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Abstract

We propose to learn a hierarchical prior in the context of variational autoencoders
to avoid the over-regularisation resulting from a standard normal prior distribution.
To incentivise an informative latent representation of the data, we formulate the
learning problem as a constrained optimisation problem by extending the Taming
VAEs framework to two-level hierarchical models. We introduce a graph-based
interpolation method, which shows that the topology of the learned latent repre-
sentation corresponds to the topology of the data manifold—and present several
examples, where desired properties of latent representation such as smoothness
and simple explanatory factors are learned by the prior.

1 Introduction

Variational autoencoders (VAEs) [15, 24] are a class of probabilistic latent variable models for
unsupervised learning. The learned generative model and the corresponding (approximate) posterior
distribution of the latent variables provide a decoder/encoder pair that often captures semantically
meaningful features of the data. In this paper, we address the issue of learning informative latent
representations/encodings of the data.

The vanilla VAE uses a standard normal prior distribution for the latent variables. It has been shown
that this can lead to over-regularising the posterior distribution, resulting in latent representations
that do not represent well the structure of the data [1]. There are several approaches to alleviate this
problem: (i) defining and learning complex prior distributions that can better model the encoded data
manifold [10, 28]; (ii) using specialised optimisation algorithms, which try to find local/global minima
of the training objective that correspond to informative latent representations [4, 27, 14, 25]; and
(iii) adding mutual-information-based constraints or regularisers to incentivise a good correspondence
between the data and the latent variables [1, 31, 9]. In this paper, we focus on the first two approaches.

We use a two-level stochastic model, where the first layer corresponds to the latent representation and
the second layer models a hierarchical prior (continuous mixture). In order to learn such hierarchical
priors, we extend the optimisation framework introduced in [25], where the authors reformulate the
VAE objective as the Lagrangian of a constrained optimisation problem. They impose an inequality
constraint on the reconstruction error and use the KL divergence between the approximate posterior
and the standard normal prior as the optimisation objective. We substitute the standard normal prior
with the hierarchical one and use an importance-weighted bound [5] to approximate the resulting
intractable marginal. Concurrently, we introduce the associated optimisation algorithm, which is
inspired by GECO [25]—the latter does not always lead to good encodings (e.g., Sec. 4.1). Our
approach better avoids posterior collapse and enhances interpretability compared to similar methods.

We adopt the manifold hypothesis [6, 26] to validate the quality of a latent representation. We do this
by proposing a nearest-neighbour graph-based method for interpolating between different data points
along the learned data manifold in the latent space.
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2 Methods

2.1 VAEs as a Constrained Optimisation Problem

VAEs model the distribution of i.i.d. data D = {xi}Ni=1 as the marginal∏
i

pθ(xi) =
∏
i

∫
pθ(xi|z) p(z) dz. (1)

The model parameters are learned through amortised variational EM, which requires learning an
approximate posterior distribution qφ(z|xi) ≈ pθ(z|xi). It is hoped that the learned qφ(z|x) and
pθ(x|z) result in an informative latent representation of the data. For example, {Eqθ(z|xi)[z]}Ni=1
cluster w.r.t. some discrete features or important factors of variation in the data. In Sec. 4.1, we show
a toy example, where the model can learn the true underlying factors of variation in D.

Amortised variational EM in VAEs maximises the evidence lower bound (ELBO) [15, 24]:

EpD(x)

[
log pθ(x)

]
≥ FELBO(θ, φ) ≡ EpD(x)

[
Eqφ(z|x)

[
log pθ(x|z)

]
−KL

(
qφ(z|x)‖ p(z)

)]
, (2)

where qφ(z|x) and pθ(x|z) are typically assumed to be diagonal Gaussians with their parameters
defined as neural network functions of the conditioning variables. pD(x) = 1

N

∑N
i=1 δ(x− xi)

stands for the empirical distribution of D. The (EM) optimisation problem [e.g. 21] is formulated as

min
θ,φ
−FELBO(θ, φ) =̂ min

θ
min
φ
−FELBO(θ, φ). (3)

The corresponding optimisation algorithm was originally introduced as a double-loop algorithm,
however, in the context of VAEs—or neural inference models in general—it is a common practice to
optimise (θ, φ) jointly.

