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Abstract— The O6-methylguanine-DNA methyltrans-1

ferase (MGMT) promoter methylation and isocitrate2

dehydrogenase 1 (IDH1) mutation in high-grade gliomas3

(HGG) have proven to be the two important molecular4

indicators associated with better prognosis. Traditionally,5

the statuses of MGMT and IDH1 are obtained via6

surgical biopsy, which has limited their wider clinical7

implementation. Accurate presurgical prediction of their8
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statuses based on preoperative multimodal neuroimaging 9

is of great clinical value for a better treatment plan. 10

Currently, the available data set associated with this 11

paper has several challenges, such as small sample size 12

and complex, nonlinear (image) feature-to-(molecular) 13

label relationship. To address these issues, we propose 14

a novel multi-label nonlinear matrix completion (MNMC) 15

model to jointly predict both MGMT and IDH1 statuses 16

in a multi-task framework. Specifically, we first employ a 17

nonlinear random Fourier feature mapping to improve the 18

linear separability of the data, and then use transductive 19

multi-task feature selection (performed in a nonlinearly 20

transformed feature space) to refine the imputed soft labels, 21

thus alleviating the overfitting problem caused by small 22

sample size. We further design an optimization algorithm 23

with a guaranteed convergence ability based on a block 24

prox-linear method to solve the proposed MNMC model. 25

Finally, by using a single-center, multimodal brain imaging 26

and molecular pathology data set of HGG, we derive brain 27

functional and structural connectomics features to jointly 28

predict MGMT and IDH1 statuses. Results demonstrate 29

that our proposed method outperforms the previously 30

widely used single- and multi-task machine learning 31

methods. This paper also shows the promise of utilizing 32

brain connectomics for HGG prognosis in a non-invasive 33

manner. 34

Index Terms— Brain tumor, high-grade glioma, molecular 35

biomarker, functional connectivity, structural connectivity, 36

prognosis, connectomics, matrix completion. 37

I. INTRODUCTION 38

GLIOMAS account for approximately 45% of primary 39

brain tumors. The most deadly gliomas are classified 40

by World Health Organization (WHO) as Grades III and IV 41

using histopathological criteria, which are referred to as 42

high-grade gliomas (HGG) and account for about 75% of 43

all gliomas [1], [2]. Related clinical studies have shown 44

that the O6-methylguanine-DNA methyltransferase promoter 45

methylation (MGMT-m) and isocitrate dehydrogenase 1 muta- 46

tion (IDH1-m) are the two strong molecular indicators asso- 47

ciated with better prognosis for HGG compared to their 48

counterparts, MGMT promoter unmethylation (MGMT-u) and 49

IDH1 wild-type (IDH1-w) [3], [4]. Specifically, MGMT 50
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methylation can reduce the deoxyribonucleic acid (DNA)51

repair activity of glioma cells, overcoming their resistance52

to alkylating agents, thus is a strong predictor of response53

to temozolomide-based therapy [5]. With such an increased54

sensitivity to the therapy, MGMT-m is associated with a55

longer survival time for HGG [3]. IDH1-m is another impor-56

tant molecular biomarker for gliomas. It has been suggested57

that the patients with IDH1-m have significantly longer sur-58

vival time when compared with those with IDH1-w [6], [7].59

To date, the identification of MGMT and IDH1 statuses (i.e.,60

MGMT-m vs. MGMT-u, and IDH1-m vs. IDH1-w) is becom-61

ing a clinical routine and is mainly derived from molecular62

pathological analysis based on invasively acquired tumor tissue63

specimen, which may sometimes cause severe brain injury, and64

increase the risk of infection and even severe complications65

(e.g., neurological deficits). Moreover, obtaining such mole-66

cular information is expensive, requiring special examination67

devices and taking a long waiting time. All these shortcomings68

have limited the extensive clinical applications of these mole-69

cular biomarkers, especially in the hospitals without cutting-70

edge testing devices. Non-invasive and preoperative prediction71

of MGMT and IDH1 statuses is convenient and time-saving,72

thus highly desired.73

A few studies have been carried out to predict either74

MGMT or IDH1 status based on the tumor characteristics75

from preoperative brain images. For example, Drabycz et al.76

extracted tumor texture features from T1- and T2-weighted77

Magnetic Resonance Images (MRIs), and employed simple78

linear discriminant analysis to predict MGMT status [8].79

Korfiatis et al. also extracted tumor texture features from80

a single T2-weighted MRI (T2-MRI) modality and trained81

a linear support vector machine (SVM) to predict MGMT82

status [9]. Yamashita et al. extracted both functional fea-83

tures (i.e., cerebral blood flow) based on perfusion MRI and84

morphometric features based on T1-weighted MRI (T1-MRI)85

from the tumor regions, and employed a group-level sta-86

tistical approach to examine each feature’s association with87

the IDH1 status [10]. Zhang et al. extracted more voxel-88

wise and histogram-based features from the tumor areas89

using T1-/T2-MRI and diffusion-weighted images (DWI), and90

employed a more sophisticated Random Forest (RF) classifier91

to predict IDH1 status [11]. It is worth noting that all the92

above studies are based predominantly on local appearance/93

morphometric features by extracting features from structural94

MRI, ignoring that the brain is actually an integrated system95

and its organization and connections could also be asso-96

ciated with genes and molecular indicators. Abundant evi-97

dence has indicated that neurological and psychiatric diseases98

could alter brain functional connectivity (FC) and structural99

connectivity (SC), as measured by resting-state functional100

MRI (RS-fMRI) and diffusion tensor imaging (DTI), respec-101

tively [12], [13]. High-grade gliomas, as fast-growing, highly102

invasive neoplasms with diffusive infiltration along the white103

matter, has been recently found to significantly affect large-104

scale brain connectomics [14]–[21]. In our previous works,105

we have found that the glioma’s influence on the brain con-106

nectomics could be informative for outcome prediction [21].107

Therefore, it is worth investigating whether such macro-scale,108

systems-level changes could also be associated with micro- 109

scale information such as genotype or molecular pathology. 110

Moreover, the local “radiomics” features could bear large 111

variability due to highly heterogeneous tumor characteris- 112

tics; however, the “connectomics” features extracted based 113

on large-scale network analysis could more consistently and 114

sensitively reflect individual differences in different MGMT 115

and IDH1 statuses. Thus, how to design an effective clas- 116

sification framework based on the connectomics features is 117

non-trivial.We found that all the previous studies are limited 118

to predict either MGMT or IDH1 status by using a simple, 119

single-task inductive machine learning method, ignoring the 120

potential relationship between the two molecular indicators 121

which could help each other in achieving more accurate 122

prediction results [22]. It is desirable to use a multi-task 123

learning approach to jointly predict MGMT and IDH1 statuses 124

to improve the overall accuracy. In our case, if we treat 125

the MGMT statuses (i.e., ‘MGMT-m vs. MGMT-u’) and the 126

IDH1 statuses (i.e., ‘IDH1-m vs. IDH1-w’) as two groups of 127

binary molecular labels, then the MGMG and IDH1 status 128

prediction problem can be regarded as a multi-task binary 129

classification problem, with one task to predict the molecular 130

labels ‘MGMT-m vs. MGMT-u’ and another task to predict 131

other molecular labels (‘IDH1-m vs. IDH1-w’). However, such 132

a study still faces at least two challenges for the currently 133

available dataset. First, since the molecular pathology testing 134

was not included as clinical routine during the data collection 135

a few years ago, the available data used in this paper has 136

limited sample size. Second, in clinical practice, complete 137

molecular pathological tests may not always be conducted; in 138

some cases, only one biopsy-proven MGMT or IDH1 status 139

is available, making the prediction become an incomplete 140

annotation or missing data problem. Traditional methods usu- 141

ally simply discarded the subjects with missing labels, which, 142

however, further reduced the number of training samples. The 143

recently proposed Multi-label Transductive Matrix Completion 144

(MTMC) [23] model is a suitable transductive multi-task 145

classification approach, which simultaneously explores feature 146

distributions of both the training samples with (partially) 147

known labels and the testing samples with unknown labels in 148

the training stage, thus producing good performance in many 149

previous computational vision or medical imaging analysis 150

problems [23]–[26]. However, such a model is difficult to 151

be generalized if a study has a limited sample size due 152

to the increasing overfitting concern that many phenotype- 153

genotype association studies may suffer. In order to address 154

this challenge, in our preliminary work [27], we introduced an 155

online inductive learning strategy into the conventional MTMC 156

model, which resulted in a Multi-label Inductive Matrix Com- 157

pletion (MIMC) model for joint prediction of MGMT and 158

IDH1 statuses. However, the MIMC model conducts trans- 159

ductive multi-task feature selection in a noisy feature space, 160

rather than in a more ideal, noise-free feature space. Moreover, 161

the MIMC model is essentially a linear model that heavily 162

assumes a linear relationship between features and labels; 163

however, this is not always guaranteed for real applications. 164

In the current study, the relationship could be much more 165

complex and probably nonlinear. 166
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TABLE I
DEMOGRAPHIC AND CLINICAL INFORMATION OF THE PATIENTS USED

