
Under review as a conference paper at ICLR 2020

POINT PROCESS FLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

Event sequences can be modeled by temporal point processes (TPPs) to capture
their asynchronous and probabilistic nature. We propose an intensity-free frame-
work that directly models the point process as a non-parametric distribution by uti-
lizing normalizing flows. This approach is capable of capturing highly complex
temporal distributions and does not rely on restrictive parametric forms. Com-
parisons with state-of-the-art baseline models on both synthetic and challenging
real-life datasets show that the proposed framework is effective at modeling the
stochasticity of discrete event sequences.

1 INTRODUCTION

Data in real-life takes various forms. Event sequences, as a special form of data, are discrete events
in continuous time. This type of data is prevalent in a broad spectrum of areas, for example, pa-
tient visits to hospitals, user behavior on social media, credit card transactions, etc. In this setting,
each event is discrete, and the temporal dynamics of the events are complex and asynchronous. It
is crucial to understand the characteristics and dynamics of such data, so that plausible future pre-
diction, as well as other downstream applications, such as intervention or recommendation, can be
performed. Despite recent success in modeling images, videos and texts with the power of deep
neural networks (DNNs), the asynchronous and probabilistic nature of event sequence data makes it
challenging to utilize the power of off-the-shelf DNN-based models.

Temporal point processes (TPPs; Daley & Vere-Jones 2007) provide us with an elegant and effective
mathematical framework for modeling event sequences data. A temporal point process is defined as
a stochastic process whose realizations consist of a list of events with their corresponding occurring
times. These occurring times can either be real numbers from an index set (defined from prior
knowledge) or sampled from an intensity function. While other time-series models learn temporal
patterns synchronously (with each time-step being treated as an input to the model), TPP-based
frameworks directly model the time intervals between events as random variables. With such a
setup, it allows for modeling long sequences without vanishing gradients or costly memory issues.

Although the temporal point process has shown to be useful in modeling events sequences, it is
usually not trivial to come up with a simple yet flexible intensity function. An intensity function
encodes the rate an event occurs at a specified time-step. Poisson process (Kingman, 1992) has been
a popular hand-crafted design for the intensity which assumes that events are independent of each
other. More sophisticated design choices are investigated in the self-exciting (Hawkes, 1971) and
self-correcting process (Isham & Westcott, 1979). The key contribution of these models is to find
a functional form of intensity that fits data distribution well by making various parametric assump-
tions on the underlying generative process of the data. Although shown effective in modeling simple
synthetic datasets, parametric assumptions make such frameworks lack the flexibility to model the
generative process for real-life and complex data, hindering wider adoption of TPP-based frame-
works.

Recently, learning the intensity function using recurrent neural networks (RNNs) to encode the his-
tory has received an increasing amount of attention (Du et al., 2016; Zhong et al., 2018; Mei &
Eisner, 2017; Jing & Smola, 2017). In this line of work, history information is encoded and ex-
ploited in learning the intensity of the point process distribution. In this case, the explicit parametric
assumption on the forms of the intensity functions is relaxed. However, the maximum likelihood
training criteria on these models still requires the intensity function to be simple for the likelihood
to be tractable. Recent work by Mehrasa et al. (2019) proposes a probabilistic framework based
on variational autoencoders for modeling point process, further facilitating the stochastic generative

1

Under review as a conference paper at ICLR 2020

process. All the literature above is built upon explicit modeling of a temporal point process using
the intensity function.

It is not necessary to explicitly model the intensity; a few works have tried to formulate TPP in an
intensity-free manner. WGANTPP (Xiao et al., 2017; 2018) introduce an intensity-free framework
for modeling the point process distribution using Wasserstein distance. The model is built upon a
generative adversarial network (GAN). RLPP (Li et al., 2018) formulates this problem in a rein-
forcement learning framework and treats future event predictions as actions taken by an agent. Both
of these models are optimized by trying to generate sequences of samples that are indistinguishable
from the ground-truth sequences (by a discriminator in WGANTPP and policy learning in RLPP).
Although these models are capable of generating realistic sequences, such training criteria fail to
model the data distribution, resulting in intractable likelihood.

In this work, We propose a novel intensity-free point process model based on continuous normal-
izing flow and variational autoencoders. The proposed point process flow (PPF) model utilizes a
recurrent variational autoencoder to encode the history of a given event sequence and makes proba-
bilistic predictions on the next event. It preserves the non-parametric characteristics of point process
distributions with normalizing flow. The predicted non-parametric point process distribution is ca-
pable of capturing complex time distributions of arbitrary shape, leading to more accurate modeling
of event sequences. Extensive experiments are conducted on synthetic and real datasets to evaluate
the performance of the proposed model. Experimental results show that our model is capable of cap-
turing complex point process distributions as well as performing accurate stochastic forecast. The
contributions are summarized as follows: (1) A novel intensity-free point process model built upon
continuous normalizing flow. The proposed PPF is capable of capturing highly complex temporal
distributions and does not rely on restrictive parametric forms; (2) PPF can be optimized by max-
imizing the exact likelihood using change of variable formula, relaxing the constraint in previous
works that likelihood has to be tractable; (3) Evaluation on both synthetic and challenging real-life
datasets shows improvement over the state-of-the-art point process models.

