
Under review as a conference paper at ICLR 2020

Bayesian Inference
for Large Scale Image Classification

Anonymous authors
Paper under double-blind review

Abstract

Bayesian inference promises to ground and improve the performance of
deep neural networks. It promises to be robust to overfitting, to simplify
the training procedure and the space of hyperparameters, and to provide a
calibrated measure of uncertainty that can enhance decision making, agent
exploration and prediction fairness. Markov Chain Monte Carlo (MCMC)
methods enable Bayesian inference by generating samples from the poste-
rior distribution over model parameters. Despite the theoretical advantages
of Bayesian inference and the similarity between MCMC and optimization
methods, the performance of sampling methods has so far lagged behind
optimization methods for large scale deep learning tasks. We aim to fill
this gap and introduce ATMC, an adaptive noise MCMC algorithm that
estimates and is able to sample from the posterior of a neural network.
ATMC dynamically adjusts the amount of momentum and noise applied
to each parameter update in order to compensate for the use of stochastic
gradients. We use a ResNet architecture without batch normalization to
test ATMC on the Cifar10 benchmark and the large scale ImageNet bench-
mark and show that, despite the absence of batch normalization, ATMC
outperforms a strong optimization baseline in terms of both classification
accuracy and test log-likelihood. We show that ATMC is intrinsically ro-
bust to overfitting on the training data and that ATMC provides a better
calibrated measure of uncertainty compared to the optimization baseline.

1 Introduction

In contrast to optimization approaches in machine learning that derive a single estimate for
the weights of a neural network, Bayesian inference aims at deriving a posterior distribution
over the weights of the network. This makes it possible to sample model instances from
the distribution over the weights and offers unique advantages. Multiple model instances
can be aggregated to obtain robust uncertainty estimates over the network’s predictions;
uncertainty estimates are crucial in domains such as medical diagnosis and autonomous
driving where following a model’s incorrect predictions can result in catastrophe (Kendall
& Gal, 2017). Sampling a distribution, as opposed to optimizing a loss, is less prone to
overfitting and more training doesn’t decrease test performance. Bayesian inference can
also be applied to differential privacy, where each individual sample has increased privacy
guarantees (Wang et al., 2015), and to reinforcement learning, where one can leverage model
uncertainty to balance between exploration and exploitation (Osband & Van Roy, 2017).

Traditional Markov Chain Monte Carlo (MCMC) methods like HMC (Neal et al., 2011)
are a standard class of methods for generating samples from the posterior distribution over
model parameters. These methods are seldom applied in deep learning because they have
traditionally failed to scale well with large datasets and many parameters (Rajaratnam &
Sparks, 2015). Stochastic Gradient MCMC (SG-MCMC) methods have fared somewhat
better in scaling to large datasets due to their close relationship to stochastic optimization
methods. For example the SGLD sampler (Welling & Teh, 2011) amounts to performing
stochastic gradient descent while adding Gaussian noise to each parameter update. Despite
these improvements, samplers like SGLD are only guaranteed to converge to the correct

1

Under review as a conference paper at ICLR 2020

Algorithm 1 The ATMC sampler. The algorithm accepts the initialized model parameters
θ0, step size h, pre-conditioner m, and momentum noise Dc.

1: procedure atmc training(θ0, h,m,D)
2: p0 ← 0
3: ξ0 ← 0
4: while t < T do
5: Gt ← minibatch gradient(θt)
6: ηt ← random normal()
7: αt ← max(D − ξt, 0)
8: βt ← αt + ξt

9: pt+h ← eβth

[
pt − exp[βth]−1

βt
Gt +

√
exp[2βth]−1

βt
αt ηt

]
10: θt+h ← θt + hpt+h

m

11: ξt+h ← ξt + h
[
p2
t+h

m − 1
]

12: t← t+ h

distribution when the step size is annealed to zero; additional control variates have been
developed to mitigate this to some extent (Ahn et al., 2012; Ding et al., 2014).