To address these limitations, in this study, we employ167

nonlinear feature transformation in conjunction with trans-168

ductive multi-task feature selection in the denoised feature169

space, which is substantially different from the MIMC model.170

We thus propose a novel Multi-label Nonlinear Matrix Com-171

pletion (MNMC) model. Specifically, we first conduct explicit172

random Fourier feature mapping to improve the linear sepa-173

rability of the data, and then conduct transductive multi-task174

feature selection in the denoised nonlinear feature space, which175

leverages the unlabeled testing subjects together with the (par-176

tially) labeled training subjects to make them simultaneously177

participate in the denoised nonlinear feature selection. We step178

further to learn a shared representation across the related179

tasks, hence selecting important nonlinear features from all180

subjects and alleviating the overfitting problem. Unlike the181

previous MIMC model, which is jointly convex and can182

be easily solved by a standard Block Coordinate Descent183

method, the proposed MNMC framework in this paper is184

a non-convex model, which makes its solution non-trivial.185

Therefore, we turn to employ a recently proposed Block Prox-186

Linear (BPL) method [28] to design an efficient algorithm for187

solving the non-convex MNMC model, and also demonstrate188

that the designed algorithm is guaranteed to be convergent.189

Finally, by using a 10-fold cross-validation strategy on a190

single-center, multi-modality brain imaging and molecular191

pathology dataset from HGG patients, we perform two exper-192

iments based on the single modality and multiple modalities,193

separately. We show our new method has significant per-194

formance improvement for both experiments, compared with195

several state-of-the-art methods for MGMT and IDH1 status196

prediction.197

Our proposed MNMC model is significantly different from198

the existing multi-task learning models used in medical image199

analysis [29]–[31]. Specifically, the existing multi-task learn-200

ing models are usually the inductive learning models, while201

our proposed MNMC model is a transductive multi-task learn-202

ing model and can simultaneously explore feature distributions203

of both training and testing samples in the training stage.204

Therefore, the MNMC model could help improve the gen-205

eralization performance of the testing samples. In addition,206

although our MNMC model is proposed just for predicting207

MGMT and IDH1 statuses, it is actually a generic multi-task208

binary classification model that is also applicable for other209

small-sample-size applications such as heart rate estimation210

from face videos [25], multi-atlas patch-based label fusion211

[26], emotion recognition from abstract paintings [32], cancer212

survival prediction [33], and neurodegenerative disease diag-213

nosis [34], to name a few.214

II. MATERIALS 215

A. Summary 216

In this study, we use T1-MRI, RS-fMRI and DTI data 217

from a glioma brain imaging database collected by Huashan 218

Hospital, Shanghai, during 2010-2015. Informed written con- 219

sents were acquired from all the participants before imaging. 220

The imaging study was also approved by the local ethical 221

committee at Huashan hospital. A total of 54 HGG patients 222

who had all three imaging modalities were originally included 223

in this study. We excluded 2 subjects with significant imaging 224

artifacts based on T1-MRI, 1 subjects with severe tumor mass 225

effect and normal brain tissue distortion (which could severely 226

affect the spatial registration), and 4 subjects with excessive 227

head motion during RS-fMRI. The subject exclusion was 228

based on the consensus of three raters (HZ, JL and LL). 229

Finally, 47 HGG subjects with at least one biopsy-proven 230

MGMT or IDH1 status were included in this study. That 231

is, among 47 subjects, 45 subjects have both known MGMT 232

and IDH1 status, one subject has only known IDH1 status, 233

and another subject has only known MGMT status. Table I 234

summarizes the demographic and clinical information of these 235

47 subjects. In addition, we also check statistical significance 236

of the demographic and clinical information by conducting the 237

statistical comparison at 95% significance level between the 238

age (with two-sample t-test), gender (with chi-square test), and 239

WHO grade (with chi-square test) of the patients with MGMT- 240

m (IDH1-m) and those with MGMT-u (IDH1-w), with the 241

corresponding p-values shown in Table I. The results indicate 242

that (1) gender and WHO grade of the patients with MGMT-m 243

(or IDH1-m) are not statistically different from those of the 244

patients with MGMT-u (or IDH1-w), and (2) IDH1-m matches 245

IDH1-w with respect to age on a trend level, i.e., close to 246

be statistically significant (with p = 0.074). To the best of 247

our knowledge, there is no paper clearly showing that age is 248

a contributing factor to different MGMT statuses. According 249

to all the existing MGMT-related tumor studies, we found 250

that MGMT promoter methylation seems to be randomly 251

distributed among different age groups of glioma patients 252

[35]. Specifically, previous studies have been separately focus- 253

ing on young patients and old patients (>70 years old), but 254

with few studies on the elderly group. The current studies have 255

suggested that MGMT-m is also a beneficial biomarker for 256

the elderly group [36]. In addition, although some literature 257

indicated that the patients with IDH1-m have both younger 258

age and longer survival time [37], the IDH1-m has been 259

found as independent predictor for better outcome [38]. Taken 260

together, we think that age difference might not act as a 261
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Fig. 1. The pipeline of data (i.e., RS-fMRI and DTI data) preprocessing, brain network construction, and connectomics feature extraction. (D: degree;
P: shortest path length; C: clustering coefficient; B: betweenness centrality; G: global efficiency; L: local efficiency; FC: functional connectivity;
SC: structural connectivity).

sole contributing factor to successful genomic classification262

results.263

All the T1-MRI, RS-MRI and DTI data were collected264

preoperatively with a 3.0-Tesla scanner (MAGNETOM Verio,265

Siemens Healthcare, Siemens AG, Germany) with the follow-266

ing parameters: (1) T1-MRI: TR (repetition time) = 1900 ms,267

TE (echo time) = 2.3 ms, FA (flip angle) = 9°, FOV (field268

of view) = 240 × 240 mm2, matrix size = 256 × 215, slice269

thickness= 1 mm; (2) RS-fMRI: TR = 2000 ms, TE= 35 ms,270

FA = 90°, number of slices = 33, slice thickness = 4 mm,271

inter-slice gap = 0; FOV = 210 × 210 mm2, matrix size =272

64×64, number of acquisitions= 240, voxel size = 3.4×3.4×273

4 mm3. (3) DTI: 20 diffusion-weighted directions, voxel size274

= 2× 2× 2 mm3, b = 1000 s/mm2, and multiple acquisition275

factor = 2. The T1-MRI was used to guide spatial registration276

of all subject’s images (see Section B), and RS-fMRI and DTI277

were used to extract functional and structural connectomics278

information, respectively. Fig. 1 illustrates the pipeline of279

imaging data preprocessing (as detailed in Section B), brain280

structural and functional network construction (as detailed281

in Section C), and connectomics feature extraction based on282

graph theory (as detailed in Section D).283

B. Data Preprocessing284

For RS-fMRI, data preprocessing was conducted similarly285

as for our previous works [21], [39] by widely-used fMRI data286

analysis software: SPM8 (http://www.fil.ion.ucl.ac.uk/spm/),287

Data Processing Assistant for Resting-State fMRI288

(DPARSF) [40], and REsting-State fMRI data analysis289

Toolkit (REST) [41]. Specifically, it includes discarding the290

first 5 volumes for scanner calibration, correction for slice291

acquisition timing and head motion, spatial registration to the292

standard Montreal Neurological Institute (MNI) space by using293

the deformation field obtained from “New Segmentation”294

(an extension of unified segmentation which obtains more295

robust brain tissue segmentation result) [42] and DARTEL296

(a fast diffeomorphic registration algorithm which achieves 297

better performance on lesion brain group-wise registration) 298

[43] to the co-registered T1-MRI, spatial smoothing using 299

an isotropic Gaussian kernel with FWHM (full-width-at- 300

half-maximum) of 6 mm3, removal of temporal linear trend, 301

temporal band-pass filtering (0.01-0.08 Hz), and regressing 302

out nuisance signals including the head motion profiles 303

(Friston-24 model) and other physiological noise (averaged 304

white-matter signals and averaged cerebrospinal-fluid signals). 305

For each subject, T1 MRI is used to guide spatial normal- 306

ization of RS-fMRI. Specifically, individual T1 MRI is first 307

registered to each patient’s averaged RS-fMRI data after head 308

motion correction and then spatially normalized to the MNI 309

standard space based on tissue segmentation and group-wise 310

registration as implemented in SPM (New Segment + DAR- 311

TEL). As different subjects have different tumor locations, and 312

the group-wise registration iteratively registers each subject to 313

a group-averaged template gradually, the tumor effect (spatial 314

misregistration) could be minimized. The registration quality 315

was visually inspected by experts on MRI analysis (HZ, JL, 316

and LL) with consensus [21], [27], [44]. One subject who have 317

visible tumor-induced distortion in the registered T1 MRI were 318

excluded from further study. The processed RS-fMRI data with 319

good registration are used for FC network construction, which 320

will be described in detail in Section C. 321

For DTI, we use a pipeline toolbox for analyzing brain 322

diffusion images (PANDA) [45] based on the FMRIB Soft- 323

ware Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl/), as detailed 324

before [46]. The procedures include brain tissue extraction 325

using bet command, eddy-current correction, diffusion tensor 326

calculation using dtifit command, and deterministic tractogra- 327

phy using fact command in FSL, which generates all possi- 328

ble fibers within the putative white matter tissue (fractional 329

anisotropy (FA) > 0.2) with angle threshold = 45° and 330

two seeds for each voxel. All above processing steps are 331

carried out in each subject’s native space. To construct SC 332

networks, each subject’s T1 image is first co-registered to its 333
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respective b = 0 s/mm2 (T2-weighted) image based on flirt in334