2 PRELIMINARIES

2.1 TEMPORAL POINT PROCESS

A temporal point process (TPP; Daley & Vere-Jones 2007) is a mathematical framework for model-
ing asynchronous sequences of actions. It is a stochastic process whose realization is a sequence of
discrete events in time t1:n = {t1, t2, ..., tn} where tn is the time when the nth event occurred.

A temporal point process distribution is modeled by specifying the probability density function of
the time of the next event:

f(t|Ht) = λ(t|Ht) exp

{
−
∫ t

tn−1

λ(u|Hu) du

}
, (1)

where the intensity function λ(t|Ht) is the conditional intensity function. It encodes the expected
rate of event happening in a small area around t andHt = {t1, t2, ..., tn−1|tn−1 < t} is the sequence
of event times up to time t. Many works explored different design choices of intensity function to
capture the phenomena of interest. Here we review two popular hand-crafted design choices:

Poisson Process. Poisson process (Kingman, 1992) is based on the assumption that events happen
independent of each other where the intensity is a fixed positive constant λ(t) = λ and λ > 0. In
a more general case, λ could be a function of time λ(t|Ht) = λ(t) but still independent of other
events, which is called inhomogeneous Poisson process.

Self-exciting Process (Hawkes process). Self-exciting process (Hawkes, 1971) assumes that oc-
currence of an event increases the probability of other events happening in near future. Its intensity
function has the functional form of λ(t|Ht) = µ + α

∑
ti<t

exp(−(t − ti)), where µ and α are
positive constants and ti < t are all the events happening before time t.

2.2 NORMALIZING FLOW

Normalizing flows are generative models that allow both density estimation and sampling. They
map simple distributions to complex ones using bijective functions. Specifically, if our interest is

2

Under review as a conference paper at ICLR 2020

to estimate the density function pX of a random vector X ∈ Rd, then normalizing flows assume
X = gθ(Z), where gθ : Rd → Rd is a bijective function, and Z ∈ Rd is a random vector with a
tractable density function pZ. We further denote the inverse of gθ by fθ. On one hand, the probability
density function can be evaluated using the change of variables formula:

pX(x) = pZ(fθ(x))

∣∣∣∣det

(
∂fθ
∂x

)∣∣∣∣ , (2)

where ∂fθ/∂x denotes the Jacobian matrix of fθ. On the other hand, sampling from pX can be
done by first drawing a sample from the simple distribution z ∼ pZ, and then apply the bijection
x = gθ(z).

Given the expressive power of deep neural networks, it is natural to construct gθ as a neural network.
However, it requires the bijection gθ to be invertible, and the determinant of the Jacobian matrix
should be efficient to compute. Several methods have been proposed along this research direction
(Rezende & Mohamed, 2015; Dinh et al., 2014; 2017; Kingma et al., 2016; Kingma & Dhariwal,
2018; Papamakarios et al., 2017). An extensive overview of normalizing flow models is given by
Kobyzev et al. (2019).

2.3 CONTINUOUS NORMALIZING FLOW

From a dynamical systems perspective, the residual network can be regarded as the discretization of
an ordinary differential equation (ODE; Haber & Ruthotto 2017; Chang et al. 2018; Lu et al. 2018).
Inspired by that, Chen et al. (2018) propose neural ODE, where the continuous dynamics of hidden
units is parameterized using an ordinary differential equation specified by a neural network:

dz(t)

dt
= h(z(t), t, θ). (3)

The neural ODE can be used to construct a continuous normalizing flow. The invertibility is naturally
guaranteed by the theorem of the existence and uniqueness of the solution of the ODE. Furthermore,
using the instantaneous change of variables formula, similar to Equation 2, the log-density can be
evaluated by solving the following ODE:

∂ log p(z(t))

∂t
= −Tr

(
∂h
∂z(t)

)
. (4)

Grathwohl et al. (2019) propose an improved version of neural ODE, named FFJORD, which has
lower computational cost by using an unbiased stochastic estimation of the trace of a matrix.

3 PROPOSED FRAMEWORK

We propose an intensity-free flow framework to model the timing of events in point process se-
quences. More specifically, we learn a non-parametric distribution over the timing of asynchronous
event sequences by transforming a simple base probability density through continuous normalizing
flow, i.e., a series of invertible transformations. With our proposed framework, we are able to model
complex point process distributions without making any assumption on the functional form of the
distribution while being able to evaluate the likelihood of sequences under our model.

3.1 NON-PARAMETRIC POINT PROCESS FLOWS

Let the input be a sequence of asynchronous events {t1, t2, ...}, where ti ∈ R+ represents the
starting time of the i-th event. We define the inter-arrival time τn as the time difference between
the starting time of events tn−1 and tn. Our goal is to model the distribution over inter-arrival time
τn given the past history of events inter-arrival times τ1:n−1, i.e., learning to model the conditional
distribution p(τn|τ1:n−1).