The objective of this work is to make Bayesian inference practical for deep learning by mak-
ing SG-MCMC methods scale to large models and datasets. The contributions described
in this work fall in three categories. We first propose the Adaptive Thermostat Monte
Carlo (ATMC) sampler that offers improved convergence and stability. ATMC dynamically
adjusts the amount of momentum and noise applied to each model parameter. Secondly,
we improve an existing second order numerical integration method that is needed for the
ATMC sampler. Third, since ATMC, like other SG-MCMC samplers, is not directly compat-
ible with stochastic regularization methods such as batch normalization (BatchNorm) and
Dropout (see Sect. 4), we construct the ResNet++ network by taking the original ResNet
architecture (He et al., 2016), removing BatchNorm and introducing SELUs (Klambauer
et al., 2017), Fixup initialization (Zhang et al., 2019a) and weight normalization (Salimans
& Kingma, 2016). We design ResNet++ so that its parameters are easy to sample from
and the gradients are well-behaved even in the absence of BatchNorm.

We show that the ATMC sampler is able to outperform optimization methods in terms of
accuracy, log-likelihood and uncertainty calibration in the following settings. First, when
using the ResNet++ architecture for both the ATMC sampler and the optimization baseline,
the ATMC sampler significantly outperforms the optimization baseline on both Cifar-10 and
ImageNet. Secondly, when using the standard ResNet for the optimization baseline and the
ResNet++ for the ATMC sampler, multiple samples of the ATMC that approximate the
predictive posterior of the model are still able to outperform the optimization baseline on
ImageNet. Using the ResNet++ architecture, the ATMC sampler reduces the need for
hyper-parameter tuning since it does not require early stopping, does not use stochastic
regularization, is not prone to over-fitting on the training data and avoids a carefully tuned
learning rate decay schedule.

2 ATMC Sampler

In this section we define the Stochastic Differential Equation (SDE) that gives rise to the
ATMC sampler described in Algorithm 1. A detailed background and framework for con-
structing SDEs that converge to a target distribution can be found in (Ma et al., 2015).

2.1 General form of the SDE

Our starting point for constructing the ATMC sampler is the framework of Stochastic Dif-
ferential Equations. We are interested in SDEs that converge to a distribution p(z) over the
vector z ∈ Rd for which we can evaluate ∇ log p(z). Because only the gradient of log p(z)

2

Under review as a conference paper at ICLR 2020

is required, it is sufficient to define an energy function H(z) = − log p(z) + C up to a con-
stant C. As a consequence, we can sample from the posterior distribution p(θ|x) by only
evaluating the energy function gradient ∇H(θ) = −∇ log p(x, θ). The general form of SDEs
converging to p(z) for which only the gradient of p(z) is required is as follows (Ma et al.,
2015):

dz = − [D(z) +Q(z)]∇H(z)dt+ Γ(z)dt+
√

2D(z)dWt, Γi(z) =

d∑
j

∂ [Dij(z) +Qij(z)]

∂zj
,

(1)

where D(z) is a positive-definite matrix that determines the amount of noise, Q(z) is a
skew-symmetric matrix that mixes energy between variables, Wt is a Wiener process, and
Γ(z) is a correction factor that compensates for dynamics that depend on the current state
z. The ATMC sampler that we propose is an instance of (1) for specific definitions of H(z),
D(z), and Q(z).