It has been shown that local minima with high ELBO values do not necessarily result in informative
latent representations [1, 14]. In order to address this problem, several approaches have been
developed, which typically result in some weighting schedule for either the negative expected log-
likelihood or the KL term of the ELBO [4, 27]. This is because a different ratio targets different
regions in the rate-distortion plane, either favouring better compression or reconstruction [1].

In [25], the authors reformulate the VAE objective as the Lagrangian of a constrained optimisation
problem. They choose KL

(
qφ(z|x)‖ p(z)

)
as the optimisation objective and impose the inequality

constraint EpD(x) Eqφ(z|x)

[
Cθ(x, z)

]
≤ κ2. Typically Cθ(x, z) is defined as the reconstruction-error-

related term in − log pθ(x|z). Since EpD(x) Eqφ(z|x)

[
Cθ(x, z)

]
is the average reconstruction error,

this formulation allows for a better control of the quality of generated data. In the resulting Lagrangian

L(θ, φ;λ) ≡ EpD(x)

[
KL

(
qφ(z|x)‖ p(z)

)
+ λ
(
Eqφ(z|x)

[
Cθ(x, z)

]
− κ2)

]
, (4)

the Lagrange multiplier λ can be viewed as a weighting term for EpD(x) Eqφ(z|x)

[
− log pθ(x|z)

]
.

This approach leads to a similar optimisation objective as in [14] with β = 1/λ. The authors propose
a descent-ascent algorithm (GECO) for finding the saddle point of the Lagrangian. The parameters
(θ, φ) are optimised through gradient descent and λ is updated as

λt = λt−1 · exp
(
ν · (Ĉt − κ2)

)
, (5)

corresponding to a quasi-gradient ascent due to ∆λt · ∂λL ≥ 0; ν is the update’s learning rate. In the
context of stochastic batch gradient training, Ĉt ≈ EpD(x) Eqφ(z|x)

[
Cθ(x, z)

]
is estimated as the run-

ning average Ĉt = (1−α)·Ĉba+α·Ĉt−1, where Ĉba is the batch average EpD(xba) Eqφ(z|x)

[
Cθ(x, z)

]
.

To the best of our understanding,1 the GECO algorithm solves the optimisation problem

min
θ

max
λ

min
φ
L(θ, φ;λ) s.t. λ ≥ 0. (6)

Here, maxλ minφ L(θ, φ;λ) can be viewed to correspond to the E-step of the EM algorithm. However,
in general this objective can only be guaranteed to be the ELBO if λ = 1, or in case of 0 ≤ λ < 1, a
scaled lower bound on the ELBO.

1The optimisation problem is not explicitly stated in [25].
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2.2 Hierarchical Priors for Learning Informative Latent Representations

In this section, we propose a hierarchical prior for VAEs within the constrained optimisation setting.
Our goal is to incentivise the learning of informative latent representations and to avoid over-
regularising the posterior distribution (i) by increasing the complexity of the prior distribution p(z),
and (ii) by providing an optimisation method to learn such models.

It has been shown in [28] that the optimal empirical Bayes prior is the aggregated posterior distribution
p∗(z) = EpD(x)

[
qφ(z|x)

]
. We follow [28] to approximate this distribution in the form of a mixture

distribution. However, we opt for a continuous mixture/hierarchical model

pΘ(z) =

∫
pΘ(z|ζ) p(ζ) dζ, (7)

with a standard normal p(ζ). This leads to a hierarchical model with two stochastic layers. As a
result, intuitively, our approach inherently favours the learning of continuous latent features. We refer
to this model by variational hierarchical prior (VHP).