FSL and then spatially registered to the standard MNI space335

with the same method as used for RS-fMRI registration. The336

resultant deformation field is then applied to map the brain337

parcellation atlas from the MNI space to each individual’s338

native space, which is used to construct SC networks described339

in Section C.340

Note that the same T1 image is used to guide both the341

RS-fMRI and DTI registrations, so that multimodal imaging342

data can be registered in a consistent manner.343

C. Brain Network Construction344

To construct brain functional networks based on RS-fMRI,345

we use the Automated Anatomical Labeling (AAL) atlas,346

which defines 90 regions of interest (ROIs) in the cerebral347

gray matter area in a standard MNI space [47]. For each348

subject, we first extract the ROI mean blood oxygenation level-349

dependent (BOLD) time series si (i ∈ N) based on the AAL350

atlas; then, we construct the functional network N f by defining351

the FC strength between nodes i and j as:352

w
f

i j = Corr(si , s j ), (1)353

where i, j ∈ N ≡ {1, 2, · · · , 90} and i �= j , and Corr(si , s j )354

denotes the Pearson’s correlation between the two BOLD time355

series from any ROI pair (i, j) of the 90 brain regions.356

For construction of DTI-based SC network, Ns , we apply a357

warped individual AAL template in each subject’s native space358

to each subject’s DTI tractography results, and calculate the359

SC between the ROIs i and j using PANDA as the normalized360

total number of fibers connecting the ROI pair (i, j):361

ws
i j =

∑
i, j∈N,i �= j

n( f )/(
ai + a j

2
), (2)362

where n( f ) is the total number of fibers (i.e., the mainstreams363

generated by tractography) linking ROIs i and j , and ai is the364

surface area of the ROI i in its interface between gray matter365

and white matter. Dividing the fiber counts with
ai+a j

2 corrects366

the bias in the SC-strength estimation caused by different ROI367

sizes.368

For both FC and SC networks of each subject, there are369

the same 90 “nodes”. The “edges” connecting every pair of370

the nodes form two weighted networks (N f and Ns ), namely,371

functional and structural brain “connectomics”.372

D. Connectomics Feature Extraction373

After construction of the brain connectomics (i.e., N f and374

Ns ), we use a graph theoretical network analysis (GRETNA)375

toolbox [48] to extract various network properties, including376

nodal degree, small-world properties (shortest path length and377

clustering coefficient), network efficiency properties (global378

and local efficiency), and betweenness centrality [49]. These379

network properties are extracted as connectomics features for380

each node from each network of each subject.381

Specifically, we extract 540 (6 metrics × 90 regions) FC382

features and the same number of SC features for each subject.383

In addition, we also use 12 clinical features (CL for short) from384

each subject as they have been extensively used in prognosis385

evaluation in the clinical practice, including patient’s age, 386

gender, tumor size, WHO grade, tumor’s main and specific 387

locations (in each of the five brain lobes), epilepsy or not, and 388

the involved hemisphere. 389

III. METHOD 390

We first introduce the notations used in this section. 391

X = [x1, · · · , xm] ∈ R
d×m denotes the feature matrix with 392

m samples and d features (for each sample). Each sample 393

(i.e., a column in X) represents one subject with SC, FC 394

or/and CL features. Y = [
y1, · · · , ym

] ∈ {−1, 1, ?}t×m
395

denotes the corresponding label matrix with t labels (here 396

t = 2, i.e., MGMT status and IDH1 status; 1 for MGMT-m 397

and IDH1-m, −1 for MGMT-u and IDH1-w; and ‘?’ for 398

unknown status). Furthermore, X is divided into Xtrain and 399

Xtest , where Xtrain is for training and Xtest is for testing 400

samples. Correspondingly, Y is also divided into Ytrain and 401

Ytest , where Ytrain may be partially unknown. Our purpose 402

is to predict Ytest for the testing samples. We also let Xlast 403

denotes the last row of matrix X. Xi j denotes the element 404

in the i -th row and j -th column of matrix X. 1 denotes the 405

all-ones row vector. Id×d denotes the d × d identity matrix. 406

XT denotes the transpose of matrix X. In addition, we denote 407

the Frobenius norm, �2,1-norm, and nuclear norm of matrix X 408

as ‖X‖F = (
∑

i

∑
j X2

i j )
1/2

, ‖X‖2,1 =
∑

i (
∑

j X2
i j )

1/2
, and 409

‖X‖∗ =
∑

i σi (X), respectively, where σi (X) denotes the i -th 410

largest singular value of matrix X. Finally, we let X0 ∈ R
d×m

411

denote the true underlying feature matrix corresponding to 412

X. Let Y0 ∈ R
t×m and sign

(
Y0

)
respectively denote the 413

true underlying soft label (i.e., the continuous value in R) 414

matrix, and the true underlying hard label (i.e., the discrete 415

value 1 or −1) matrix, where sign (·) is the element-wise sign 416

function. 417

A. Multi-Label Transductive Matrix Completion (MTMC) 418

The MTMC is a well-known multi-label matrix completion 419

model, which is developed with two assumptions. First, linear 420

dependence relationship is assumed between X0 and Y0, 421

i.e., Y0 = WT
[
X0; 1]

, where W ∈ R
(d+1)×t is an implicit 422

weight matrix. Second, X0 is also assumed to be low-rank, 423

i.e., rows (columns) of X0 could be represented by other 424

rows (columns). Letting M0 = [
Y0;X0; 1]

denote the true 425

underlying feature-label matrix corresponding to the observed 426

feature-label matrix M = [Y;X; 1], then, from rank
(
M0

) ≤ 427

rank
(
X0

)+1, we can infer that M0 is also low-rank. The goal 428

of MTMC is to impute M0 given M. In real applications, M is 429

usually contaminated by noise, so the MTMC is formulated 430

as: 431

min
z

μ ‖Z‖∗ + 1

2
‖ZX − X‖2F + γL (ZY, Y) s.t. Zlast = 1 432

(3) 433

where Z= [ZY;ZX;Zlast] ∈ R
(t+d+1)×m denotes the objec- 434

tive matrix to be optimized, ZX denotes the feature subma- 435

trix, and ZY denotes the soft label submatrix. L (ZY, Y) = 436∑
(i, j )∈�Y

l
(
(ZY)i j , Yi j

)
, where �Y denotes the index set of 437



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON MEDICAL IMAGING

known labels in Y, and l (·, ·) denotes the element-wise logistic438

loss function:439

l (u, v) = log (1+ exp (−uv)) . (4)440

Once the optimal objective matrix Zopt is determined,441

the labels Ytest of the testing subjects can then be imputed442

by sign
(

Zopt
Ytest

)
, where Zopt

Ytest
is the submatrix of Zopt and443

denotes the optimal soft labels for the testing subjects. Based444

on the formulation of MTMC, we know that Zopt
Ytest

is implicitly445

obtained from Zopt
Ytest
= (Wopt )

T
[
Xopt

test; 1
]