2.2 Energy Function

We start by defining the energy function H(z). The energy function for the model posterior
p(θ|x) is defined by the loss function L(θ) = − log p(x, θ). Because the dataset x is generally

large, we would like to only evaluate a mini-batch loss L̃(θ). However, naively using a
stochastic gradient in (1) will result in significant bias (Chen et al., 2014). Motivated by the
Central Limit Theorem, the stochastic gradient is assumed to follow a Gaussian distribution
∇L̃(θ) ∼ N (∇L(θ), B) where the covariance B is additionally assumed to be diagonal and
constant w.r.t. θ. The energy function for the ATMC sampler is defined as:

H(θ, p, ξ) = L(θ) +K(p) +
1

2

(
ξ − diag(B)

2m

)2

, (2)

where p is the momentum, K(p) defines the momentum distribution, and ξ is a control
variate referred to as the temperature. Both p and ξ have the same dimensionality as
θ. The hyper-parameter m controls the strength of the coupling between ξ and p. The
distribution of the control variate p(ξ) depends on the amount of noise B in the stochastic

gradient estimate L̃(θ).

2.3 Noise robust dynamics

Next we define the dynamics Q(z) and D(z) such that the SDE that results from (1) can
be simulated without the need to evaluate B:

D(θ, p, ξ) =

0 0 0
0 α(ξ)m+ 1

2B 0
0 0 0

 , Q(θ, p, ξ) =

(
0 −I 0
I 0 m∇K(p)
0 −m∇K(p) 0

)
, (3)

where α(ξ) is a non-negative function that determines how the temperature ξ affects the
amount of noise added to the momentum update.

We first illustrate the resulting SDE by using a simpler Gaussian momentum distribution
K(p) = ‖p‖2 /(2m). Note that the variance of the momentum Var(p) = m is reused in
(2) and (3) to control the strength of the coupling between ξ and p. This will result in a
temperature control with a momentum friction term proportional to ξ, unlike previously
reported thermostat MCMC methods (Ding et al., 2014; Lu et al., 2016) where the friction

3

Under review as a conference paper at ICLR 2020

term is proportional to ξ/m. We substitute the dynamics Q(z) and D(z) defined in (3) and
energy function H(z) defined in (2) into (1):

(
dθ
dp
dξ

)
=

 p/m

−∇L̃(θ)− β(ξ)p
p2/m− 1

 dt+

0 0 0

0
√

2α(ξ)m 0
0 0 0

 dWt, β(ξ) = α(ξ) + ξ, (4)

where we use ∇L̃(θ)dt = ∇L(θ)dt+
√
BdWt to replace the gradient of the loss with the mini-

batch estimate. The momentum p is dampened by a friction term β(ξ) that depends on the
choice of α(ξ). The stochastic gradient noise B does not show up in (4) due to the particular
choice of energy function H(z) and dynamics Q(z), D(z). Note however this analysis relies
on the assumption that the covariance of the stochastic gradient noise B is constant in θ
and a single temperature variable per parameter can only correct for a diagonal covariance
B. We do not expect that this assumption will hold in practice and the approximation will
therefore lead to bias in the samples. However, annealing the step size h will reduce the
error due to mini-batching together with other sources of discretization error (Welling &
Teh, 2011).

2.4 Adaptive Noise Thermostat

Finally, we must choose a function α(ξ) which controls the amount of noise and momentum
damping β(ξ). Previous work uses the Nosé-Hoover thermostat that is defined by α(ξ) = Dc

where Dc is a constant determining the amount of noise added to the momentum update
(Ding et al., 2014). Although the Nosé-Hoover thermostat is able to correct the stochastic
gradient noise B, the correction comes at the cost of slower convergence because additional
friction β(ξ) is applied as B increases. Another drawback of the Nosé-Hoover thermostat
is that it causes negative friction when ξ < −Dc. In the negative friction phase β(ξ) < 0,
previous gradient terms are amplified rather than dampened. Although this behavior is
mathematically sound we find that it can cause exploding momentum variables.

