the problem is non-
monotonic, in that sensor extensions are not always useful,

and providing more information may actually make recog-
nition more difficult by increasing wcd (Example 1).

To address these challenges, we follow Keren, Gal, and
Karpas (2018) and formulate the design process as a search
in the space of modification sets ∆ ⊆ ∆. With a slight
abuse of notation, we let R∆ denote the model that results
from applying the set ∆ of sensor extensions to the actor’s
sensor model. The root node is the initial goal recognition
model R0 (and empty modification set), and the operators
(edges) are the sensor extensions δ ∈ ∆ that transition be-
tween models. Each node (modifications set ∆) is evaluated
by wcd(R∆

0), the wcd value of its corresponding model.
To calculate the wcd value of a model we need to find the

maximal non-distinctive history. Recall that we assume the
actor’s solver is known to the recognizer, who can observe
the actor’s transition between states. We can therefore find
the wcd value of a GR-APK model by first using the actor’s
solver to compute the policies to each of the goals. Then,
starting at the initial state, we iteratively explore the non-
distinctive policy prefixes, until its most distant boundary is
found, and return its length (cost).

Design with CG-Pruning
The baseline approach for searching in modification space
is breadth first search (BFS), using wcd to evaluate each
node. Under the budget constraints, BFS explores modifi-
cation sets of increasing size, using a closed-list to avoid
the computation of pre-computed sets. The search halts if a
model with wcd = 0 is found or if there are no more nodes to
explore, and returns the shortest path (smallest modification
set) to a node that achieves minimal wcd. This iterative ap-
proach is guaranteed to find a strongly optimal solution, i.e.,
a minimal set of modifications that minimizes wcd. How-
ever, it does not scale to larger problems.

To increase efficiency, pruning can be applied to reduce
the size of the search space. Specifically, pruning is safe if
at least one optimal solution remains unpruned (Wehrle and
Helmert 2014). Keren, Gal, and Karpas (2018) offer a prun-
ing technique for GRD settings where the actor is fully in-
formed and guarantee it is safe if modifications cannot in-
crease wcd. Since this condition does not hold in our setting,
where sensor extensions can both increase and reduce wcd,
we suggest a new pruning approach that eliminates useless
modifications, and specify conditions under which it is safe.

The high level idea of our pruning technique is to trans-
form the partially observable planning problem for each goal
into its corresponding fully observable planning problem,
and use off-the-shelf tools developed for fully observable
planning in order to automatically detect information shap-
ing modifications that are guaranteed not to have an effect
on the actor’s behavior.

Specifically, given a goal recognition model R, for ev-
ery goal in G, we use the K(P) transformation (or its vari-
ant Kprudent(P) introduced above) to transform the par-
tially observable planning problem into a fully observable
problem. We then construct the causal graph (Williams and
Nayak 1997; Helmert 2006) of each transformed problem.
According to Helmert (2006), the causal graph of a plan-
ning problem is a directed graph (V,E) where the nodes

Figure 2: The Wumpus domain with keys

V represent the state variables and the edges E represent
dependencies between variables, such that the graph con-
tains a directed edge (v, v′) for v, v′ ∈ V if changes in the
value of v′ can depend on the value of v. Specifically, to cap-
ture only the variables that are relevant to achieving the goal,
the causal graph only contains ancestors of all variables that
appear in the goal description. In our context, the variable
set of the causal graph can either be the set of fluents of
the transformed PPO-det problem, or the multi-valued vari-
ables extracted using invariant synthesis, which automati-
cally finds sets of fluents among which exactly one is true at
each state, and which can be assumed to represent the differ-
ent values of a multi-valued variable. In any case, the casual
graph CG(G) of each goal G ∈ G captures all variables
relevant for achieving the goal and the hierarchical depen-
dencies between them. Recall that each sensor extension is
characterized by an observation o = (C,L) that is added
to the actor’s sensor model. Our pruning technique, dubbed
CG-Pruning, prunes all sensor extensions for which the flu-
ents corresponding to knowledge about L in the transformed
problem (i.e. KL and K¬L) do not occur in any of the ca-
sual graphs.