, where Xopt
test is the446

optimal denoised counterpart of Xtest , and Wopt is the optimal447

estimation of the weight matrix W. Although Wopt is not448

explicitly computed, it is implicitly determined by the training449

subjects and their known labels via low-rank approximation450

in Eq. (3). Therefore, for multi-label classification tasks with451

insufficient training subjects, as in our case, the MTMC will452

have the inherent overfitting problem.453

Moreover, as mentioned before, the formulation of the454

MTMC greatly relies on the assumptions of low rank and455

linear setting. Though the low-rank assumption is relatively456

solid and widely accepted, as real data usually lie on low-457

dimensional manifolds, the linear feature-to-label relationship458

assumption implying all subjects to be linearly separable in the459

original feature space is too ideal for the complex nonlinear460

classification problems, as in this study.461

In order to address the limitation of linear classification462

setting of MTMC, Alameda et al. employed a popular kernel-463

based approach and proposed the first kernel-based Nonlinear464

Transductive Matrix Completion (NTMC) model [32]. The465

primary theoretical motivation for the use of kernel tricks is466

the famous Cover’s Theorem [50], which states that, given467

a set of data that is not linearly separable on the original468

feature space, one can, with high probability, transform it to469

a new dataset that is linearly separable, by projecting it to470

a higher-dimensional space via nonlinear feature transforma-471

tion. However, though NTMC benefits from possible linear472

separability of the data in the mapped kernel feature space, it473

also suffers the increased overfitting risk caused by lifting the474

original features to a higher dimensional Reproducing Kernel475

Hilbert Space. Moreover, since the NTMC employs the kernel476

trick to conduct the implicit nonlinear feature transformation,477

it is difficult to further adopt any overfitting-resistant technique478

to alleviate the overfitting deficiency.479

B. Multi-Label Nonlinear Matrix Completion (MNMC)480

The alternative method of making linear models work for481

nonlinear classification is using kernel approximation [51],482

which explicitly maps the original data to a finite dimensional483

feature transformation space:484

� (xi) : Rd → R
h , (5)485

and assures that the expectation of the inner product of any486

two points in the transformed feature space is an unbiased487

estimation of the corresponding kernel function, i.e.,488

K
(
xi , x j

) = E
[〈�(xi ),�(x j )〉

]
. (6)489

The random Fourier feature mapping is a widely used 490

kernel approximation technique [51], which can help revealing 491

nonlinear features of data when used in conjunction with linear 492

algorithms and, for basic tasks such as regression or clas- 493

sification, using nonlinear random Fourier features incurs 494

little or no loss in performance compared with the exact kernel 495

methods [52], [53]. 496

Theoretically, for shift-invariant kernels, Bochner’s theo- 497

rem [54] implies that the random Fourier feature mapping 498

� (·) can be written as: 499

� (xi ) =
(

1/
√

h
) [

cos
(

uT
1 xi + b1

)
, · · · , cos

(
uT

h xi + bh

)]
, 500

(7) 501

where {u1, · · · , uh} are the projection directions sampled 502

according to the distribution from the Fourier transform of the 503

kernel function using Monte Carlo method, and {b1, · · · , bh} 504

are drawn uniformly from [0, 2π]. For instance, for the 505

popularly used Radial Basis Function (RBF) kernel with δ 506

representing the kernel width, 507

K
(
xi , x j

) = ex p
(
−δ

∥∥xi − x j
∥∥2

)
, (8) 508

its sampling distribution is a Gaussian distribution 509

N (0, 2δId×d ). 510

In this study, we propose a Multi-label Nonlinear Matrix 511

Completion (MNMC) model, which is a modification of the 512

conventional MTMC model by introducing random Fourier 513

feature mapping and transductive multi-task feature selection, 514

to jointly predict MGMT and IDH1 statuses. Fig. 2 illustrates 515

our MNMC model. As shown in Fig. 2, we first conduct 516

nonlinear feature transformation, i.e., random Fourier feature 517

mapping, for all subjects X, and get the mapped nonlinear 518

feature matrix: 519

� (X) = [� (x1) , · · · ,� (xm)] . (9) 520

Then the corresponding MTMC model in the transformed 521

nonlinear feature space can be formulated as: 522

min
z

μ
∥∥∥Z̃

∥∥∥∗ +
1

2

∥∥∥Z̃X −� (X)
∥∥∥

2

F
+ γL

(
Z̃Y, Y

)
523

s.t. Z̃last = 1, (10) 524

where Z̃ =
[
Z̃Y; Z̃X; Z̃last

]
denotes the objective matrix to be 525

optimized in the mapped nonlinear feature space, Z̃Y denotes 526

the soft label submatrix, and Z̃X denotes the feature submatrix. 527

As previously stated, by mapping the original features 528

to a relatively higher-dimensional nonlinear feature space, 529

the subjects may be linearly separated with higher probability. 530

However, this advantage comes at the expense of exacerbating 531

the overfitting issue. To address this issue, we further employ 532

the transductive multi-task feature selection technique to refine 533

the imputed soft labels Z̃Y by introducing a following regu- 534

larization term into the Eq. (10): 535

min
Z̃,W̃

λ
∥∥∥W̃

∥∥∥
2,1
+ β

2

∥∥∥Z̃Y − W̃T
[
Z̃X; 1

]∥∥∥
2

F
, (11) 536

where W̃ ∈ R
(h+1)×t denotes the explicit predictor matrix 537

(with each column of W̃ corresponding to a predictor for 538
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Fig. 2. The illustration of Multi-label Nonlinear Matrix Completion (MNMC) model.

each task), and the l2,1-norm imposes the row sparsity on539

W̃ to learn the shared representations across all related tasks540

by selecting the common discriminative features. In addition,541

please note that, in the second term of Eq. (11), we use542

all subjects, including the training and testing samples, to543

simultaneously conduct feature selection. In other words, we544

leverage the testing subjects as an effective supplement to545

the limited training subjects to alleviate the over-fitting issue546

caused by limited training data. Finally, by combining Eq. (10)547

and Eq. (11), our proposed MNMC model is formulated as:548

min
Z̃,W̃

{
μ

∥∥∥Z̃
∥∥∥∗ +

1

2

∥∥∥Z̃X−� (X)
∥∥∥

2

F
+γL

(
Z̃Y, Y

)
+λ

∥∥∥W̃
∥∥∥

2,1
549

+β

2

∥∥∥Z̃Y − W̃T
[
Z̃X;1

]∥∥∥
2

F

}
s.t. Z̃last = 1. (12)550

Obviously, from Eq. (12), we can see that the conventional551

MTMC model is the special case of our proposed MNMC552

model if set � (X) to the identity function and set the553

parameters λ and β to zeroes.554

C. Optimizing MNMC via Block Prox-Linear Method555

The optimization of the MNMC model is not trivial, as it556

contains the two coupled variables (Z̃X and W̃) and one all-557

1-row constraint (Z̃last = 1), along with the fact that the558

�2,1-norm and nuclear norm are non-smooth penalties. Here,559

we employ BPL method [28] to design an algorithm for560

solving the optimization problem in the MNMC model. The561

BPL method is a recently proposed Block Coordinate Descent562

method, which can efficiently solve the following standard563

unconstrained optimization problems in the form of [28]: 564

min
X1,··· ,Xs

F (X1, · · · , Xs)+
∑s

i=1
Ri (Xi ), (13) 565

where X1, · · · , Xs ∈ R
m×n , F (X1, · · · , Xs) is continu- 566

ously differentiable nonconvex function, and Ri (Xi ) , i = 567

1, · · · , s, are proximable non-smooth functions (‘proximable’ 568

means that it is easy to obtain the minimizer of R (Xi ) + 569

1
2τ ‖Xi − A‖2F for any A ∈ R

m×n and τ > 0). The BPL 570

method cyclically updates each block of variables in Gauss- 571

Seidel style by minimizing a prox-linear surrogate function. 572

Specifically, at each iteration k, Xi , i = 1, · · · , s, are updated 573

as follows: 574

Xk
i = arg min

xi

{
Ri (Xi )+ 1

2τk
Xi

∥∥∥Xi − (Xk−1
i 575

−τk
Xi
∇Xi F(Xk

<i , Xk−1
i , Xk−1

>i ))
∥∥∥

2

F

}
, (14) 576

where (Xk
<i , Xk−1

i , Xk−1
>i ) denotes the point (Xk

1 , · · · , Xk
i−1, 577

Xk−1
i , Xk−1

i+1 , · · · , Xk−1
s ),∇Xi F

(
Xk

<i , Xk−1
i , Xk−1

>i

)
denotes 578

the gradient of F (X1, · · · , Xs) with respect to Xi at the 579

point (Xk
<i , Xk−1

i , Xk−1
>i ), and τk

Xi
is a step size which 580

can be determined by the line search according to the 581

Armijo-Goldstein rule. 582

For our proposed MNMC model, if let G
(

Z̃
)

be an 583

indicator function defined as: 584

G
(

Z̃
)
=

{
0, Z̃last = 1
∞, otherwise,

(15) 585
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and let:586

R1

(
Z̃
)
= μ

∥∥∥Z̃
∥∥∥∗ + G

(
Z̃

)
, (16)587

R2

(
W̃

)
= λ

∥∥∥W̃
∥∥∥

2,1
, (17)588

F
(

Z̃, W̃
)
= β

2

∥∥∥Z̃Y − W̃T
[
Z̃X; 1

]∥∥∥
2

F
+ γL

(
Z̃Y, Y

)
589

+ 1

2

∥∥∥Z̃X −� (X)
∥∥∥

2

F
, (18)590

the proposed MNMC model can be reformulated as the591

following unconstrained form:592

min
Z̃,W̃

F
(

Z̃, W̃
)
+ R1

(
Z̃
)
+ R2

(
W̃

)
. (19)593

Therefore, according to the BPL method, the variables Z̃ and594

W̃ can be iteratively updated as follows:595

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z̃k = arg min
Z̃

{
R1

(
Z̃
)
+ 1

2τk
Z̃

×
∥∥∥Z̃− (Z̃

k−1 − τk
Z̃
∇Z̃F(Z̃k−1, W̃k−1))

∥∥∥
2

F

}
(20a)

W̃k = argarg min
W̃

{
R2

(
W̃

)
+ 1

2τk
W̃∥∥∥W̃− (W̃k−1 − τk

W̃
∇W̃F(Z̃k, W̃k−1))

∥∥∥
2

F

}
. (20b)

596

Specifically, the variables Z̃k in Eq. (20a) can be analytically597

solved by the following steps:598

⎧
⎨

⎩
Z̃k = DDDμτk

Z̃

(
Z̃k−1 − τk

Z̃
∇Z̃F

(
Z̃k−1, W̃k−1

))

(
Z̃k

)

last
= 1,

(21)599

where DDDμτk
Z̃

(·) denotes the proximal operator of the nuclear600

norm (with the details provided in the online Supplementary601

Materials) [55], and ∇Z̃F (·, ·) can be calculated as:602

∇Z̃F
(

Z̃, W̃k−1
)

603

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
(Z̃X −� (X))

+ βŴk−1
((

W̃k−1
)T [

Z̃X;1
]
− Z̃Y

)}
, (i, j) ∈ �X

{
−γ Yi j

/ (
exp

(
Z̃i j · Yi j

)
+ 1

)

+β

(
Z̃i j −

((
W̃k−1

)T
[
Z̃X; 1

])

i j

)}
, (i, j) ∈ �Y

β

(
Z̃i j −

((
W̃k−1

)T
[
Z̃X;1

])

i j

)
, (i, j) ∈ �C

Y

0, otherwise

604

(22)605

where �X denotes the index set of elements in Z̃X, Ŵk−1
606

denotes the first h rows of W̃k−1, and �C
Y denotes the index607

set of unknown labels in Y. Also, the variables W̃k in Eq. (20b)608

can be analytically solved by:609

W̃k = JJJ λτk
W̃

(
W̃k−1 − τk

W̃
∇W̃F

(
Z̃k , W̃k−1

))
(23)610

Algorithm 1 Proposed MNMC Algorithm
Input: Matrices X, Y, and parameters h, δ, λ, μ, γ, β.
Output: W̃opt , Z̃opt

1 Compute � (X) according to Eq. (9);
2 Initialize W̃0 as the zeroes matrix, and Z̃0 as the rank 1

approximation of [Y;� (X);1] with the unobserved
entries set to 0;

3 While not converged do
4 Update Z̃k according to Eq. (21);
5 Update W̃k according to Eq. (23);
6 End while;
7 Return W̃opt ← W̃k , Z̃opt ← Z̃k .

where JJJ λτk
W̃

(·) denotes the proximal operator of l2,1-norm 611

(with the details provided in the online Supplementary Mate- 612

rials) [56], and ∇W̃F (·, ·) can be calculated as: 613

∇W̃F
(

Z̃k, W̃
)
= β

[
Z̃k

X; 1
]([

Z̃k
X; 1

]T
W̃ −

(
Z̃k

Y

)T
)