Our choice of α(ξ) is based on the idea that negative friction should not occur and conver-
gence speed should not be reduced by the stochastic gradient noise. Based on this intuition,
we define the ATMC sampler by α(ξ) = max(D− ξ, 0). The ATMC sampler is best charac-
terized by the various temperature stages. For 0 < ξ < Dc the total amount of noise added
to the momentum is Dc and the friction coefficient β(ξ) = Dc. At this stage, the stochastic
gradient noise is compensated for by adding less noise to the momentum update. If B � Dc

the dominant stage will be ξ > D resulting in β(ξ) < Dc and zero noise being added to
the momentum. Finally, when ξ < 0 the friction coefficient β(ξ) = Dc and the noise added
to the momentum is proportional to Dc − ξ. Thus, the momentum always experiences a
minimum amount of friction β(ξ) ≥ Dc determined by the hyper-parameter Dc and the
noise added to the momentum update is automatically adjusted based on the amount of
noise present in the stochastic gradients.

2.5 Momentum energy function

Following (Lu et al., 2016), we generalize the momentum energy function K(p) to the
symmetric hyperbolic distribution which is defined as follows (Lu et al., 2016):

K(p) =
∑
i

mc2

[√
p2i
m2c2

+ 1− 1

]
, (5)

where m and c are hyper-parameters. The Gaussian kinetic energy K(p) = ‖p‖2 /(2m) is
a special case obtained by taking the limit c → ∞. The magnitude of parameter updates
‖∆θ‖ is determined by the gradient of the momentum:

‖∆θ‖ = ‖∇K(p)‖ =

∥∥∥∥ p

M(p)

∥∥∥∥ , M(p) = m

√
p2

m2c2
+ 1. (6)

4

Under review as a conference paper at ICLR 2020

Hence, the hyperbolic distribution results in relativistic momentum dynamics where the
parameter updates are upper bounded by c and the pre-conditioner M(p) depends on p. The
average update magnitude E [‖∇K(p)‖] ≈ 1/

√
m for c� m. Consequently, the parameters

m and c are interpretable hyper-parameters controlling the average and maximum parameter
update per step together with the step size h.

The SDE we derive in (4) and integrate in Sec. 3 uses a Gaussian momentum energy function
for clarity. Deriving ATMC with a different momentum distribution like the hyperbolic
distribution amounts to substituting (2), (3), and the alternative momentum distribution
into (1). For the hyperbolic distribution, the dynamic friction coefficient β(ξ) will also
depend on p. For the numerical integration of (4) with a hyperbolic momentum distribution
we assume β(ξ) to be constant in p.

3 Improved numerical integrator for MCMC samplers

In this section we construct the numerical integrator required to numerically approximate
the ATMC sampler defined in (4). An efficient numerical integrator can be constructed by
splitting the SDE into two terms:

(
dθ
dp
dξ

)
=

 p/m
0

p2/m− 1

 dt

︸ ︷︷ ︸
A

+

 0

−∇L̃(θ)− β(p, ξ)p
0

 dt+

0 0 0

0
√

2α(ξ)m 0
0 0 0

 dWt︸ ︷︷ ︸
B

. (7)

Hence, we obtain a linear ODE in part (A) that updates the parameters θ and the ther-
mostats ξ and a linear SDE in part (B) that updates the momentum p. The operators that
simulate these dynamics exactly for a time step h are denoted φhA and φhB , respectively.
Using the Strang splitting scheme yields a second order method (Chen et al., 2015):

φh = φ
h/2
B ◦ φhA ◦ φ

h/2
B . (8)

The first operator φhA is given by

φhA(zt) =
(
θt + hptm pt ξt + h

[
p2t
m − 1

])T
. (9)

The second operator φB is an instance of the Ornstein–Uhlenbeck process which can also
be computed analytically as follows (Nelson, 1967):

φhB(zt) =
(
θt eβ(ξt)h

[
pt − γ1(ξt)∇L̃(θt) +

√
γ2(ξt)α(ξt) ηt

]
ξt

)T
,

γa(ξt) =
exp[a β(ξt)h]− 1

β(ξt)
,

(10)

where ηt is isotropic Gaussian noise. Previous work (Chen et al., 2015) on higher order
integrators for samplers splits the SDE into three parts where the third term is obtained
from separating the friction term from the other terms in the momentum update φB . By
integrating (10) exactly the gradient step and the noise and gradient term are directly
affected by the friction. An exact momentum update provides additional robustness to
large gradients because the temperature will increase in order to compensate for momentum
updates that would lead to excessively large steps. Another advantage of a two-way split
integrator is that the first and last steps in (8) can be fused together such that only a
momentum update is performed per iteration. Algorithm 1 shows the pseudocode for the
ATMC sampler with the split integrator defined in (9) and (10).