Our approach is to construct the distribution over inter-arrival time τn by transforming a simple base
distribution through normalizing flow transformations. At time-step n, we assume that inter-arrival
time τn was generated by first sampling from a simple distribution p(zn) and then transforming the
drawn sample zn through an invertible transformation gθ : R→ R+ parametrized by θ :

zn ∼ p(zn), τn = gθ(zn). (5)

3

Under review as a conference paper at ICLR 2020

Figure 1: This figure shows the overall structure of our non-parametric point process modeling via
normalizing flow. We learn a non-parametric distribution over the inter-arrival time of asynchronous
event sequences by transforming a base probability density which is conditioned on the past history
through normalizing flow transformations.

With this assumption and the change of variable formula discussed in subsection 2.2, we can write
the distribution over inter-arrival time τn as:

pθ(τn) = p(zn)

∣∣∣∣∂fθ∂τn

∣∣∣∣ , (6)

where fθ(τn) = g−1θ (τn) = zn, and the scalar Jacobin value dfθ/dτn shows the changes in the
density when moving from τn to zn. We dropped the determinant term in the change of variable
formula, because in our case, the inter-arrival time τn is a one-dimensional variable. With this
formulation, we are able to model the inter-arrival time distribution, without any specific assumption
on the functional form of the distribution. Exact samples of the inter-arrival time distribution can
be obtained by sampling from the base distribution zn ∼ p(zn) and transforming it through flow
transformation τn = gθ(zn). We are also able to compute the exact likelihood of τn by computing
the likelihood of fθ(τn) and multiplying it with the associated Jacobian term

∣∣∣ ∂fθ∂τn

∣∣∣.
Current formulation models the inter-arrival distribution of each time-step independent of past his-
tory. The future event timing might depend on previous events in a very complex way, so its im-
portant to take the history information into consideration while modeling future events. To capture
this dependency, we adapt our formulation to construct the point process distribution by learning
normalizing flow parameters conditioned on the history. More specifically, we learn the parameters
of flow base distribution by a time-dependent model parametrized by ρ that encodes history and
provides the conditional base distribution pρ(zn|τ1:n−1) at each time-step. The overal procedure
can be seen in Figure 1. In our framework, the base distribution is assumed to follow a Gaussian
distribution:

pρ(zn|τ1:n−1) = N (µρn , σ
2
ρn), (7)

where (µρn , σ
2
ρn) are the parameters of the base distribution. These parameters can be obtained by

encoding the history τ1:n−1 using various approaches. In this work, we propose two approaches to
construct the base distribution of the flow: 1) Base distribution with deterministic parameters. 2)
Base distribution with stochastic parameters. In the following sections, we describe each approach
in more details.

3.2 BASE DISTRIBUTION WITH DETERMINISTIC PARAMETERS

As discussed in subsection 3.1, we aim to model the conditional distribution p(τn|τ1:n−1) using
history information in learning the base distribution parameters. Recurrent neural networks (RNNs)
have shown to be powerful deterministic models in capturing temporal dependencies. Recent works
adapt RNNs as a non-linear mapping of the history to the intensity function to define temporal point
process distributions (Du et al., 2016; Zhong et al., 2018; Mei & Eisner, 2017). As a first attempt, we
use RNNs to learn the parameters of the base distribution of the flow using the history information.

Figure 2 part (a) illustrates the overall structure of our model. To construct the conditional distribu-
tion pθ,ρ(τn|τ1:n−1), the RNN takes the history of the past inter-arrival times τ1:n−1 and produces

4

Under review as a conference paper at ICLR 2020

Figure 2: Part (a) shows the deterministic approach of utilizing RNNs for predicting conditional
distribution pθ,ρ(τi|τ1:i−1). RNN encodes history into the base distribution, then it gets transformed
to the target distribution by flow transformation gθ. Part (b) shows the generation phase of incorpo-
rating the flow module in a probabilistic framework. During generation, the prior network gets the
history and output the latent space distribution for the next time-step. Then a sample of this distri-
bution is passed to the decoder which generates the non-parametric distribution over the inter-arrival
time of next time-step by incorporating the flow module.

the conditional base distribution pρ(zn|τ1:n−1) = N (µρn , σ
2
ρn) for the next time-step. Then, the

base distribution is transformed into the conditional inter-arrival time distribution over τn through
normalizing flow transformations gθ. The RNN is jointly optimized with the flow module by maxi-
mizing the log-likelihood of observed sequence τ1:N under the predicted distribution:

Lθ,ρ(τ1:N) =

N∑
i=1

log pθ,ρ(τi|τ1:i−1) =

N∑
i=0

log pρ(zi|τ1:i−1) + log

∣∣∣∣∂fθ∂τi

∣∣∣∣ . (8)

3.3 BASE DISTRIBUTION WITH PROBABILISTIC PARAMETERS

It is known that there is a trade-off between the complexity of the bijective transformation and
the form of base distribution (Jaini et al., 2019). With the complexity of the bijective transforma-
tion fixed, a more flexible base distribution will lead to a more expressive model. In our proposed
framework, the fact that flow transformations are shared across time-steps and the true underlying
distribution across time-steps might vary a lot, makes our model more sensitive to the choice of
base distribution family. We believe that, if we choose to model base distributions as Gaussian
distributions with deterministic parameters, the bijective transformation might not be able to esti-
mate underlying distributions well. We further support our claim by proving Proposition 1 which,
intuitively speaking, says more flexible base-distribution yields more expressive model.