(24) 614

Based on the aforementioned analysis, the proposed algo- 615

rithm can be summarized as in Algorithm 1. 616

Theoretically, for nonconvex non-smooth problems with the 617

separable non-smooth terms, Xu and Yin [28] have demon- 618

strated that the BPL method is guaranteed to converge to a 619

critical point, as long as ∇Xi F
(

Xk
<i , Xi , Xk−1

>i

)
, i = 1, · · · , s, 620

has Lipschitz continuity constant Lk
Xi

with respect to variable 621

Xi , i.e., 622

∥∥∥∇Xi F
(

Xk
<i , U, Xk−1

>i

)
−∇Xi F

(
Xk

<i , V, Xk−1
>i

)∥∥∥
F

623

≤ Lk
Xi
‖U− V‖F , ∀U, V ∈ Rm×n . (25) 624

For our MNMC model, we can easily see that the objec- 625

tive function in Eq. (19) has the two separable non-smooth 626

terms, i.e., R1

(
Z̃
)

and R2

(
W̃

)
, and it is easy to verify that 627

∇Z̃F
(

Z̃, W̃k−1
)

and ∇W̃F
(

Z̃k, W̃
)

are Lipschitz continuous 628

with constants Lk
Z̃

and Lk
W̃

(with the details provided in the 629

online Supplementary Materials): 630

Lk
Z̃
= max

{√
4σ 2

1

(
βŴk−1

)
+4β2 + γ 2/8 , 631

√

2+ 4σ 2
1

(
βŴk−1

(
Ŵk−1

)T
)
+ 4σ 2

1

(
β

(
Ŵk−1

)T
)}

632

(26) 633

Lk
W̃
= σ1

(
β

[
Z̃k

X; 1
] [

Z̃k
X; 1

]T
)

. (27) 634

Based on this fact, our proposed optimization algorithm also 635

has the provable convergence, and the concrete convergence 636

analysis is the same as in [28]. 637

IV. RESULTS 638

A. Experimental Setting 639

Due to the limited number of samples, we use 10-fold 640

cross validation to evaluate the performance of MGMT and 641
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TABLE II
COMPARISON OF CHARACTERISTICS FOR THE COMPETING METHODS

IDH1 status prediction. Specifically, we randomly partition642

the whole dataset into 10 roughly equivalent subsets, and then643

successively select each subset as the testing data and assemble644

the remaining subsets as the training data. This process is645

independently repeated for 20 times, and the average accuracy646

(ACC), average sensitivity (SEN), average specificity (SPE)647

and the average area under receiver operating characteristic648

curve (AUC) are reported as the final performance measures.649

Specifically, the average ACC, SEN, and SPE are obtained650

by averaging all the 20 ACC, SEN, and SPE scores across651

the 20 trials, respectively, while the average AUC is obtained652

by computing AUC once based on all prediction scores of 20653

trials. To this end, we label the subjects with MGMT-m and654

IDH1-m statuses as “positive” samples (favorable prognosis),655

and those with MGMT-u and IDH1-w as “negative” samples656

(unfavorable prognosis).657

In our experiments, the proposed MNMC method involves658

6 parameters (i.e., h, δ, μ, γ , λ and β) that need659

to be determined. To this end, we use a two-stage660

grid searching strategy to determine the optimal values661

of these parameters. Specifically, we start with conduct-662

ing the first-stage hierarchical optimization-based coarse-663

grained grid searches on the training data with wide ranges664

(h ∈ {1000, 2000, 3000, 4000, 5000}, δ, μ, γ , λ, β ∈665

{0.0001, 0.001, 0.01, 0.1, 1, 10, 20, 30, 50, 100}) to explore666

the bounds of the search spaces. For each parameter, we use667

10-fold cross-validation with 20 repetitions to evaluate the668

average prediction performance (i.e., accuracy, ACC) by vary-669

ing its value while fixing the other five parameters (i.e.,670

h is fixed as 3000, and δ, μ, γ , λ, β are fixed as 1,671

respectively), so that we can select a narrowed parameter672

range with a relatively better ACC as the new search bounds673

in the second-stage fine-grained optimizations. Based on this674

principle, we can determine the search bounds of 5 para-675

meters as follows: δ ∈ [0.01, 10], μ ∈ [0.001, 0.1], γ ∈676

[0.1, 20], λ ∈ [0, 20] and β ∈ [1, 30]. Exceptionally, for677

parameter h, we observed that, with its increase from 3000 to678

5000, the ACC increased slightly; however, the computation679

cost increased significantly. Therefore, in order to balance680

the performance and computation complexity, we select its681

search bounds as [1000, 3000]. After that, to further determine682

the optimal parameter values, we conduct the second-stage683

global optimization-based fine-grained grid searches with684

the following ranges: h ∈ {1000, 1500, 2000, 2500, 3000},685

δ ∈ {0.01, 0.05, 0.1, 0.5, 1, 10}, μ ∈ {0.001, 0.01,686

0.02, 0.04, 0.06, 0.08, 0.1}, γ ∈ {0.1, 0.5, 1, 5, 10, 15, 20},687

λ ∈ {0, 2, 4, 6, 8, 10, 20}, and β ∈ {1, 5, 10, 15, 20, 25, 30}. 688

Specifically, we conduct another 10-fold cross validation with 689

20 repetitions on the training data to evaluate the average 690

ACC with each combination of the above parameter values; 691

those leading to the best ACC are used to construct the 692

optimal MNMC model. Finally, the constructed optimal model 693

is applied to the testing data. 694

B. Competing Methods 695

To validate the effectiveness of our proposed method, 696

we have performed extensive experiments by also comparing 697

with five different competing methods, including two widely- 698

used classic methods (RF [57] and kernel Transductive SVM 699

(TSVM) [58]) and three state-of-the-art matrix completion 700

methods (MTMC [23], MIMC [27], and NTMC [32]). Table II 701

summarizes the five competing methods and our proposed 702

MNMC method with the characteristics of linear/nonlinear 703

classification setting, inductive/transductive learning scheme, 704

single-label/multi-label classification mode, and adaptive fea- 705

ture selection strategy. All the involved parameters in these 706

competing methods are optimized by using the same nested 707

10-fold cross-validation procedure as in our MNMC model. 708

Specially, for RF method, we conduct grid search for the 709

number of decision trees from the range {10, 20, 50, 100, 710

200, 300, 400, 500}, the number of predictors from the range 711

{2, 5, 10, 20, 50, 100, 150, 200}, and the minimum number 712

of observations per tree leaf from the range {1, 2, 3}; For 713

TSVM method, we conduct grid search for the regularization 714

parameter from the range {0.00001, 0.0001, 0.001, 0.01, 715

0.1, 1, 10}, and the RBF kernel (variance) parameter from 716

the range {0.01, 0.05, 0.1, 0.5, 1, 5}; For MTMC and MIMC 717

methods, we conduct grid search for those counterpart parame- 718

ters with the same ranges as our MNMC method. For NTMC 719

model, we conduct a grid search for the regularization para- 720

meter and the RBF kernel (variance) parameter with the same 721

range as TSVM, and the decomposition size with the range 722

{2, 3, 4, 5}. In addition, since our proposed MNMC, MIMC 723

and RF have the inline adaptive feature selection function, 724

to make a fair comparison, for those methods without feature 725

selection, we adopt the popular feature selection methods to 726

help them remove irrelevant or redundant features. Specifi- 727

cally, the LASSO (Least Absolute Shrinkage and Selection 728

Operator) [59] is employed to facilitate the single-task TSVM 729

method. Also, the semi-supervised multi-task feature selection 730

method proposed by Li et al. [33] is employed to facilitate 731

multi-task MTMC and NTMC methods. 732
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TABLE III
COMPARISON OF PREDICTION PERFORMANCE FOR THE COMPETING METHODS USING Single Modality (STD: STANDARD DEVIATION)

TABLE IV
COMPARISON OF PREDICTION PERFORMANCE FOR THE COMPETING METHODS USING Multiple Modalities (STD: STANDARD DEVIATION)

TABLE V
COMPARISON OF PREDICTION PERFORMANCE FOR THE COMPETING METHODS AND OUR PROPOSED MNMC METHOD UNDER THE THREE

DIFFERENT EXPERIMENTAL SETTINGS USING MULTIPLE MODALITIES (STD: STANDARD DEVIATION)

C. Prediction Results733

First, we evaluate MGMT/IDH1 status prediction perfor-734

mance using features from single modality, i.e., based on CL,735

SC, and FC features, separately. Table III reports the experi-736

mental results of the five competing methods and our proposed737

method, where the best results are highlighted. From Table III,738

we can see that, except that the TSVM achieves higher SEN739

than our proposed MNMC method (i.e., 72.3% vs. 70.8%)740

in IDH1 status prediction using SC features, the MNMC 741

consistently outperforms all other competing methods (i.e., 742

RF, TSVM, MTMC, NTMC and MIMC) in almost all per- 743

formance metrics. The results indicate that our proposed 744

nonlinear feature transformation and transductive multi-task 745

feature selection strategies can improve the performance of 746

MGMT and IDH1 status prediction. 747

Second, considering that different modalities could pro- 748

vide complementary information and thus may enhance the 749
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prediction performance, we also perform experiments based750