In order to learn the parameters in Eq. (7), we propose to adapt the constrained optimisation problem
in Sec. 2.1 to hierarchical models. For this purpose we use an importance-weighted (IW) bound
[5]—and the corresponding proposal distribution qΦ—to introduce a sequence of upper bounds

EpD(x) KL
(
qφ(z|x)‖ p(z)

)
≤ F(φ,Θ,Φ)

≡ EpD(x) Eqφ(z|x)

[
log qφ(z|x)− Eζ1:K∼qΦ(ζ|z)

[
log

1

K

K∑
k=1

pΘ(z|ζk) p(ζk)

qΦ(ζk|z)

]]
, (8)

with K importance weights, resulting in an upper bound on Eq. (4):

L(θ, φ;λ) ≤ F(φ,Θ,Φ) + λ
(
EpD(x) Eqφ(z|x)

[
Cθ(x, z)

]
− κ2

)
≡ LVHP(θ, φ,Θ,Φ;λ). (9)

As a result, we arrive to the optimisation problem

min
Θ,Φ

min
θ

max
λ

min
φ
LVHP(θ, φ,Θ,Φ;λ) s.t. λ ≥ 0, (10)

which we can optimise by the following double-loop algorithm: (i) in the outer loop we
update the bound w.r.t. (Θ,Φ); (ii) in the inner loop we solve the optimisation problem
minθ maxλ minφ LVHP(θ, φ,Θ,Φ;λ) by applying an update scheme for λ and β = 1/λ, respec-
tively. In the following, we use the β-parameterisation to be in line with [e.g. 14, 27].

In the GECO update scheme (Eq. (5)), β increases/decreases until Ĉt = κ2. However, provided the
constraint is fulfilled, we want to obtain a tight lower bound on the log-likelihood. As discussed in
Sec. 2.1, this holds when β = 1 (ELBO)—in case of β > 1, we would optimise a scaled lower bound
on the ELBO. Therefore, we propose to replace the corresponding β-version of Eq. (5) by

βt = βt−1 · exp
[
ν · fβ(βt−1, Ĉt − κ2; τ) · (Ĉt − κ2)

]
, (11)

where we define

fβ(β, δ; τ) =
(
1−H(δ)

)
· tanh

(
τ · (β − 1)

)
−H(δ). (12)

Here, H(•) is the Heaviside function and we introduce a slope parameter τ . This update can be
interpreted as follows. If the constraint is violated, i.e. Ĉt > κ2, the update scheme is equal to Eq. (5).
In case the constraint is fulfilled, the tanh term guarantees that we finish at β = 1, to obtain/optimise
the ELBO at the end of the training. Thus, we impose β ∈ (0, 1], which is reasonable since β < βmax
does not violate the constraint. A visualisation of the β-update scheme is shown in Fig. 1. Note that
there are alternative ways to modify Eq. (5), see App. B.1, however, Eq. (11) led to the best results.

The double-loop approach in Eq. (10) is often computationally inefficient. Thus, we decided to run
the inner loop only until the constraints are satisfied and then updating the bound. That is, we optimise
Eq. (10) and skip the outer loop/bound updates when the constraints are not satisfied. It turned out
that the bound updates were often skipped in the initial phase, but rarely skipped later on. Hence,
the algorithm behaves as layer-wise pretraining [3]. For these reasons, we propose Alg. 1 (REWO)
that separates training into two phases: an initial phase, where we only optimise the reconstruction
error—and a main phase, where all parameters are updated jointly.
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Figure 1: β-update scheme: ∆βt = βt − βt−1

as a function of βt−1 and Ĉt − κ2 for ν = 1 and
τ = 3. A comparison with the GECO update
scheme can be found in App. A. (see Sec. 2.2)

Algorithm 1 (REWO) Reconstruction-error-based
weighting of the objective function

Initialise t = 1
Initialise β � 1
Initialise INITIALPHASE = TRUE
while training do

Read current data batch xba
Sample from variational posterior z ∼ qφ(z|xba)