Motivated by this, our second move is to have a more flexible base-distribution where the parameters
are probabilistic. In order to achieve this, we utilize the variational auto-encoder (VAE; Kingma &
Welling 2014) paradigm in modeling the conditional base-distributions. To better illustrate the im-
portance of having more flexible base-distribution, we provide a motivating example in Appendix A.

To avoid confusion, at time-step n, we use the notation zτn for the random variable of the normalizing
flow base distribution and zvaen to refer to the VAE latent space. We start by explaining the generation
phase, i.e., how the distributions over inter-arrival time τn are generated by stacking the normalizing
flow module on top of the VAE backbone and then describing the training process.

Generation. Figure 2 part (b) shows an overview of the generation process. Here, we adapt a recur-
rent VAE framework consisting of a time-variant prior network parametrized by ψ which takes the
history of past actions τ1:n−1 and provides the latent distribution pψ(zvaen |τ1:n−1). Then, a sample
of this distribution is passed to the VAE’s decoder which produces a non-parametric distribution
over the inter-arrival time τn by first generating the normalizing flow base distribution pρ(zτn|zvaen)
and then transforming it through flow transformation gθ. By applying the change of variable formula
discussed in Equation 6, we can write the distribution over inter-arrival time τn as:

pθ,ρ(τn|zvaen) = pρ(z
τ
n|zvaen)

∣∣∣∣∂fθ∂τn

∣∣∣∣ . (9)

5

Under review as a conference paper at ICLR 2020

Training. At time-step n of training, the VAE module takes the sequence of inter-arrival times τ1:n
to approximate the true distribution over the latent space zvaen via the help of the recurrent infer-
ence network qφ(zvaen |τ1:n) which is parametrized with φ. A time-dependent prior network is also
adapted to help the model to take use of history information in generation phase pψ(zvaen |τ1:n−1).
Both prior and posterior distributions are assumed to follow conditional multivariate Gaussian dis-
tributions with diagonal covariance:

pψ(zvaen |τ1:n−1) = N (µψn ,Σψn), (10)
qφ(zvaen |τ1:n) = N (µφn ,Σφn). (11)

At each time-step during training, a latent code zvaen is taken from the posterior and is passed to
the decoder which aims to generate the conditional distribution pθ,ρ(τn|zvaen). The VAE backbone
is jointly trained with the flow module by optimizing the variational lower bound using the re-
parameterization trick (Kingma & Welling, 2014):

Lθ,φ,ψ,ρ(τ1:N) =

N∑
n=1

(Eqφ(zvaen |τ1:n)[log pθ,ρ(τn|zvaen)] (12)

−DKL(qφ(zvaen |τ1:n)||pψ(zvaen |τ1:n−1))),

where we compute the log-likelihood term log pθ,ρ(τn|zvaen) by applying the change of variable
formula of Equation 9.

4 EVALUATION

To show the effectiveness of our non-parametric approach, we evaluate the performance of our
model on synthetic and real-world datasets and compare it with the state-of-the-art point process
models. Please refer to Appendix A for architecture and implementation details.

4.1 DATASETS AND BASELINES

Synthetic Datasets. We create three types of synthetic datasets as follow: (I) Inhomogeneous
Poisson Process (IP) defines the intensity as a function of time but independent of the history.
We simulate sequences of IP process with λ(t) =

∑k
i=1 αi(2πσ

2
i)−1/2 exp(−(t − ci)2/σ2

i) where
k = 6, α = (14, 18, 13, 17, 10, 13), c = (3, 6, 9, 12, 15, 18) and σ = (5, 5, 5, 5, 5, 5). (II) Self-
exciting Process (SE) assumes that the occurrence of an event increases the probability of other
events happening in the near future. It is characterized by λ(t) = µ + β

∑
ti<t

g(t − ti), where
in our case g(t) = exp(−t), µ = 1.0, and β = 0.8. (III) IP + SE is created by combining the
simulated data from the self-exciting process and the inhomogeneous process. For each of IP and
SE, we generate 20000 sequences, where the length of each is 60, and split the sequences into train,
validation and test sets with proportions of 0.7, 0.1, 0.2, respectively.

Real-world Datasets. We also evaluate our models on real datasets that cover the areas of social
media, healthcare, and human activity as follow: (I) LinkedIn data is collected from over 3000
LinkedIn accounts and contains their job-hopping records with information including the time and
company. Our model predicts the time-interval before a user’s next job-hopping. After pruning users
with only one job-hopping record, we collect 2439 sequences. (II) MIMIC (Medical Information
Mart for Intensive Care III; Johnson et al. 2016; Pollard 2016) is a publicly available, large-scale
dataset which contains the medical records of more than 40000 anonymous patients. Our method
models the inter-arrival time of patients’ admissions to hospital. We keep the record of patients who
have at least three visits to hospitals and collected 2377 sequences. (III) Breakfast dataset (Kuehne
et al., 2014) contains 1712 videos with 48 action classes related to breakfast preparation. On this
dataset, we model the inter-arrival times of the actions as well as actions categories. We explain
this extension in more detail in subsection 4.2. For the LinkedIn and MIMIC dataset, we also split
the dataset into train, validation and test sets with proportions of 0.7, 0.1, 0.2, respectively. For the
Breakfast dataset, we use the standard train and test split proposed by Kuehne et al. (2014).