on multiple modality fusion. We construct a new feature751

matrix with concatenated CL, FC and SC features at each752

column. Table IV summarizes the prediction results of the753

five competing methods and our proposed MNMC method. As754

expected, the modality fusion can help improve the prediction755

performance. Our proposed method not only achieves the high-756

est ACC for MGMT (74.6%) and IDH1 (87.0%) prediction,757

but also consistently outperforms the single-task RF/TSVM758

and the multi-task MTMC/NTMC/MIMC in terms of SEN759

and AUC.760

Third, we also investigate the prediction performance when761

applying the proposed MNMC method to the only 45 subjects762

with both known MGMT and IDH1 statuses (indicated by763

‘MNMC(45)’), and applying it to the two binary classification764

tasks separately (indicated by ‘MNMC(S)’). Table V reports765

the experimental results of the MNMC method with the three766

different experimental settings, i.e., MNMC, MNMC(45), and767

MNMC(S). From Table V, we can observe (1) the MNMC(45)768

method consistently outperforms the classic methods (RF and769

TSVM) in all performance metrics, and it also obtains a770

comparable prediction performance with the MNMC method771

applied to all 47 subjects, and (2) the MNMC(S) method772

obtains a lower prediction performance than the MNMC773

method applied to the two binary classification tasks simul-774

taneously, but outperforms the classic methods applied to the775

two binary classification tasks separately. The results further776

validated that our proposed MNMC model can effectively777

exploit the potential relationship between the two molecular778

indicators (i.e., MGMT and IDH1) to improve the overall779

prediction performance.780

In addition, to check the statistical significance of our781

results, we further conduct Delong’s test [60] at 95% con-782

fidence level between AUC values of our proposed method783

and the competing methods, with the corresponding p-values784

shown in Table III, Table IV, and Table V. DeLong’s test785

is a widely-used nonparametric statistical approach to the786

analysis of areas under correlated ROC curves, which can be787

employed to assess statistical significance by using the theory788

on generalized U-statistics to generate an estimated covariance789

matrix [61]–[63]. The results indicate that, except that our790

method is marginally significantly better than MIMC (with791

p-value = 0.079) in IDH1 status prediction using multiple792

modalities, our method is statistically superior to all other793

competing methods in terms of AUC.794

D. Effects of the Proposed Strategies795

The main argument in our work is that the nonlinear feature796

transformation and the transductive multi-task feature selection797

strategies can advance the linear separability of the data and798

adaptively select a small set of crucial features across the799

related tasks, respectively, and thus reduce the prediction errors800

of MGMT/IDH1 statuses. To validate the effects of these two801

strategies, we further carry out some experiments to compare802

our proposed MNMC method that considers only one of the803

two strategies. Specifically, we use the “MTMC-S” to indicate804

the counterpart with only the transductive multi-task feature805

selection strategy, i.e., the MNMC model with � (·) being806

Fig. 3. Comparison of prediction performance (%) of the MNMC and its
counterparts without nonlinear feature transformation (MTMC-S), multi-
task feature selection (MTMC-N), and both (MTMC). (a) IDH1-m vs.
IDH1-w (b) MGMT-m vs. MGMT-u.

Fig. 4. Sensitivity analysis of parameters h and δ in our proposed MNMC
method.

the identity function. On the other hand, we use “MTMC- 807

N” to indicate the counterpart with only the nonlinear feature 808

transformation, i.e., the MNMC method with parameters λ = 0 809

and β = 0. 810

We present experimental results of the counterpart methods 811

and our proposed method in Fig.3. For better understanding, 812

we also present the performance of MTMC as baseline method 813

that does not consider any of the two strategies. From the 814

two graphs in Fig. 3, we can observe (1) a method that 815

utilizes any of the two strategies is still better than the MTMC 816

baseline method, and (2) the inclusion of both strategies into 817

the objective function is better than the inclusion of just one 818

strategy. 819

E. Sensitivity Analysis of Parameters 820

Next, we investigate the sensitivity of the proposed MNMC 821

method to the parameter setting. There are six different para- 822

meters (i.e., h, δ, μ, γ , λ, β) that need to be determined 823

in our method. Considering that parameters h and δ, which 824

determine the nonlinear feature mapping in Eq. (7), are 825

relatively independent to other four parameters, we design a 826

set of experiments to investigate how these two parameters 827

jointly affect the prediction performance of MNMC. Fig. 4 828

reports the average ACC of both the MGMT and IDH1 status 829

predictions, with varying h and δ by fixing the other four 830

parameters, i.e., μ = 0.04, γ = 10, λ = 8, β = 10. As shown 831

in Fig. 4, the optimal working point of our proposed method 832

is at h = 2500 and δ = 0.1. We also notice that the working 833

point is on a relatively flat part of the performance surface, 834

implying that our proposed method is not very sensitive to 835

the variations of the parameters h and δ around the optimal 836

working point. 837

On the other hand, we also carry out four sets of experi- 838

ments to explore the sensitivity of parameters μ, γ , λ and β, 839
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Fig. 5. Sensitivity analysis of the parameters μ, γ, λ and β in our proposed MNMC method. (a) ACC performance w.r.t.μ. (b) ACC performance
w.r.t. γ. (c) ACC performance w.r.t. λ. (d) ACC performance w.r.t. β.

respectively. Fig. 5 reports the average ACC of both the840

MGMT and IDH1 status predictions, with varying μ, γ , λ841

and β, respectively, when fixing the other parameters. First,842

we can observe that the performance is relatively stable if the843

parameters μ, γ and β respectively falls in a certain range844

(i.e., μ ∈ [0.04, 0.08], γ ∈ [5, 15], β ∈ [10, 25]), and the845

performance deteriorates when they fall outside of the range.846

Second, we observe that the performance is largely affected847

by the value of λ, suggesting the importance of selecting848

the optimal λ value for MGMT and IDH1 status predictions.849

This is reasonable since the parameter λ controls the sparsity850

of the weight matrix and hence determines the scale of851

the optimal feature subset. Finally, Fig. 5(c) shows that the852

prediction accuracy with feature selection (i.e., λ > 0) is better853

than the counterpart without feature selection (i.e., λ = 0),854

demonstrating again the importance of feature selection.855

V. CONCLUSION856

In this paper, we aim to predict MGMT and IDH1 statuses857

for HGG patients. Considering that the available imaging data858

are constrained in size and have a complex feature-to-label859

relationship, we propose a novel multi-label nonlinear classi-860

fication model within a transductive learning framework, i.e.,861

Multi-label Nonlinear Matrix Completion (MNMC) model,862

to address this task. Compared with the conventional MTMC863

model, the proposed MNMC not only addresses the limitation864

of linear classification setting by lifting the original features865

to a more possible linearly separable nonlinear feature space,866

but also conducts a transductive multi-task feature selection867

to refine the predictions of MGMT and IDH1 statuses for868

the testing subjects. Finally, in order to validate our proposed869

method, we conduct extensive experiments using 47 subjects870

with both the DTI and RS-fMRI imaging data and the incom-871

plete MGMT/IDH1 statuses. The promising results verify the872

advantages of our proposed MNMC method over the widely-873

used single-task or multi-task classifiers. Also, for the first874

time, we show the feasibility of MGMT and IDH1 status pre-875

diction based on the preoperative multi-modality neuroimaging876

and connectomics analysis.877

However, this study still has some limitations. First, larger878

patient populations with more heterogeneous data origins are879

needed to investigate the generalizability and robustness of880

our proposed method. Second, our proposed MNMC model881

is able to deal with the missing values in the label matrix,882

but cannot handle the missing values in the feature matrix.883

Future work will focus on extending our proposed MNMC884

model to handle the missing features, and integrate other885

useful sources of information for improving the prediction 886

performance of MGMT and IDH1 statuses. Finally, based on 887

RS-fMRI, other FC metrics such as partial correlation-based 888

FC can be extracted as additional features. Note that partial 889

correlation is also widely used in functional network construc- 890

tion and has been suggested to measure mainly the direct and 891

effective connectivities [64], [65]. It could supplement the 892

Pearson’s correlation-based FC to achieve better prediction, 893

which will be our future work. 894
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Abstract— The O6-methylguanine-DNA methyltrans-1

ferase (MGMT) promoter methylation and isocitrate2

dehydrogenase 1 (IDH1) mutation in high-grade gliomas3

(HGG) have proven to be the two important molecular4

indicators associated with better prognosis. Traditionally,5

the statuses of MGMT and IDH1 are obtained via6

surgical biopsy, which has limited their wider clinical7

implementation. Accurate presurgical prediction of their8
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statuses based on preoperative multimodal neuroimaging 9

is of great clinical value for a better treatment plan. 10

Currently, the available data set associated with this 11

paper has several challenges, such as small sample size 12

and complex, nonlinear (image) feature-to-(molecular) 13

label relationship. To address these issues, we propose 14

a novel multi-label nonlinear matrix completion (MNMC) 15

model to jointly predict both MGMT and IDH1 statuses 16

in a multi-task framework. Specifically, we first employ a 17

nonlinear random Fourier feature mapping to improve the 18

linear separability of the data, and then use transductive 19

multi-task feature selection (performed in a nonlinearly 20

transformed feature space) to refine the imputed soft labels, 21

thus alleviating the overfitting problem caused by small 22

sample size. We further design an optimization algorithm 23

with a guaranteed convergence ability based on a block 24

prox-linear method to solve the proposed MNMC model. 25

Finally, by using a single-center, multimodal brain imaging 26

and molecular pathology data set of HGG, we derive brain 27

functional and structural connectomics features to jointly 28

predict MGMT and IDH1 statuses. Results demonstrate 29

that our proposed method outperforms the previously 30

widely used single- and multi-task machine learning 31

methods. This paper also shows the promise of utilizing 32

brain connectomics for HGG prognosis in a non-invasive 33

manner. 34

Index Terms— Brain tumor, high-grade glioma, molecular 35

biomarker, functional connectivity, structural connectivity, 36

prognosis, connectomics, matrix completion. 37

I. INTRODUCTION 38

GLIOMAS account for approximately 45% of primary 39

brain tumors. The most deadly gliomas are classified 40

by World Health Organization (WHO) as Grades III and IV 41

using histopathological criteria, which are referred to as 42

high-grade gliomas (HGG) and account for about 75% of 43

all gliomas [1], [2]. Related clinical studies have shown 44

that the O6-methylguanine-DNA methyltransferase promoter 45

methylation (MGMT-m) and isocitrate dehydrogenase 1 muta- 46

tion (IDH1-m) are the two strong molecular indicators asso- 47

ciated with better prognosis for HGG compared to their 48

counterparts, MGMT promoter unmethylation (MGMT-u) and 49

IDH1 wild-type (IDH1-w) [3], [4]. Specifically, MGMT 50
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methylation can reduce the deoxyribonucleic acid (DNA)51