Example 2 Consider Figure 2(left), depicting a modified
version of Example 1, where the actor needs to collect a key
to be able to access its goal (e.g., PickedKey1 is needed
to reach G1). There are multiple keys distributed in the grid
(e.g., Key1At(4, 4)), each needed for accessing a particular
location. The actor initially knows a set of possible key loca-
tions for each key. When in a cell with a key, it senses it and
can pick it up and use it to achieve its goal. In this scenario,
the recognizer, with perfect information, can notify the actor
about safe locations, as before, but also about the absence or
presence of a particular key in some location. Applying the
K(P) transformation here creates fluents KKey iAt(x, y)
for each key and location, representing whether the actor
knows key i is at location (x, y), which is a precondition to
picking up the key. Figure 2(right), show a part of the causal
graph forG1 that only includes variables concerning the lo-
cation of its relevant key. By generating the causal graph to
all goals, we automatically detect and prune sensor exten-
sions regarding variables that do not appear in any of the
causal graphs (e.g., the sensor extension that reveals the lo-
cation of Key3).

In the following, we show that CG-Pruning is safe for

GRD-APK settings where the actor uses the k-planner with
an optimal planner to computes its plans. Since the actor
uses the k-planner, it iteratively computes a policy at the ini-
tial state and every time an assumption made at a previous
iteration is refuted. At each iteration, the current partially ob-
servable problem is transformed into its corresponding fully
observable problem, and a new plan is computed and exe-
cuted. This continues until the actor reaches a goal belief
or a belief state with no applicable actions. For each model
R and execution iteration i, we let CGRi (G) represent the
causal graph at iteration i and start our proof by showing
that the causal graph at each iteration subsumes any causal
graph of subsequent iterations.

Lemma 1 For any model R and goal G ∈ G, CGRj (G) is a
subgraph of CGRi (G) for any i, j s.t. 0 ≤ i < j.

Proof Sketch: The causal graph of iteration i captures all
variables that appear in actions that may be applied in or-
der to achieve a goal belief from the initial belief state at
iteration i. This graph includes all the actions (and their cor-
responding variables) that may be applied from the belief
reached at iteration j.

Lemma 1 guarantees that a variable that does not occur in
CGR0 (G) for any goalG ∈ G will not occur in causal graphs
of future iterations.

Next, we observe that when an optimal solver is used, a
sensor extension that does not correspond to a variable in the
initial causal graph of any goal is not useful.

Lemma 2 For any model R and sensor extension δ that
adds observation o = (C,L) to Oac, if for all G ∈ G, KL
and K¬L are not in CGR0 (G), then δ is not useful w.r.t R.

Proof Sketch: Bonet and Geffner (2011) show that the
K(P) transformation is sound and complete for simple prob-
lems with a connected space, which are the only problems
we consider here. Helmert (2006) shows that any optimal
plan can be acquired by ignoring variables that are not in
the causal graph. Therefore, by pruning sensor extensions
that are related to variables not on the causal graph, we are
removing from the actor’s planning graph sensing actions
that would anyway not appear in any optimal plan (i.e., as-
sumptions the actor would not make). Therefore, the behav-
ior of an actor to any goal is not affected by such sensor
extensions. Moreover,as the actor progresses and re-plans,
no sensing action can be added to the actor’s model. Con-
sequently, the behavior w.r.t to any goal will not change,
wcd will not change, and therefore δ is not useful w.r.t R.

Finally, we are ready to show that CG-Pruning is safe.
Theorem 1 For any GRD-APK model T = 〈R0,∆, β〉,
CG-Pruning is safe for an actor that uses the k-planner with
an optimal planner.

Proof Sketch: Lemma 2 guarantees, that under the assump-
tions we make, any sensor extension that adds observation

o = (C,L) to Oac and for which neither KL or K¬L ap-
pear inCGR0 (G), are not useful to any model reachable from
R0 via design and will not be part of a strongly optimal so-
lution. Therefore CG-Pruning is safe.

Empirical Evaluation
Our objective is to evaluate both the effect sensor extensions
have on wcd as well as the efficiency of CG-Pruning.We start
by describing our dataset and empirical setup, and then dis-
cuss our initial results.
Dataset. We used five domains adapted from Bonet and
Geffner (2011) and Albore, Palacios, and Geffner (2009).
• WUMPUS: corresponding to the setting in Example 1.
• WUMPUS-KEY: corresponding to Example 2.
• C-BALLS (Colored-balls): the actor navigates a grid to

deliver balls of different and initially unknown colors to
their per-color destinations.

• TRAIL: an agent must follow a trail to reach a destination,
while sensing only the reachable cells surrounding it.

• Logistics: Packages are transported to their destinations,
relying on sensing to reveal the packages in a location.

The adaptation from contingent planning to GRD-APK in-
volves specifying for each instance the set of possible goals
and sensor extensions (see Table 1 for details).