Baselines. We compare our proposed flow-based approach with the state-of-the-art point process
models: (I) APP-LSTM1 is an LSTM that takes the history of past events and predicts the inter-
arrival time distribution for the next time-step by mapping the history into the intensity of a point

1This baseline has comparable performance to Mei & Eisner (2017); Du et al. (2016).

6

Under review as a conference paper at ICLR 2020

Dataset Model

APP-LSTM PPF-D APP-VAE PPF-P

IP −2.942 −1.857 > 0.408 > 0.499
SE −2.990 −1.615 > 0.562 > 0.636
IP+SE −2.978 −1.507 > 0.476 > 0.566
LinkedIn −0.795 0.973 > −1.713 > 2.678
MIMIC −1.962 −0.498 > −1.200 > 1.696

Table 1: Log-likelihood Comparison. LL is reported for synthetic and real datasets.

process distribution. We train it by maximizing the likelihood of observed sequences under the
predicted distribution. This deterministic baseline has comparable performance to Du et al. (2016).
It only differs in the way that intensity is defined; unlike Du et al. (2016), its intensity doesn’t
explicitly depend on time. Zhong et al. (2018) compare these two design choices, and implicit
dependence was shown to be more effective in modeling point process distribution.

(II) APP-VAE (Mehrasa et al., 2019) is a latent variable framework for modeling marked temporal
point process. The model makes conditional predictions by learning a conditional latent space.
Given a history of past actions, APP-VAE generates two distributions for the next action: one over
its timing (by predicting the conditional intensity and using it to define point process distributions)
and one over its category. On breakfast dataset, we use their original setup with the use of both time
and mark data to have a fair comparison with APP-VAE; using mark data could help better capturing
the temporal dependencies. For the rest of the datasets, we modify their approach to predict the time
distribution only.2

4.2 RESULTS

Log-likelihood Comparison. We report log-likelihood (LL) of test sequences across all models.
For our PPF model with the probabilistic approach in learning base distribution parameters (PPF-P;
introduced in subsection 3.3) and APP-VAE baseline, we report the importance weighted autoen-
coder (IWAE) bound, which is a lower bound of the real log-likelihood. To compute IWAE, at each
time-step, we draw 1500 samples from the VAE’s posterior distribution and follow the standard
procedure for computing IWAE. We report the average of log-likelihood along all the time-steps
of all sequences in the test dataset. The experimental results are shown in Table 1. The results
indicate the better capability of our normalizing flow-based approaches at modeling point process
sequence data, especially the real-world data with complicated underlying distributions. Our prob-
abilistic PPF-P approach robustly outperforms state-of-the-art intensity-based baselines across all
the datasets. Without any assumption on the functional form of intensity, we are able to model the
point process distribution effectively. Our probabilistic approach also has a better performance in
comparison to our deterministic approach introduced in subsection 3.2 (PPF-D). This demonstrates
the advantages of using a more flexible base distribution in the flow in the probabilistic approach.

Point Estimate Comparison. We also report the mean absolute error (MAE) to evaluate the perfor-
mance of our model in estimating future events timing. The MAE between the samples of predicted
time distribution and the ground-truth is reported. To compute MAE for PPF-P and APP-VAE, at
time-step i, we have two stages of sampling: (1) First, we draw samples from the prior distribu-
tion zvaei ∼ pψ(zvaei |τ1:i−1). Then, we pass each to the decoder and (2) draw samples from each
predicted distribution τi ∼ pρ(τi|zvaei). The MAE computation at time-step i is as follow:

Ezvaei ∼pψ(zvaei |τ1:i−1)

[
Eτi∼p(τi|zvaei)(|τi − τ∗i |)

]
, (13)

where τ∗i is the ground-truth inter-arrival at time-step i. We follow a similar procedure for computing
the MAE for the deterministic approaches:

Eτi∼p(τi|τ1:i−1)(
∣∣τi − τ∗i ∣∣). (14)

For PPF-P and APP-VAE, to estimate the expected error, we draw 100 samples from prior dis-
tribution pψ(zvaei |τ1:i−1) and 15 samples from each predicted base distribution pθ(τi|zvaei). For

2We drop the use of mark data as input and accordingly omit the likelihood calculation of action category
distribution from the optimization term.

7

Under review as a conference paper at ICLR 2020

Dataset Model

APP-LSTM PPF-D APP-VAE PPF-P

IP 6.765 4.7759 0.279 0.278
SE 7.360 4.4205 0.290 0.297
IP+SE 7.163 4.0525 0.288 0.299

LinkedIn 2.522 2.048 2.495 1.799
MIMIC 23.531 17.709 27.479 26.047

Table 2: Mean Absolute Error Comparison. MAE is reported for synthetic and real datasets.