repair activity of glioma cells, overcoming their resistance52

to alkylating agents, thus is a strong predictor of response53

to temozolomide-based therapy [5]. With such an increased54

sensitivity to the therapy, MGMT-m is associated with a55

longer survival time for HGG [3]. IDH1-m is another impor-56

tant molecular biomarker for gliomas. It has been suggested57

that the patients with IDH1-m have significantly longer sur-58

vival time when compared with those with IDH1-w [6], [7].59

To date, the identification of MGMT and IDH1 statuses (i.e.,60

MGMT-m vs. MGMT-u, and IDH1-m vs. IDH1-w) is becom-61

ing a clinical routine and is mainly derived from molecular62

pathological analysis based on invasively acquired tumor tissue63

specimen, which may sometimes cause severe brain injury, and64

increase the risk of infection and even severe complications65

(e.g., neurological deficits). Moreover, obtaining such mole-66

cular information is expensive, requiring special examination67

devices and taking a long waiting time. All these shortcomings68

have limited the extensive clinical applications of these mole-69

cular biomarkers, especially in the hospitals without cutting-70

edge testing devices. Non-invasive and preoperative prediction71

of MGMT and IDH1 statuses is convenient and time-saving,72

thus highly desired.73

A few studies have been carried out to predict either74

MGMT or IDH1 status based on the tumor characteristics75

from preoperative brain images. For example, Drabycz et al.76

extracted tumor texture features from T1- and T2-weighted77

Magnetic Resonance Images (MRIs), and employed simple78

linear discriminant analysis to predict MGMT status [8].79

Korfiatis et al. also extracted tumor texture features from80

a single T2-weighted MRI (T2-MRI) modality and trained81

a linear support vector machine (SVM) to predict MGMT82

status [9]. Yamashita et al. extracted both functional fea-83

tures (i.e., cerebral blood flow) based on perfusion MRI and84

morphometric features based on T1-weighted MRI (T1-MRI)85

from the tumor regions, and employed a group-level sta-86

tistical approach to examine each feature’s association with87

the IDH1 status [10]. Zhang et al. extracted more voxel-88

wise and histogram-based features from the tumor areas89

using T1-/T2-MRI and diffusion-weighted images (DWI), and90

employed a more sophisticated Random Forest (RF) classifier91

to predict IDH1 status [11]. It is worth noting that all the92

above studies are based predominantly on local appearance/93

morphometric features by extracting features from structural94

MRI, ignoring that the brain is actually an integrated system95

and its organization and connections could also be asso-96

ciated with genes and molecular indicators. Abundant evi-97

dence has indicated that neurological and psychiatric diseases98

could alter brain functional connectivity (FC) and structural99

connectivity (SC), as measured by resting-state functional100

MRI (RS-fMRI) and diffusion tensor imaging (DTI), respec-101

tively [12], [13]. High-grade gliomas, as fast-growing, highly102

invasive neoplasms with diffusive infiltration along the white103

matter, has been recently found to significantly affect large-104

scale brain connectomics [14]–[21]. In our previous works,105

we have found that the glioma’s influence on the brain con-106

nectomics could be informative for outcome prediction [21].107

Therefore, it is worth investigating whether such macro-scale,108

systems-level changes could also be associated with micro- 109

scale information such as genotype or molecular pathology. 110

Moreover, the local “radiomics” features could bear large 111

variability due to highly heterogeneous tumor characteris- 112

tics; however, the “connectomics” features extracted based 113

on large-scale network analysis could more consistently and 114

sensitively reflect individual differences in different MGMT 115

and IDH1 statuses. Thus, how to design an effective clas- 116

sification framework based on the connectomics features is 117

non-trivial.We found that all the previous studies are limited 118

to predict either MGMT or IDH1 status by using a simple, 119

single-task inductive machine learning method, ignoring the 120

potential relationship between the two molecular indicators 121

which could help each other in achieving more accurate 122

prediction results [22]. It is desirable to use a multi-task 123

learning approach to jointly predict MGMT and IDH1 statuses 124

to improve the overall accuracy. In our case, if we treat 125

the MGMT statuses (i.e., ‘MGMT-m vs. MGMT-u’) and the 126

IDH1 statuses (i.e., ‘IDH1-m vs. IDH1-w’) as two groups of 127

binary molecular labels, then the MGMG and IDH1 status 128

prediction problem can be regarded as a multi-task binary 129

classification problem, with one task to predict the molecular 130

labels ‘MGMT-m vs. MGMT-u’ and another task to predict 131

other molecular labels (‘IDH1-m vs. IDH1-w’). However, such 132

a study still faces at least two challenges for the currently 133

available dataset. First, since the molecular pathology testing 134

was not included as clinical routine during the data collection 135

a few years ago, the available data used in this paper has 136

limited sample size. Second, in clinical practice, complete 137

molecular pathological tests may not always be conducted; in 138

some cases, only one biopsy-proven MGMT or IDH1 status 139

is available, making the prediction become an incomplete 140

annotation or missing data problem. Traditional methods usu- 141

ally simply discarded the subjects with missing labels, which, 142

however, further reduced the number of training samples. The 143

recently proposed Multi-label Transductive Matrix Completion 144

(MTMC) [23] model is a suitable transductive multi-task 145

classification approach, which simultaneously explores feature 146

distributions of both the training samples with (partially) 147

known labels and the testing samples with unknown labels in 148

the training stage, thus producing good performance in many 149

previous computational vision or medical imaging analysis 150

problems [23]–[26]. However, such a model is difficult to 151

be generalized if a study has a limited sample size due 152

to the increasing overfitting concern that many phenotype- 153

genotype association studies may suffer. In order to address 154

this challenge, in our preliminary work [27], we introduced an 155

online inductive learning strategy into the conventional MTMC 156

model, which resulted in a Multi-label Inductive Matrix Com- 157

pletion (MIMC) model for joint prediction of MGMT and 158

IDH1 statuses. However, the MIMC model conducts trans- 159

ductive multi-task feature selection in a noisy feature space, 160

rather than in a more ideal, noise-free feature space. Moreover, 161

the MIMC model is essentially a linear model that heavily 162

assumes a linear relationship between features and labels; 163

however, this is not always guaranteed for real applications. 164

In the current study, the relationship could be much more 165

complex and probably nonlinear. 166
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TABLE I
DEMOGRAPHIC AND CLINICAL INFORMATION OF THE PATIENTS USED