To support the design process, we use STRIPS (Fikes and
Nilsson 1972) to specify the available modifications (and
their effect). Sensor extensions are implemented as design
actions that add to the initial state fluents that represent the
true value of a variable.
Setup. We use the k-replanner (Bonet and Geffner 2011) as
the actor’s solver, with two variations. For the first, theK(P)
compilation was used together with the satisfying FF classi-
cal planner (FF) (Hoffmann and Nebel 2001). The second
used the Kprudent(P) compilation together with the optimal
Fast-Downward (Helmert 2006) classical planner (FD), us-
ing the lm-cut heuristic (Helmert and Domshlak 2009).

In our computation of wcd, we also consider the prefixes
of failed executions, since they represent valid agent behav-
ior. The design process is implemented as a breadth-first
search (BFS) in the space of modification sets, tested with
and without CG-Pruning.

We use 30 instances for each domain, and a design budget
of 1−2. Each execution had a time limit of 20 minutes and is
capped at 1000 search steps (each corresponding to a design
set), whichever was first.

To parse the design file, we adopt the parser of pyperplan
(Alkhazraji et al. 2016), which provide for each modifica-
tion set (representing a GRD-APK model and a node in our
search) the set of successors (applicable modifications) and
the model that results from applying each modification.
Results. Tables 2 and 3 summarize the results for both ap-
proaches (No Pruning vs. CG-Pruning) for the FD and FF
solvers, respectively. For each domain and design budget
(b = 1 and b = 2), the tables shows ‘sol’ as the fraction
of instances completed within the time and resource bounds.
For instances completed by both approaches ‘∆-wcd’ is the

Possible Goals Sensor Extensions

WUMPUS gold locations safe cells

WUMPUS-KEY gold locations safe cells or locations with / without keys

C-BALLS ball distribution locations without a ball

TRAIL final stone locations locations with / without stones

LOGISTICS package destination package locations

Table 1: Possible goals and design options for each domain.

No Pruning CG-Pruning
budget sol ∆wcd time nodes sol ∆wcd time nodes

WUMPUS b=1 0.1 0.0 (1.8) 92.84 14.0 0.1 0.0 (1.8) 76.96 11.0
b=2 0.1 0.0 (1.8) 663.71 106.0 0.1 0.0 (1.8) 421.27 67.0

WUMPUS-KEY b=1 1.0 0.2(0.57) 16.05 4.1 1.0 0.2(0.57) 12.59 3.3
b=2 0.71 0.2(0.57) 238.74 39.5 0.72 0.2(0.57) 200.34 28.8

LOGISTICS b=1 0.14 8.0 (11.83) 1330.33 3.0 0.14 8.0(11.83) 1042.52 2.0
b=2 NA NA NA NA NA NA NA NA

Table 2: Results per domain for (optimal) the FD solver

average wcd reduction achieved via design, i.e., the wcd dif-
ference between the original setting and one where sensor
extensions are applied (note that since CG-Pruning is safe
‘∆-wcd’ is the same for both approaches). In parenthesis
we show ‘∆-wcd’ over all instances, including those that
timed out. The average calculation time (in seconds) for each
approach is indicated by ‘time’, and ‘nodes’ is the average
number of nodes evaluated on all instances. ’NA’ represents
settings for which no instance completed. In Table 2 we ex-
cluded C-BALLS and TRAIL, since no problem completed
for both domains.

Our results show that design via information shaping re-
duces wcd for all domains, with a reduction of 9.12 (about
half) for C-BALLS. By excluding futile sensor extensions,
for all domains CG-Pruning reduces the number of nodes
explored and computation time for completed problems.
For WUMPUS, WUMPUS-KEY and LOGISTICS using FF,
CG-Pruning also increases the ratio of solved problems.

The results show the potential of our pruning approach.
However, many instances were not completed for FD, failing
in some cases to complete the solution of the initial setting.
To achieve more results for the optimal case, and hopefully a
stronger indication of the benefit of our approach in such set-
tings, we intend to add additional domains to our dataset and
explore different heuristics used to guide the optimal search.
We also intend to enhance pruning further. Specifically, us-
ing the plan the actor intends to execute with regards to each
goal, we can prune sensor extensions that correspond to as-

No Pruning CG-Pruning
budget sol ∆wcd time nodes sol ∆wcd time nodes

WUMPUS b=1 1.0 0.0 (3.0) 88.02 16.0 1.0 0.0 (6.0) 59.98 11.0
b=2 0.25 0.0 (3.0) 697.31 137.0 1.0 0.0 (6.0) 351.37 67.0