Model LL MAE Accuracy

APP-LSTM −8.099 239.624 59.594
PPF-D −7.637 251.337 61.174
APP-VAE > −6.463 244.019 62.190
PPF-P > −6.342 204.913 62.528

Table 3: Comparison of log-likelihood, MAE, and accuracy on Breakfast dataset.

PPF-D and APP-LSTM, we sample 1500 predictions from the output distributions p(τi|τ1:i−1) at
each step. For our PPF approaches (both deterministic and probabilistic), the corresponding samples
of predicted inter-arrival time distribution are obtained using Equation 5. We report the average of
MAE along all the time-steps of all sequences in the test dataset. Table 2 shows the experimental
results for MAE metric. We can see that our PPF-P approach is comparable to the APP-VAE base-
line on the synthetic datasets. On the more challenging real datasets, our PPF-based frameworks
consistenlty outperforms baseline models (PPF-D on MIMIC, and PPF-P on LinkedIn). The better
log-likelihood estimations is also conformed by lower/competitive MAE which reflects the better
quality of generated samples from our PPF approaches.

Extension to the Marked Temporal Point Process. On Breakfast dataset, for our model to learn
a more powerful encoding of history information, we extend our approach to marked point process
which models both the inter-arrival time distribution of future event and also the distribution over
its category. At time-step i, given the history of past events including both time and mark infor-
mation, in addition to modeling the time distribution of event at time-step i + 1, we also model its
category distribution. Here, we assume that action category follows a multinomial distribution and
accordingly, the log-likelihood of action category distribution modeling is added to training objec-
tive and evaluation criterion of our deterministic and probabilistic PPF models.3 APP-LSTM is also
extended to the marked case similar to Du et al. (2016). For the experiments on Breakfast dataset,
in addition to MAE, we also report the accuracy of predicting the next action category. To compute
accuracy at time-step i, for probabilistic approaches, we draw 100 samples from the prior distri-
bution pψ(zvaei |τ1:i−1) and for each predicted category distribution, we select the action category
with maximum probability as the predicted class. For each time-step, the most frequently predicted
type is reported as the model’s prediction. Table 3 shows the experimental results of comparing
log-likelihood, MAE, and accuracy on Breakfast dataset. This dataset is much more challenging in
comparison to LinkedIn and Mimic datasets, because of it contains various types of actions. We
can see that our probabilistic approach has a better performance in all the metrics which shows the
effectiveness of our proposed model in capturing the underlying point process distribution.

5 CONCLUSION

In this paper, we propose Point Process Flows (PPF), an intensity-free framework that directly mod-
els the point process as a non-parametric distribution by utilizing normalizing flows. The proposed
model is capable of capturing arbitrary complex time distributions as well as performing stochastic
future prediction. The proposed PPF can be optimized by maximizing the likelihood using change
of variable formula, relaxing the strict tractable likelihood constraint in previous works. Extensive

3For our deterministic/probabilistic approach, we assume that at each time-step given the history/latent-
code, time and category are independent.

8

Under review as a conference paper at ICLR 2020

evaluation on both synthetic and challenging real-like datasets shows significant improvement over
baseline models.

REFERENCES

Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Reversible
architectures for arbitrarily deep residual neural networks. In AAAI Conference on Artificial In-
telligence, 2018.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differ-
ential equations. In Advances in neural information processing systems, pp. 6571–6583, 2018.

Daryl J Daley and David Vere-Jones. An introduction to the theory of point processes: volume II:
general theory and structure. Springer Science & Business Media, 2007.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. In
International Conference on Learning Representations (ICLR), 2017.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1555–1564. ACM, 2016.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible
generative models with free-form continuous dynamics. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=rJxgknCcK7.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems,
34(1):014004, 2017.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika,
1971.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Valerie Isham and Mark Westcott. A self-correcting point process. Stochastic Processes and their
Applications, 1979.

Priyank Jaini, Ivan Kobyzev, Marcus Brubaker, and Yaoliang Yu. Tails of triangular flows. arXiv
preprint arXiv:1907.04481, 2019.

How Jing and Alexander J Smola. Neural survival recommender. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, pp. 515–524. ACM, 2017.

Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 3:160035, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Machine Learning, 2015.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In International Confer-
ence on Learning Representations (ICLR), 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pp. 10215–10224, 2018.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-
proved variational inference with inverse autoregressive flow. In Advances in neural information
processing systems, pp. 4743–4751, 2016.

9

https://openreview.net/forum?id=rJxgknCcK7

Under review as a conference paper at ICLR 2020

J.F.C. Kingman. Poisson Processes. Oxford Studies in Probability. Clarendon Press, 1992. ISBN
9780191591242.

Ivan Kobyzev, Simon Prince, and Marcus A Brubaker. Normalizing flows: Introduction and ideas.
arXiv preprint arXiv:1908.09257, 2019.

Hilde Kuehne, Ali Arslan, and Thomas Serre. The Language of Actions: Recovering the Syntax
and Semantics of Goal-Directed Human Activities. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2014.

Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning temporal point
processes via reinforcement learning. In Advances in Neural Information Processing Systems
(NeurIPS). 2018.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. In International Conference on
Machine Learning, pp. 3282–3291, 2018.