4 The ResNet++ Architecture

The generalization performance of large neural nets trained using optimization depend on
stochastic regularization methods like Dropout (Srivastava et al., 2014) and BatchNorm

5

Under review as a conference paper at ICLR 2020

x Conv 1x1 BatchNorm ReLU Conv 3x3 BatchNorm ReLU Conv 1x1 BatchNorm + x ReLU

x Conv 1x1 SeLU Conv 3x3 SeLU Conv 1x1 + x SeLU

Figure 1: Residual blocks in respectively the ResNet and ResNet++ architectures.

>99.999%99.99%99.9%99%90%0%
confidence

>99.999%

99.99%

99.9%

99%

90%

0%

a
cc

u
ra

cy

SGD

SGD + BatchNorm

SGNHT posterior predictive

ATMC posterior predictive

ideal

Figure 2: Calibration plot for Cifar10

99.999%99.99%99.9%99%90%0%
confidence

99.9%

99%

90%

0%

a
cc

u
ra

cy

SGD

SGD + BatchNorm

SGNHT posterior predictive

ATMC posterior predictive

ideal

Figure 3: Calibration plot for ImageNet

(Ioffe & Szegedy, 2015). These methods implicitly add noise into the model parameters
(Kingma et al., 2015; Teye et al., 2018) and significantly boost training performance and
generalization for image classifiers. These methods can be interpreted as a coarse approx-
imation of Bayesian Inference (Kingma et al., 2015; Teye et al., 2018). But a stochastic
gradient sampler like ATMC already adds the necessary amount of noise and combined
with BatchNorm or Dropout it leads to underfitting. We thus define a BatchNorm free
version of ResNet called ResNet++ that includes SELUs (Klambauer et al., 2017), Fixup
initialization (Zhang et al., 2019a) and weight normalization (Salimans & Kingma, 2016)
(see Fig. 1). We use ATMC to fill the significant gap in performance due to the absence of
BatchNorm in ResNet++.

4.1 SELU

We find the SELU activation to work well in BatchNorm free networks. SELU forces the
statistics of the activations towards zero mean and unit variance (Klambauer et al., 2017).
The SELU activation function additionally has a non-zero gradient everywhere which could
improve the mixing of the sampler by providing a more informative gradient.

4.2 Fixup initialization

ResNets are known to scale well with depth (He et al., 2016). However, the additive effect
of the residual branch causes the magnitudes of the activations to increase with the number
of residual connections. Fixup is a recently proposed initialization method that mitigates
the exploding residual branch problem without using BatchNorm (Zhang et al., 2019a). We
use a simplified version of Fixup by initializing the scales of the final layer in each residual
branch to a small constant.

4.3 Weight normalization

We use weight normalization (Salimans & Kingma, 2016) to separate the direction and scale
of each linear feature vector

θ(i) = φ(i)s
φ
(i)
d∥∥∥φ(i)d ∥∥∥ , (11)

6

Under review as a conference paper at ICLR 2020

Table 1: Performance on Cifar10 with ResNet-56 model. The posterior predictive is estimate
using a sample of the posterior parameters at the end of each learning rate cycle.

Setup Top 1 acc. [%] NLL [Nats]

SGD 91.5 0.370
SGD + BatchNorm 94.4 0.243
ATMC (single sample) 92.4 0.303
ATMC (Posterior predictive) 93.9 0.194
SGNHT (single sample) 91.7 0.343
SGNHT (Posterior predictive) 93.5 0.211

where φ
(i)
d is the direction vector and φ

(i)
s is the magnitude of a feature vector θ(i). Weight

normalization does not depend on batch statistics and is compatible with MCMC methods.