WUMPUS-KEY b=1 1.0 4.33 (4.33) 16.71 13.55 1.0 4.33 (4.33) 13.35 10.56
b=2 0.8 3.95 (3.95) 85.73 54.56 1.0 3.95 (3.95) 75.55 42.55

C-BALLS b=1 0.8 9.12 (9.2) 36.61 37.03 0.8 9.12 (9.2) 38.75 37.03
b=2 0.8 11.5 (10.83) 30.19 22.01 0.8 11.5 (10.83) 30.19 22.01

TRAIL b=1 1.0 0.0 (0.0) 14.71 28.0 1.0 0.0 (0.0) 12.97 26.5
b=2 1.0 0.0 (0.0) 195.39 407.0 1.0 0.0 (0.0) 173.21 365.5

LOGISTICS b=1 0.42 3.01 (4.14) 22.90 61.5 1.0 3.01 (4.14) 19.41 42.67
b=2 0.28 9.05 (9.27) 133.68 234.4 0.86 9.05 (9.17) 112.89 175.1

Table 3: Results per domain for the (satisfying) FF solver

sumptions already made by the actor, and show that they will
not reduce the wcd.

Related Work
Goal Recognition Design (GRD), a special case of envi-
ronment design (Zhang, Chen, and Parkes 2009), was first
introduced by Keren et al. (2014) to account for optimal
fully observable agents in deterministic domains. This work
was later extended to a variety of GRD settings, including
accounts for sub-optimal actors (Keren, Gal, and Karpas
2015), stochastic environments (Wayllace et al. 2016), ad-
versarial actors that try to conceal their goal (Ang et al.
2017), and a partially informed recognizer (Keren, Gal, and
Karpas 2016a; 2016b; 2018). In the latter case, sensor refine-
ment is applied to enhance the recognizer’s sensor model.

Common to all previous GRD work is the assumption that
actors have perfect observability of their environment. Our
work is the first to generalize GRD to account for a par-
tially informed actor and to suggest new information shap-
ing modifications, implemented as sensor extensions applied
to the actor’s sensor model, as a way to reduce wcd.

Efficient communication via selective information reve-
lation is fundamental to various multi agent settings, e.g.,
(Xuan, Lesser, and Zilberstein 2001; Wu, Zilberstein, and
Chen 2011; Unhelkar and Shah 2016; Dughmi and Xu
2016). This work is the first to use information shaping as
a one time and offline intervention that is performed in order
to facilitate goal recognition.

Conclusion
We introduced GRD for a partially informed actor and a per-
fectly informed recognizer, who can share information about
the domain with the actor. We formalized the information
shaping problem as one of minimizing worst-case distinc-
tiveness, and presented new sensor extension modifications,
used to enhance recognition. We studied the use of breadth
first search to search the space of applicable sensor exten-
sions, developing a safe pruning approach to improve effi-
ciency. To the best of our knowledge, this is the first paper
to suggest using techniques developed for classical planning
toward the design of algorithms for goal recognition of par-
tially informed planning agents. Our results on a set of stan-
dard benchmarks show that wcd can be reduced via informa-
tion shaping and demonstrate the efficiency of our approach.

There are many ways to extend this work. First, we use
qualitative contingent planning models to represent the par-
tially informed agent and its belief states. It would be in-
teresting to extend this work to use Partially Observable
Markov Descision Process (POMDP) models (Kaelbling,
Littman, and Cassandra 1998) to represent the actor. An-
other interesting direction is to consider settings where the
actor is aware of the recognizer’s presence. Specifically, our
approach can be adopted to “transparent planning” (Mac-
Nally et al. 2018), where actors choose behaviors that facil-
itate recognition. These models rely on partially informed
agents to be able to choose a behavior that maximizes the
information conveyed about their intentions. In such set-
tings, GRD can be viewed as a complementary approach,
that can be applied to alleviate the need to completely rely

on the actor, and reduce the number of non-distinctive be-
haviors. Another variation worth exploring is an interactive
setting, where the recognizer can decide which information
to reveal based on the actor’s actual progress. This would
be especially relevant to many realistic settings where the
recognizer cannot be assumed to have perfect information
about the solver used by the actor. Finally, while we focus
on pruning as a way to increase efficiency, other options are
possible. In particular, heuristics can be used to estimate the
value of a modification, and lead the search in promising di-
rections.