Nazanin Mehrasa, Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Sigal, and Greg Mori.
A Variational Auto-Encoder Model for Stochastic Point Processes. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019.

Hongyuan Mei and Jason Eisner. The Neural Hawkes Process: A Neurally Self-Modulating Multi-
variate Point Process. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems, pp. 2338–2347, 2017.

Alistair EW Pollard, Tom J abd Johnson. The mimic-iii clinical database. http://dx.doi.
org/10.13026/C2XW26, 2016.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional Conference on Machine Learning, pp. 1530–1538, 2015.

Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasserstein
learning of deep generative point process models. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

Shuai Xiao, Hongteng Xu, Junchi Yan, Mehrdad Farajtabar, Xiaokang Yang, Le Song, and
Hongyuan Zha. Learning conditional generative models for temporal point processes. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

Y. Zhong, B. Xu, G.-T. Zhou, L. Bornn, and G. Mori. Time Perception Machine: Temporal Point
Processes for the When, Where and What of Activity Prediction. In arXiv 1808.04063, 2018.

A APPENDIX

A.1 ARCHITECTURE

The overall architectures are illustrated in Figure 2. For the deterministic approach introduced in
subsection 3.2, a long short-term memory (LSTM; Hochreiter & Schmidhuber 1997) network is
used to model the conditional distribution pρ(zn|τ1:n−1) = N (µρn , σ

2
ρn). The flow module gθ is a

neural ODE model described in subsection 2.3, where the derivative function h(·) is modeled by a
multilayer perceptron (MLP).

For the probabilistic approach in subsection 3.3, both the prior distribution pψ(zvaen |τ1:n−1) and the
approximate posterior distribution qφ(zvaen |τ1:n) are modeled by LSTMs. The log-likelihood term
log pθ,ρ(τn|zvaen) is computed in two steps. First, a decoder network maps the latent variable zvaen
to a base distribution pρ(zτn|zvaen), which is also a normal distribution. The decoder network is a
MLP that outputs the parameters of the base distribution. After that, the flow module gθ generates
the distribution of the inter-arrival time pθ,ρ(τn|zvaen). The architecture of gθ is the same as in the
deterministic approach.

10

http://dx.doi.org/10.13026/C2XW26
http://dx.doi.org/10.13026/C2XW26

Under review as a conference paper at ICLR 2020

(a) (b)

Figure 3: Part (a) shows the results of modeling conditional distribution P (xi|x1:i−1) = N (4, 1).
Part (b) shows the results modeling the conditional distribution P (xi+1|x1:i) = .5 ∗ N (4, 1) + .5 ∗
N (10, 1). The top/bottom figure of each sub-figure shows the generated samples by PPF-P/PPF-D.
As we can see, PPF-D is not able to handle this case very well becausethere could be no one-to-one
transformation that can map two Gaussian base distributions exactly into a uni-modal and a multi-
modal distribution respectively at the same time. However, PPF-P perform much better at modelling
the true underlying distributions.

A.2 IMPLEMENTATION DETAILS

For the LSTM cells, we choose hidden size to be 128 for the synthetic data and Breakfast dataset,
64 for LinkedIn and MIMIC datasets. The dimension of the latent space of VAE models is set to
be 256 for Breakfast and synthetic datasets and 64 for LinkedIn and MIMIC. For PPF-P model,
the latent code was decoded into the mean and variance of the base distribution by two separate
decoders, each with two hidden layers of size 256. For all continuous normalizing modules, we use
one block of network with 3 hidden layers of 64 dimension. We use Adam optimizer (Kingma &
Ba, 2015) for all models with a learning rate of 0.001.

A.3 A MOTIVATING EXAMPLE FOR PPF-P

When using flow techniques for density estimation, the expressiveness of the model is not only
limited by the complexity of normalizing flow transformations, but also by the class of base-
distributions. In our proposed framework, the fact that the flow transformations are shared across
time-steps and the underlying distribution across time-steps might vary a lot makes our model more
sensitive to the choice of the base-distribution family. By introducing a latent variable zvaen such
that the zτn follows different Gaussian distributions conditioned on different samples of zvaen , the
distributions of zτn after marginalizing zvaen becomes highly flexible.

To motivate this argument, we make the following proposition, show its proof and substantiate it
with experiment results on PPF-P and PPF-D models.

Proposition 1. Let f : R → R be a bijective singular mapping that satisfies the following: z ∼
N (µ0, σ

2
0) and x = f(z) follows a mixture of Gaussian distribution of two components, N (µ1, σ

2
1)

andN (µ2, σ
2
2), with weights a and 1− a for some a ∈ (0, 1). There exists i ∈ {1, 2}, such that if x

is sampled from component i of the Gaussian mixture distribution x ∼ N (µi, σ
2
i), f−1(x) does not

follow a Gaussian distribution.

In summary, Proposition 1 says if a normalizing flow can maps a Gaussian distribution to a mixture
of Gaussian distributions, which is multi-modal, we can not obtain one of the mixture distribution’s
components by applying the same normalizing flow to another Gaussian distribution. Continuous
normalizing flow defines a continuous bijective mapping from R to R and therefore it must be sin-
gular increasing or decreasing. The normalizing flow we used is shared for all time steps and its
derivative is independent of the parameters of the base distribution. It is also worth noting that this

11

Under review as a conference paper at ICLR 2020

proposition can be extended to scenarios of any Gaussian mixture distributions with finite compo-
nents.