Compute Ĉba (batch average)
Ĉt = (1− α) · Ĉba + α · Ĉt−1, (Ĉ0 = Ĉba)
if Ĉt < κ2 then

INITIALPHASE = FALSE
end if
if INITIALPHASE then

Optimise LVHP(θ, φ,Θ,Φ;β) w.r.t θ, φ
else
β ← β·exp

[
ν ·fβ(βt−1, Ĉt−κ2; τ)·(Ĉt−κ2)

]
Optimise LVHP(θ, φ,Θ,Φ;β) w.r.t θ, φ,Θ,Φ

end if
t← t+ 1

end while

In the initial phase, we start with β � 1 to enforce a reconstruction optimisation. Thus, we train the
first stochastic layer for achieving a good encoding of the data through qφ(z|x), measured by the
reconstruction error. For preventing β to become smaller than the initial value during the first iteration
steps, we start to update β when the condition Ĉt < κ2 is fulfilled. A good encoding is required
to learn the conditionals qΦ(ζ|z) and pΘ(z|ζ) in the second stochastic layer. Otherwise, qΦ(ζ|z)
would be strongly regularised towards p(ζ), resulting in KL

(
qΦ(ζi|z)‖ p(ζi)

)
≈ 0, from which it

typically does not recover [27]. In the main phase, after Ĉt < κ2 is fulfilled, we start to optimise the
parameters of the second stochastic layer and to update β. This approach avoids posterior collapse in
both stochastic layers (see Sec. 4.1 and App. D.2), and thereby helps the prior to learn an informative
encoding for preventing the aforementioned over-regularisation.

The proposed method, which is a combination of an ELBO-like Lagrangian and an IW bound, can be
interpreted as follows: the posterior of the first stochastic layer qφ(z|x) can learn an informative latent
representation due to the flexible hierarchical prior. The flexible prior, on the other hand, is achieved
by applying an IW bound. Despite a diagonal Gaussian qΦ(ζ|z), the importance weighting allows
to learn a precise conditional pΘ(z|ζ) from the standard normal distribution p(ζ) to the aggregated
posterior EpD(x)[qφ(z|x)] [11]. Alternatively, one could use, for example, a normalising flow [23].
Otherwise, the model could compensate a less expressive prior by regularising qφ(z|x), which would
result in a restricted latent representation (see App. B.4 for empirical evidence).

2.3 Graph-Based Interpolations for Verifying Latent Representations

A key reason for introducing hierarchical priors was to facilitate an informative latent representation
due to less over-regularisation of the posterior. To verify the quality of the latent representations, we
build on the manifold hypothesis, defined in [6, 26]. The idea can be summarised by the following
assumption: real-world data presented in high-dimensional spaces is likely to concentrate in the
vicinity of nonlinear sub-manifolds of much lower dimensionality. Following this hypothesis, the
quality of latent representations can be evaluated by interpolating between data points along the
learned data manifold in the latent space—and reconstructing this path to the observable space.

To implement the above idea, we propose a graph-based method [8] which summarises the continuous
latent space by a graph consisting of a finite number of nodes. The nodes Z = {z1, . . . , zN} can be
obtained by randomly sampling N samples from the learned prior (Eq. (7)):

zn, ζn ∼ pΘ(z|ζ) p(ζ), n = 1, . . . , N. (13)

The graph is constructed by connecting each node by undirected edges to its k-nearest neighbours.
The edge weights are Euclidean distances in the latent space between the related node pairs. Once the

4



graph is built, interpolation between two data points xi and xj can be done as follows. We encode
these data points as z(•) = µθ(x(•)), where µφ(x(•)) is the mean of qφ(z|x(•)), and add them as new
nodes to the existing graph.

To find the shortest path through the graph between nodes zi and zj , a classic search algorithm such
as A? can be used. The result is a sequence Zpath =

(
zi,Zsub, zj

)
, where Zsub ⊆ Z, representing the

shortest path in the latent space along the learned latent manifold. Finally, to obtain the interpolation,
we reconstruct Zpath to the observable space.