Acknowledgements
The authors thank Miquel Ramirez, Nir Lipovetzky and Blai
Bonet for their helpful comments and suggestions.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In IJ-
CAI.
Alkhazraji, Y.; Frorath, M.; Grutzner, M.; Liebetraut, T.;
Ortlieb, M.; Seipp, J.; Springenberg, T.; Stahl, P.; Wulf-
ing, J.; Helmert, M.; and Mattmuller, R. 2016. Pyperplan:
https://bitbucket.org/malte/pyperplan.
Ang, S.; Chan, H.; Jiang, A. X.; and Yeoh, W. 2017. Game-
theoretic goal recognition models with applications to se-
curity domains. In International Conference on Decision
and Game Theory for Security.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of action generation for cyber security using classi-
cal planning. In ICAPS.
Bonet, B., and Geffner, H. 2011. Planning under partial
observability by classical replanning: Theory and experi-
ments. In IJCAI.
Brafman, R., and Shani, G. 2012a. A multi-path compila-
tion approach to contingent planning. In AAAI.
Brafman, R., and Shani, G. 2012b. Replanning in domains
with partial information and sensing actions. Journal of
Artificial Intelligence Research (JAIR) 45.
Carberry, S. 2001. Techniques for plan recognition. User
Modeling and User-Adapted Interaction 11.
Cohen, P. R.; Perrault, C. R.; and Allen, J. F. 1981. Beyond
question-answering. Technical report, DTIC Document.
Dughmi, S., and Xu, H. 2016. Algorithmic bayesian per-
suasion. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing.
Fikes, R. E., and Nilsson, N. J. 1972. Strips: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence 1972.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research(JAIR) 26.
Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R.
1998. Planning and acting in partially observable stochas-
tic domains. Artificial intelligence 101(1-2).
Kautz, H., and Allen, J. F. 1986. Generalized plan recog-
nition. In AAAI, volume 86.
Kautz, H.; Etzioni, O.; Fox, D.; Weld, D.; and Shastri, L.
2003. Foundations of assisted cognition systems. Technical
report, University of Washington.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition
design. In ICAPS.
Keren, S.; Gal, A.; and Karpas, E. 2015. Goal recognition
design for non optimal agents. In AAAI.
Keren, S.; Gal, A.; and Karpas, E. 2016a. Goal recognition
design with non-observable actions. In AAAI.
Keren, S.; Gal, A.; and Karpas, E. 2016b. Privacy preserv-
ing plans in partially observable environments. In IJCAI.
Keren, S.; Gal, A.; and Karpas, E. 2018. Strong stubborn
sets for efficient goal recognition design. In ICAPS.
Levine, S. J., and Williams, B. C. 2014. Concurrent
plan recognition and execution for human-robot teams. In
ICAPS.
MacNally, A.; Lipovetzky, N.; Ramirez, M.; and Pearce,
A. 2018. Action selection for transparent planning. In
Proceedings of the Conference on Autonomous Agents and
MultiAgent Systems (AAMAS).
Muise, C. J.; Belle, V.; and McIlraith, S. A. 2014. Comput-
ing contingent plans via fully observable non-deterministic
planning. In AAAI.
Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2017.
Landmark-based heuristics for goal recognition. In AAAI.
Ramirez, M., and Geffner, H. 2010. Probabilistic plan
recognition using off-the-shelf classical planners. In AAAI.
Russell, S. J., and Norvig, P. 2016. Artificial intelligence:
a modern approach. Pearson Education.
Sukthankar, G.; Geib, C.; Bui, H. H.; Pynadath, D.; and
Goldman, R. P. 2014. Plan, activity, and Intent Recogni-
tion: Theory and practice. Newnes.
Unhelkar, V. V., and Shah, J. A. 2016. Contact: Deciding
to communicate during time-critical collaborative tasks in
unknown, deterministic domains. In AAAI.
Wayllace, C.; Hou, P.; Yeoh, W.; and Son, T. C. 2016. Goal
recognition design with stochastic agent action outcomes”.
In IJCAI.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In ICAPS.
Williams, B. C., and Nayak, P. P. 1997. A reactive planner
for a model-based executive. In IJCAI, volume 97.
Wu, F.; Zilberstein, S.; and Chen, X. 2011. Online planning
for multi-agent systems with bounded communication. Ar-
tificial Intelligence 175(2).
Xuan, P.; Lesser, V.; and Zilberstein, S. 2001. Commu-
nication decisions in multi-agent cooperation: Model and
experiments. In Proceedings of the fifth international con-
ference on Autonomous agents.

Zhang, H.; Chen, Y.; and Parkes, D. C. 2009. A general
approach to environment design with one agent. In IJCAI.