The scale of the direction vector does not affect the outputs of the model. It does however
affect the effective step size (Wu et al., 2018). Therefore the prior on the direction vector

φ
(i)
d is chosen such that it is forced to unit length

p(φ
(i)
d) ∝ exp

[
−d

2

(∥∥∥φ(i)d ∥∥∥2 − 1

)2
]
. (12)

The prior on the scales p(φs) is problem-specific and can for example be chosen to encode
a preference for structurally sparse models.

5 Experiments

The experiments presented here aim to demonstrate that the ATMC sampler is competitive
with a well-tuned optimization baseline for large-scale datasets and models. We use the
TensorFlow official implementation of ResNet-56 and ResNet-50 on Cifar10 and ImageNet,
respectively. We compare our ATMC sampler to an optimization baseline with and with-
out BatchNorm. For the optimization baseline without BatchNorm we use the ResNet++
architecture as described in Sec. 4. For the baseline with BatchNorm we found standard
ResNet with Xavier initialization and the ReLU non-linearity to work better.

For the ATMC sampler we report both the performance of a single sample and the estimated
posterior predictive based on a finite number of samples. Similar to earlier work (Zhang
et al., 2019b) we found that many fewer samples are needed when a cyclic step size ht =
h0 ∗ 1

2 [1 + cos(πmod[t, n])] with cycle length n is used. The final sample in each cycle is
used to estimate the posterior predictive.

For ResNet++ we further use a group Laplace prior p(θi) ∝ exp(−‖θi‖ /b) with b = 5 to
regularize the scales of each linear feature in ResNet++. The momentum noise is chosen as
Dc = − log(0.9)/h0 such that the friction applied to the momentum is at least 0.9.

5.1 Cifar 10

For Cifar10 we choose the step size h0 = 0.001 and the cycle length is set to 50 epochs.
The momentum hyper-parameters are m = (0.0003/h0)−2 and c = 0.001/h0 such that the
average speed and maximum speed per step are 0.0003 and 0.001, respectively. The number
of convolution filters is doubled to 32 compared to the original ResNet-56 implementation.
We use a single V100 GPU with a batch size of 128. The sampler runs for 1000 epochs and
we start collecting samples for the posterior predictive after 150 epochs. The optimization
baseline converges in 180 epochs. We also report the results of sampling with a sampler
based Nosé-Hoover thermostats (SGNHT) (Ding et al., 2014; Lu et al., 2016) applied to the
ResNet++ architecture.

7

Under review as a conference paper at ICLR 2020

Table 2: Performance on ImageNet with ResNet-50 model. The posterior predictive is
estimated using a sample of the posterior parameters at the end of each learning rate cycle.

Setup Top 1 acc. [%] NLL [Nats]

SGD 70.9 1.24
SGD + BatchNorm 76.2 0.947
ATMC (single sample) 74.2 1.08
ATMC (Posterior predictive) 77.5 0.883
SGNHT (single sample) 73.1 1.15
SGNHT (Posterior predictive) 76.4 0.941

Table 1 lists the test set performance for Cifar10. A single sample from the posterior
already outperforms the baseline without BatchNorm by a significant margin in both test
accuracy and log-likelihood. Using BatchNorm significantly improves the generalization of
the optimization baseline. It outperforms the estimate of the posterior predictive in accuracy
yet it does not have a better test log-likelihood.

To further analyze the quality of the uncertainty estimates, we group each model’s prediction
in 8 equally sized bins based on the confidence p(ω̂i|xi) where ω̂i is the maximum probability
class for example xi. If the probabilities are well-calibrated, the average confidence should
be close to the average accuracy. Figure 2 shows the calibration of the uncertainty estimates
for the posterior predictive and optimization baselines. The posterior predictive is calibrated
for the least confident predictions p(ω̂i|xi) < 0.9 and shows less bias towards overconfidence
compared to the models trained with SGD.