3 Related Work

Several works improve the VAE by learning more complex priors such as the stick-breaking prior
[20], a nested Chinese Restaurant Process prior [13], Gaussian mixture priors [12], or autoregressive
priors [10]. A closely related line of research is based on the insight that the optimal prior is the
aggregated posterior [28, 19]. The VampPrior [28] approximates the prior by a uniform mixture of
approximate posterior distributions, evaluated at a few learned pseudo data points. In our approach,
the prior is approximated by using a second stochastic layer (IW bound). The authors in [19] use a
two-level stochastic model with a combination of implicit and explicit distributions for the encoders
and decoders. Inference is done through optimising a sandwich bound of the ELBO, which is specific
to the choice of implicit distributions. In our work, however, we address inference using a constrained
optimisation approach and all distributions are explicit.

In the context of VAEs, hierarchical latent variable models were already introduced earlier [24, 5, 27].
Compared to our approach, these works have in common the structure of the generative model but
differ in the definition of the inference models and in the optimisation procedure. In our proposed
method, the VAE objective is reformulated as the Lagrangian of a constrained optimisation problem.
The prior of this ELBO-like Lagrangian is approximated by an IW bound. It is motivated by the fact
that a single stochastic layer with a flexible prior can be sufficient for modelling an informative latent
representation. The second stochastic layer is required to learn a sufficiently flexible prior.

The common problem of failing to use the full capacity of the model in VAEs [5] has been addressed
by applying annealing/warm-up [4, 27]. Here, the KL divergence between the approximate posterior
and the prior is multiplied by a weighting factor, which is linearly increased from 0 to 1 during
training. However, such predefined schedules might be suboptimal. By reformulating the objective
as a constrained optimisation problem [25], the above weighting term can be represented by a
Lagrange multiplier and updated based on the reconstruction error. Our proposed algorithm builds
[25], providing several modifications discussed in Sec. 2.2.

In [14], the authors propose a constrained optimisation framework, where the optimisation objective is
the expected negative log-likelihood and the constraint is imposed in the KL term—recall that in [25]
the roles are reversed. Instead of optimising the resulting Lagrangian, the authors choose Lagrange
multipliers (β parameter) that maximise a heuristic cost for disentanglement. Their goal is not to
learn a latent representation that reflects the topology of the data but a disentangled representation,
where the dimensions of the latent space correspond to various features of the data.

4 Experiments

To validate our approach, we consider the following experiments. In Sec. 4.1, we demonstrate that
our method learns to represent the degree of freedom in the data of a moving pendulum. In Sec. 4.2,
we generate human movements based on the learned latent representations of real-world data (CMU
Graphics Lab Motion Capture Database). In Sec. 4.3, the marginal log-likelihood on standard datasets
such as MNIST, Fashion-MNIST, and OMNIGLOT is evaluated. In Sec. 4.4, we compare our method
on the high-dimensional image datasets 3D Faces and 3D Chairs. The model architectures used in
our experiments can be found in App. F.

4.1 Artificial Pendulum Dataset

We created a dataset of 15,000 images of a moving pendulum (see Fig. 4). Each image has a size
of 16× 16 pixels and the joint angles are distributed uniformly in the range [0, 2π). Thus, the joint
angle is the only degree of freedom.
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(a) VHP + REWO

(b) VHP + GECO

Figure 2: (left) Latent representation of the pendulum data at different iteration steps when optimising
LVHP(θ, φ,Θ,Φ;β) with REWO and GECO, respectively. The top row shows the approximate posterior; the
greyscale encodes the variance of its standard deviation. The bottom row shows the hierarchical prior. (right) β
as a function of the iteration steps; red lines mark the visualised iteration steps. (see Sec. 4.1)

(a) VHP + REWO (b) VHP + GECO (c) IWAE

Figure 3: Graph-based interpolation of the pendulum
movement. The graph is based on the prior, shown in
App. B.5. The red curves depict the interpolations, the
bluescale indicates the edge weight. (see Sec. 4.1)

top: VHP + REWO, middle: VHP + GECO, bottom: IWAE

Figure 4: Pendulum reconstructions of the graph-
based interpolation in the latent space, shown in
Fig. 3. Discontinuities are marked by blue boxes.
(see Sec. 4.1)

Fig. 2 shows latent representations of the pendulum data learned by the VHP when applying REWO
and GECO, respectively; the same κ is used in both cases. The variance of the posterior’s standard
deviation, expressed by the greyscale, measures whether the contribution to the ELBO is equally
distributed over all data points.