Proof. Without loss of generality, consider the following two cases:

Case 1 σ2
1 > σ2

2 . We show that the inverse mapping of x ∼ N (µ1, σ
2
1) is not a Gaussian by

contradiction. Suppose z = f−1(x) follows a Gaussian distributionN (µ3, σ
2
3). By our assumptions

and the change of varaible theorems we have the following

p0(z)

p1(x)
=
q0(z)

q1(x)
=

∣∣∣∣det
∂x

∂z

∣∣∣∣ (The Jacobian is independent of the distribution.)

where

p0(z) =
1√

2πσ2
0

exp

(
− (z− µ0)2

2σ2
0

)
p1(x) = a

1√
2πσ2

1

exp

(
− (x− µ1)2

2σ2
1

)
+ (1− a)

1√
2πσ2

2

exp

(
− (x− µ2)2

2σ2
2

)
q0(z) =

1√
2πσ2

3

exp

(
− (z− µ3)2

2σ2
3

)
q1(x) =

1√
2πσ2

1

exp

(
− (x− µ1)2

2σ2
1

)
Rewriting the equality above, we get

p1(x)

q1(x)
=
p0(z)

q0(z)

LHS =
a 1√

2πσ2
1

exp
(
− (x−µ1)

2

2σ2
1

)
+ (1− a) 1√

2πσ2
2

exp
(
− (x−µ2)

2

2σ2
2

)
1√
2πσ2

1

exp
(
− (x−µ1)2

2σ2
1

)
= a+ (1− a)

σ1
σ2

exp

((
1

2σ2
1

− 1

2σ2
2

)
x2 + cx + d

)

RHS =

1√
2πσ2

0

exp
(
− (z−µ0)

2

2σ2
0

)
1√
2πσ2

3

exp
(
− (z−µ3)2

2σ2
3

)

=
σ3
σ0

exp

(
(z− µ3)2

2σ2
3

− (z− µ0)2

2σ2
0

)
= exp(ez2 + fz + g)

for some constants c, d, e, f and g where one of e and f is non-zero. Since σ2
1 < σ2

2 , we know(
1

2σ2
1
− 1

2σ2
2

)
x2 + cx + d → −∞ and LHS→ a > 0 as x → ∞ or −∞. When x → ∞ or −∞,

we have z→∞ or −∞ as well since f is bijective on R and singular. However, the RHS can only
converge to 0 or diverge to∞ when taking the limit of z. We get a contradiction.

Case 2 σ2
1 = σ2

2 . We also show that the inverse mapping of X ∼ N (µ1, σ
2
1) is not a Gaussian by

contradiction. Following similar steps in Case 1, we get

LHS = a+ (1− a)
σ1
σ2

exp (cx + d)

RHS = exp(ez2 + fz + g)

12

Under review as a conference paper at ICLR 2020

Model ↑ LL ↓ LL score

PPF-D −2.072 0.331
PPF-P > −1.785 0.044

Table 4: Log-likelihood comparison of PPF-D and PPF-P. LL score represents the difference of log-
likelihood under the true underlying distribution and log-likelihood under the learned model. Arrow
(↑)/(↓) shows higher/lower values are better.

for some constant c, d, e, f and g where c must be non-zero and at least one of e and f is non-zero.
Taking the limit of x such that cx + b→ −∞, we have LHS→ a. By the bijectivity and singularity
of f , we know z goes to either∞ or −∞. However, in either case, the RHS can only diverge to∞
or converge to 0. We get a contradiction.

To complement Proposition 1, we generate sequential data with the following property to train PPF-
D and PPF-P models to fit the data: the underlying distribution of values at each time-step switches
between a mixture of Gaussians distribution and one component of the mixture distribution. More
specifically, the underlying distribution of observations at even time steps follows N (4, 1) and the
underlying distribution for odd time steps follow a Gaussian mixture distribution of two components
N (4, 1) and N (10, 1) with equal weights. We created a dataset of 1000 sequences where each
sequence has the length of 15, and trained both PPF-D and PPF-P on this dataset.

Figure 3 shows the experimental results for this experiment. We can see that PPF-D is not able to
handle data generated by this distribution very well. The output distribution of PPF-D tries to cover
both components of the Gaussian mixture distribution, but most of the samples are concentrated in
an area of low probability. In contrast, we can see that PPF-P, with more flexible base distribution, is
much better at modeling sequences sampled from our synthetic switching distribution. Most of the
data sampled from PPF-P model lie in the high-probability region: At odd time step, the sampled
data can hit both components of the Gaussian mixture model and at even time step, the sampled data
can also recover the ground truth distribution. Table 4 shows the log-likelihood of test sequences
under the distribution learned from our model vs. the log-likelihood under the true distribution. The
better estimation of PPF-P is conformed by a higher log-likelihood. We also reported the difference
of log-likelihood under the true distribution and log-likelihood under the learned model. PPF-P has
a lower score which shows it performs better in estimating the true underlying distribution.

13