5.2 ImageNet

For the ImageNet experiments we use an initial step size h0 = 0.0005 and a cycle length
of 20 epochs. The other hyper-parameters for the sampler are the same as for the Cifar10
experiments. We use a a single Google Cloud TPUv3 with a batch size of 1024. We did
not observe a significant difference in wall clock time per training step between SGD and
ATMC on the same model. Each training step using ResNet+BatchNorm model takes 20%
longer in wall clock time compared to a single train step using ResNet++. Samples for the
posterior predictive are collected after 150 epochs and the sampler runs for 1000 epochs.
The optimization baseline converges in 90 epochs.

Table 2 lists the results for ImageNet classification. A single sample from the posterior
outperforms the optimization baseline without BatchNorm. The posterior predictive based
on ATMC outperforms the optimizer with BatchNorm by a wide margin in both accuracy
and test log-likelihood. We note that the sampler runs significantly longer (10x) compared
to the optimization baseline because it takes a long time for the posterior predictive esti-
mate to converge. However, the posterior predictive of ATMC matches the accuracy of the
optimization baseline with BatchNorm (76.2%) after 240 epochs.

Figure 3 shows the quality of the uncertainty for various levels of confidence. Again, the
ATMC based posterior predictive produces much better calibrated predictions and is almost
perfectly calibrated for low confidence predictions p(ω̂i|xi) < 0.9 and shows less bias towards
overconfidence compared to the optimization baseline.

6 Discussion

The empirical results show it is possible to sample the posterior distribution of neural net-
works on large scale image classification problems like ImageNet. A major obstacle for
sampling the posterior of ResNets in particular is the lack of compatibility with Batch-
Norm. Using recent advances in initialization and the SELU activation function we are able
to stabilize and speed up training of ResNets without resorting to BatchNorm. Nonetheless,
we observe that BatchNorm still offers a unique advantage in terms of generalization per-

8

Under review as a conference paper at ICLR 2020

formance. We hope that future work will allow the implicit inductive bias that BatchNorm
has to be transferred into an explicit prior that is compatible with sampling methods.

Multiple posterior samples provide a much more accurate estimate of the posterior pre-
dictive, and consequently much better accuracy and uncertainty estimates. For inference,
making predictions using a large ensemble of models sampled from the posterior can be
costly. Variational Inference methods can be used to quickly characterize a local mode of
the posterior (Blundell et al., 2015). More recent work shows that a running estimate of
the mean and variance of the parameters during training can also be used to approximate a
mode of the posterior (Maddox et al., 2019). Methods like distillation could potentially be
used to compress a high-quality ensemble into a single network with a limited computational
budget (Balan et al., 2015).

Although the form in (4) is very general, alternative methods for dealing with stochastic
gradients have been proposed in the literature. One approach is to estimate the covariance of
the stochastic gradient noise B explicitly and use it correct and pre-condition the sampling
dynamics (Ahn et al., 2012; Li et al., 2016).

Other sampling methods are not based on an SDE that converges to the target distribution.
Under some conditions stochastic optimization methods can be interpreted as such a biased
sampling method (Mandt et al., 2017). Predictions based on multiple samples from the
trajectory of SGD have been used successfully for obtaining uncertainty estimates in large
scale Deep Learning (Maddox et al., 2019). However, these methods rely on tuning hyper-
parameters in such a way that just the right amount of noise is inserted.

7 Conclusion

This work introduces the ATMC sampler, a robust posterior sampling method that scales to
large deep learning problems. To the best of our knowledge, we are the first to successfully
train neural networks using MCMC on ImageNet. In a BatchNorm free setting, a single
sample from the posterior generated by ATMC outperforms the optimization baseline. A
posterior predictive estimate outperforms the optimization baseline with BatchNorm on
ImageNet. Based on these empirical results we hope the ATMC sampler will enable new
applications of Bayesian inference in deep learning.