To validate whether the obtained latent representation is informative, we apply a linear regression
after transforming the latent space to polar coordinates. The goal is to predict the joint angle of the
pendulum. We compare REWO with GECO, and additionally with warm-up (WU) [27], a linear
annealing schedule of β. In the latter, we use a VAE objective—defined as an ELBO/IW bound
combination, similar to Eq. (9); the related plots are in App. B.2. Tab. 1 shows the absolute errors
(OLS regression) for the different optimisation procedures; details on the regression can be found in
App. B.3. REWO leads to the most precise prediction of the ground truth.

Table 1: OLS regression on the learned latent representations of the pendulum data.

METHOD ABSOLUTE ERROR METHOD ABSOLUTE ERROR

VHP + REWO 0.054 VHP? 0.49
VHP + GECO 0.53 VHP? + WU (20 EPOCHS) 0.20

VHP? + WU (200 EPOCHS) 0.31
?VAE OBJECTIVE

Furthermore, we demonstrate in App. B.4 that a less expressive posterior qΦ(ζ|z) in the second
stochastic layer leads to poor latent representations, since the model compensates it by restricting
qφ(z|x)—as discussed in Sec. 2.2.
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(a) VHP + REWO (b) VampPrior (c) IWAE

Figure 5: Graph-based interpolation of human motions. The graphs are based on the (learned) prior distributions,
depicted in App. C.1. The bluescale indicates the edge weight. The coloured lines represent four interpolated
movements, which can be found in Fig. 6 and App. C. (see Sec. 4.2)

top: VHP + REWO, middle: VampPrior, bottom: IWAE

Figure 6: Human-movement reconstructions of the
graph-based interpolations in Fig. 5 (red curve). Re-
construction of the remaining interpolations can be
found in App. C.2. Discontinuities are marked by blue
boxes. (see Sec. 4.2)

5 10 15 20 25 30 35 40 45 50
joint index

0

0.01

0.02

0.03

sm
oo

th
ne

ss
 fa

ct
or

left leg right leg head and torso left arm right arm
VHP + REWO
VampPrior
IWAE

Figure 7: Smoothness measure of the human-
movement interpolations. For each joint, the mean
and standard deviation of the smoothness factor are
displayed. Smaller values correspond to smoother
movements. (see Sec. 4.2)

Finally, we compare the latent representations, learned by the VHP and the IWAE, using the graph-
based interpolation method. The graphs, shown in Fig. 3, are built (see Sec. 2.3) based on 1000
samples from the prior of the respective model. The red curves depict the interpolation along resulting
data manifold, between pendulum images with joint angles of 0 and 180 degrees, respectively. The
reconstructions of the interpolations are shown in (Fig. 4). The top row (VHP + REWO) shows a
smooth change of the joint angles, whereas the middle (VHP + GECO) and bottom row (IWAE)
contain discontinuities resulting in an unrealistic interpolation.

4.2 Human Motion Capture Database

The CMU Graphics Lab Motion Capture Database (http://mocap.cs.cmu.edu) consists of several
human motion recordings. Our experiments base on five different motions. We preprocess the data as
in [7], such that each frame is represented by a 50-dimensional feature vector.

We compare our method with the VampPrior and the IWAE. The prior and approximate posterior
of the three methods are depicted in App. C.1. We generate four interpolations (Fig. 5) using our
graph-based approach: between two frames within the same motion (black line) and of different
motions (orange, red, and maroon); the reconstructions are shown in Fig. 6 and App. C.2. In contrast
to the IWAE, the VampPrior and the VHP enable smooth interpolations.

Fig. 7 depicts the movement smoothness factor, which we define as the RMS of the second order
finite difference along the interpolated path. Thus, smaller values correspond to smoother movements.
For each of the three methods, it is averaged across 10 graphs, each with 100 interpolations. The
starting and ending points are randomly selected. As a result, the latent representation learned by the
VHP leads to smoother movement interpolations than in case of the VampPrior and the IWAE.

4.3 Evaluation on MNIST, Fashion-MNIST, and OMNIGLOT

We compare our method quantitatively with the VampPrior and the IWAE on MNIST [18, 17],
Fashion-MNIST [29], and OMNIGLOT [16]. For this purpose, we report the marginal log-likelihood
(LL) on the respective test set. Following the test protocol of previous work [28], we evaluate the LL
using importance sampling with 5,000 samples [5]. The results are reported in Tab. 2.
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(a) VHP + REWO

(b) IWAE

(c) VHP + REWO

(d) IWAE

Figure 8: Faces & Chairs: graph-based interpolations—between data points from the test set—along the learned
32-dimensional latent manifold. The graph is based on prior samples. (see Sec. 4.4)

VHP + REWO performs as good or better than state-of-the-art on these datasets. The same κ was
used for training VHP with REWO and GECO. The two stochastic layer hierarchical IWAE does not
perform better than VHP + REWO, supporting our claim that a flexible prior in the first stochastic
layer and a flexible approximate posterior in the second stochastic layer is sufficient. Additionally,
we show that REWO leads to a similar amount of active units as WU (see App. D.2).

Table 2: Negative test log-likelihood estimated with 5,000 importance samples.

DYNAMIC MNIST STATIC MNIST FASHION-MNIST OMNIGLOT

VHP + REWO 78.88 82.74 225.37 101.78
VHP + GECO 95.01 96.32 234.73 108.97
VAMPPRIOR 80.42 84.02 232.78 101.97
IWAE (L=1) 81.36 84.46 226.83 101.57
IWAE (L=2) 80.66 82.83 225.39 101.83

4.4 Qualitative Results: 3D Chairs and 3D Faces

We generated 3D Faces [22] based on images of 2000 faces with 37 views each. 3D Chairs [2]
consists of 1393 chair images with 62 views each. The images have a size of 64× 64 pixels.

Here, our approach is compared with the IWAE using a 32-dimensional latent space. The learned
encodings are evaluated qualitatively by using the graph-based interpolation method. Fig. 8(a) and
8(c) show interpolations along the latent manifold learned by the VHP + REWO. Compared to the
IWAE (Fig. 8(b) and 8(d)), they are less blurry and smoother. Further results can be found in App. E.

5 Conclusion

In this paper, we have proposed a hierarchical prior in the context of variational autoencoders and
extended the constrained optimisation framework in Taming VAEs to hierarchical models by using
an importance-weighted bound on the marginal of the hierarchical prior. Concurrently, we have
introduced the associated optimisation algorithm to facilitate good encodings.

We have shown that the learned hierarchical prior is indeed non-trivial, moreover, it is well-adapted to
the latent representation, reflecting the topology of the encoded data manifold. Our method provides
informative latent representations and performs particularly well on data where the relevant features
change continuously. In case of the pendulum (Sec. 4.1), the prior has learned to represent the degrees
of freedom in the data—allowing us to predict the pendulum’s angle by a simple OLS regression.
The experiments on the CMU human motion data (Sec. 4.2) and on the high-dimensional Faces and
Chairs datasets (Sec. 4.4) have demonstrated that the learned hierarchical prior leads to smoother and
more realistic interpolations than a standard normal prior (or the VampPrior). Moreover, we have
obtained test log-likelihoods (Sec. 4.3) comparable to state-of-the-art on standard datasets.
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