References

Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian posterior sampling via
stochastic gradient fisher scoring. arXiv preprint arXiv:1206.6380, 2012.

Anoop Korattikara Balan, Vivek Rathod, Kevin P Murphy, and Max Welling. Bayesian
dark knowledge. In Advances in Neural Information Processing Systems, pp. 3438–3446,
2015.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight un-
certainty in neural network. In International Conference on Machine Learning, pp. 1613–
1622, 2015.

Changyou Chen, Nan Ding, and Lawrence Carin. On the convergence of stochastic gra-
dient mcmc algorithms with high-order integrators. In Advances in Neural Information
Processing Systems, 2015.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo.
In International conference on machine learning, pp. 1683–1691, 2014.

Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D Skeel, and Hartmut
Neven. Bayesian sampling using stochastic gradient thermostats. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.), Advances in Neural
Information Processing Systems 27, pp. 3203–3211. Curran Associates, Inc., 2014.

9

Under review as a conference paper at ICLR 2020

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning,
pp. 448–456, 2015.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? In Advances in neural information processing systems, pp. 5574–5584,
2017.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local repa-
rameterization trick. In Advances in Neural Information Processing Systems, pp. 2575–
2583, 2015.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. In Advances in neural information processing systems, pp.
971–980, 2017.

Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned stochas-
tic gradient langevin dynamics for deep neural networks. In Thirtieth AAAI Conference
on Artificial Intelligence, 2016.

Xiaoyu Lu, Valerio Perrone, Leonard Hasenclever, Yee Whye Teh, and Sebastian J Vollmer.
Relativistic monte carlo. arXiv preprint arXiv:1609.04388, 2016.

Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic gradient mcmc.
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances
in Neural Information Processing Systems 28, pp. 2917–2925. Curran Associates, Inc.,
2015.

Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, and Andrew Gordon
Wilson. A simple baseline for bayesian uncertainty in deep learning. arXiv preprint
arXiv:1902.02476, 2019.

Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as
approximate bayesian inference. The Journal of Machine Learning Research, 18(1):4873–
4907, 2017.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte
carlo, 2(11):2, 2011.

Edward Nelson. Dynamical theories of Brownian motion, volume 3. Princeton university
press, 1967.

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for
reinforcement learning? In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 2701–2710. JMLR. org, 2017.

Bala Rajaratnam and Doug Sparks. Mcmc-based inference in the era of big data: A funda-
mental analysis of the convergence complexity of high-dimensional chains. arXiv preprint
arXiv:1508.00947, 2015.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. In Advances in Neural Information Processing
Systems, pp. 901–909, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research, 15(1):1929–1958, 2014.

Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian uncertainty estimation for
batch normalized deep networks. arXiv preprint arXiv:1802.06455, 2018.

10

Under review as a conference paper at ICLR 2020

Yu-Xiang Wang, Stephen Fienberg, and Alex Smola. Privacy for free: Posterior sampling
and stochastic gradient monte carlo. In International Conference on Machine Learning,
pp. 2493–2502, 2015.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pp.
681–688, 2011.

Xiaoxia Wu, Rachel Ward, and Léon Bottou. Wngrad: learn the learning rate in gradient
descent. arXiv preprint arXiv:1803.02865, 2018.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning
without normalization. arXiv preprint arXiv:1901.09321, 2019a.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wil-
son. Cyclical stochastic gradient mcmc for bayesian deep learning. arXiv preprint
arXiv:1902.03932, 2019b.

11

	Introduction
	ATMC Sampler
	General form of the SDE
	Energy Function
	Noise robust dynamics
	Adaptive Noise Thermostat
	Momentum energy function

	Improved numerical integrator for MCMC samplers
	The ResNet++ Architecture
	SELU
	Fixup initialization
	Weight normalization

	Experiments
	Cifar 10
	ImageNet

	Discussion
	Conclusion