To address these limitations, in this study, we employ167

nonlinear feature transformation in conjunction with trans-168

ductive multi-task feature selection in the denoised feature169

space, which is substantially different from the MIMC model.170

We thus propose a novel Multi-label Nonlinear Matrix Com-171

pletion (MNMC) model. Specifically, we first conduct explicit172

random Fourier feature mapping to improve the linear sepa-173

rability of the data, and then conduct transductive multi-task174

feature selection in the denoised nonlinear feature space, which175

leverages the unlabeled testing subjects together with the (par-176

tially) labeled training subjects to make them simultaneously177

participate in the denoised nonlinear feature selection. We step178

further to learn a shared representation across the related179

tasks, hence selecting important nonlinear features from all180

subjects and alleviating the overfitting problem. Unlike the181

previous MIMC model, which is jointly convex and can182

be easily solved by a standard Block Coordinate Descent183

method, the proposed MNMC framework in this paper is184

a non-convex model, which makes its solution non-trivial.185

Therefore, we turn to employ a recently proposed Block Prox-186

Linear (BPL) method [28] to design an efficient algorithm for187

solving the non-convex MNMC model, and also demonstrate188

that the designed algorithm is guaranteed to be convergent.189

Finally, by using a 10-fold cross-validation strategy on a190

single-center, multi-modality brain imaging and molecular191

pathology dataset from HGG patients, we perform two exper-192

iments based on the single modality and multiple modalities,193

separately. We show our new method has significant per-194

formance improvement for both experiments, compared with195

several state-of-the-art methods for MGMT and IDH1 status196

prediction.197

Our proposed MNMC model is significantly different from198

the existing multi-task learning models used in medical image199

analysis [29]–[31]. Specifically, the existing multi-task learn-200

ing models are usually the inductive learning models, while201

our proposed MNMC model is a transductive multi-task learn-202

ing model and can simultaneously explore feature distributions203

of both training and testing samples in the training stage.204

Therefore, the MNMC model could help improve the gen-205

eralization performance of the testing samples. In addition,206

although our MNMC model is proposed just for predicting207

MGMT and IDH1 statuses, it is actually a generic multi-task208

binary classification model that is also applicable for other209

small-sample-size applications such as heart rate estimation210

from face videos [25], multi-atlas patch-based label fusion211

[26], emotion recognition from abstract paintings [32], cancer212

survival prediction [33], and neurodegenerative disease diag-213

nosis [34], to name a few.214

II. MATERIALS 215

A. Summary 216

In this study, we use T1-MRI, RS-fMRI and DTI data 217

from a glioma brain imaging database collected by Huashan 218

Hospital, Shanghai, during 2010-2015. Informed written con- 219

sents were acquired from all the participants before imaging. 220

The imaging study was also approved by the local ethical 221

committee at Huashan hospital. A total of 54 HGG patients 222

who had all three imaging modalities were originally included 223

in this study. We excluded 2 subjects with significant imaging 224

artifacts based on T1-MRI, 1 subjects with severe tumor mass 225

effect and normal brain tissue distortion (which could severely 226

affect the spatial registration), and 4 subjects with excessive 227

head motion during RS-fMRI. The subject exclusion was 228

based on the consensus of three raters (HZ, JL and LL). 229

Finally, 47 HGG subjects with at least one biopsy-proven 230

MGMT or IDH1 status were included in this study. That 231

is, among 47 subjects, 45 subjects have both known MGMT 232

and IDH1 status, one subject has only known IDH1 status, 233

and another subject has only known MGMT status. Table I 234

summarizes the demographic and clinical information of these 235

47 subjects. In addition, we also check statistical significance 236

of the demographic and clinical information by conducting the 237

statistical comparison at 95% significance level between the 238

age (with two-sample t-test), gender (with chi-square test), and 239

WHO grade (with chi-square test) of the patients with MGMT- 240

m (IDH1-m) and those with MGMT-u (IDH1-w), with the 241

corresponding p-values shown in Table I. The results indicate 242

that (1) gender and WHO grade of the patients with MGMT-m 243

(or IDH1-m) are not statistically different from those of the 244

patients with MGMT-u (or IDH1-w), and (2) IDH1-m matches 245

IDH1-w with respect to age on a trend level, i.e., close to 246

be statistically significant (with p = 0.074). To the best of 247

our knowledge, there is no paper clearly showing that age is 248

a contributing factor to different MGMT statuses. According 249

to all the existing MGMT-related tumor studies, we found 250

that MGMT promoter methylation seems to be randomly 251

distributed among different age groups of glioma patients 252

[35]. Specifically, previous studies have been separately focus- 253

ing on young patients and old patients (>70 years old), but 254

with few studies on the elderly group. The current studies have 255

suggested that MGMT-m is also a beneficial biomarker for 256

the elderly group [36]. In addition, although some literature 257

indicated that the patients with IDH1-m have both younger 258

age and longer survival time [37], the IDH1-m has been 259

found as independent predictor for better outcome [38]. Taken 260

together, we think that age difference might not act as a 261
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Fig. 1. The pipeline of data (i.e., RS-fMRI and DTI data) preprocessing, brain network construction, and connectomics feature extraction. (D: degree;
P: shortest path length; C: clustering coefficient; B: betweenness centrality; G: global efficiency; L: local efficiency; FC: functional connectivity;
SC: structural connectivity).

sole contributing factor to successful genomic classification262

results.263

All the T1-MRI, RS-MRI and DTI data were collected264

preoperatively with a 3.0-Tesla scanner (MAGNETOM Verio,265

Siemens Healthcare, Siemens AG, Germany) with the follow-266

ing parameters: (1) T1-MRI: TR (repetition time) = 1900 ms,267

TE (echo time) = 2.3 ms, FA (flip angle) = 9°, FOV (field268

of view) = 240 × 240 mm2, matrix size = 256 × 215, slice269

thickness= 1 mm; (2) RS-fMRI: TR = 2000 ms, TE= 35 ms,270

FA = 90°, number of slices = 33, slice thickness = 4 mm,271

inter-slice gap = 0; FOV = 210 × 210 mm2, matrix size =272

64×64, number of acquisitions= 240, voxel size = 3.4×3.4×273

4 mm3. (3) DTI: 20 diffusion-weighted directions, voxel size274

= 2× 2× 2 mm3, b = 1000 s/mm2, and multiple acquisition275

factor = 2. The T1-MRI was used to guide spatial registration276

of all subject’s images (see Section B), and RS-fMRI and DTI277

were used to extract functional and structural connectomics278

information, respectively. Fig. 1 illustrates the pipeline of279

imaging data preprocessing (as detailed in Section B), brain280

structural and functional network construction (as detailed281

in Section C), and connectomics feature extraction based on282

graph theory (as detailed in Section D).283

B. Data Preprocessing284

For RS-fMRI, data preprocessing was conducted similarly285

as for our previous works [21], [39] by widely-used fMRI data286

analysis software: SPM8 (http://www.fil.ion.ucl.ac.uk/spm/),287

Data Processing Assistant for Resting-State fMRI288

(DPARSF) [40], and REsting-State fMRI data analysis289

Toolkit (REST) [41]. Specifically, it includes discarding the290

first 5 volumes for scanner calibration, correction for slice291

acquisition timing and head motion, spatial registration to the292

standard Montreal Neurological Institute (MNI) space by using293

the deformation field obtained from “New Segmentation”294

(an extension of unified segmentation which obtains more295

robust brain tissue segmentation result) [42] and DARTEL296

(a fast diffeomorphic registration algorithm which achieves 297

better performance on lesion brain group-wise registration) 298

[43] to the co-registered T1-MRI, spatial smoothing using 299

an isotropic Gaussian kernel with FWHM (full-width-at- 300

half-maximum) of 6 mm3, removal of temporal linear trend, 301

temporal band-pass filtering (0.01-0.08 Hz), and regressing 302

out nuisance signals including the head motion profiles 303

(Friston-24 model) and other physiological noise (averaged 304

white-matter signals and averaged cerebrospinal-fluid signals). 305

For each subject, T1 MRI is used to guide spatial normal- 306

ization of RS-fMRI. Specifically, individual T1 MRI is first 307

registered to each patient’s averaged RS-fMRI data after head 308

motion correction and then spatially normalized to the MNI 309

standard space based on tissue segmentation and group-wise 310

registration as implemented in SPM (New Segment + DAR- 311

TEL). As different subjects have different tumor locations, and 312

the group-wise registration iteratively registers each subject to 313

a group-averaged template gradually, the tumor effect (spatial 314

misregistration) could be minimized. The registration quality 315

was visually inspected by experts on MRI analysis (HZ, JL, 316

and LL) with consensus [21], [27], [44]. One subject who have 317

visible tumor-induced distortion in the registered T1 MRI were 318

excluded from further study. The processed RS-fMRI data with 319

good registration are used for FC network construction, which 320

will be described in detail in Section C. 321

For DTI, we use a pipeline toolbox for analyzing brain 322

diffusion images (PANDA) [45] based on the FMRIB Soft- 323

ware Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl/), as detailed 324

before [46]. The procedures include brain tissue extraction 325

using bet command, eddy-current correction, diffusion tensor 326

calculation using dtifit command, and deterministic tractogra- 327

phy using fact command in FSL, which generates all possi- 328

ble fibers within the putative white matter tissue (fractional 329

anisotropy (FA) > 0.2) with angle threshold = 45° and 330

two seeds for each voxel. All above processing steps are 331

carried out in each subject’s native space. To construct SC 332

networks, each subject’s T1 image is first co-registered to its 333
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respective b = 0 s/mm2 (T2-weighted) image based on flirt in334

FSL and then spatially registered to the standard MNI space335

with the same method as used for RS-fMRI registration. The336

resultant deformation field is then applied to map the brain337

parcellation atlas from the MNI space to each individual’s338

native space, which is used to construct SC networks described339

in Section C.340

Note that the same T1 image is used to guide both the341

RS-fMRI and DTI registrations, so that multimodal imaging342

data can be registered in a consistent manner.343

C. Brain Network Construction344

To construct brain functional networks based on RS-fMRI,345

we use the Automated Anatomical Labeling (AAL) atlas,346

which defines 90 regions of interest (ROIs) in the cerebral347

gray matter area in a standard MNI space [47]. For each348

subject, we first extract the ROI mean blood oxygenation level-349

dependent (BOLD) time series si (i ∈ N) based on the AAL350

atlas; then, we construct the functional network N f by defining351

the FC strength between nodes i and j as:352

w
f

i j = Corr(si , s j ), (1)353

where i, j ∈ N ≡ {1, 2, · · · , 90} and i �= j , and Corr(si , s j )354

denotes the Pearson’s correlation between the two BOLD time355

series from any ROI pair (i, j) of the 90 brain regions.356

For construction of DTI-based SC network, Ns , we apply a357

warped individual AAL template in each subject’s native space358

to each subject’s DTI tractography results, and calculate the359

SC between the ROIs i and j using PANDA as the normalized360

total number of fibers connecting the ROI pair (i, j):361

ws
i j =

∑
i, j∈N,i �= j

n( f )/(
ai + a j

2
), (2)362

where n( f ) is the total number of fibers (i.e., the mainstreams363

generated by tractography) linking ROIs i and j , and ai is the364

surface area of the ROI i in its interface between gray matter365

and white matter. Dividing the fiber counts with
ai+a j

2 corrects366

the bias in the SC-strength estimation caused by different ROI367

sizes.368

For both FC and SC networks of each subject, there are369

the same 90 “nodes”. The “edges” connecting every pair of370

the nodes form two weighted networks (N f and Ns ), namely,371

functional and structural brain “connectomics”.372

D. Connectomics Feature Extraction373

After construction of the brain connectomics (i.e., N f and374

Ns ), we use a graph theoretical network analysis (GRETNA)375

toolbox [48] to extract various network properties, including376

nodal degree, small-world properties (shortest path length and377

clustering coefficient), network efficiency properties (global378

and local efficiency), and betweenness centrality [49]. These379

network properties are extracted as connectomics features for380

each node from each network of each subject.381

Specifically, we extract 540 (6 metrics × 90 regions) FC382

features and the same number of SC features for each subject.383

In addition, we also use 12 clinical features (CL for short) from384

each subject as they have been extensively used in prognosis385

evaluation in the clinical practice, including patient’s age, 386

gender, tumor size, WHO grade, tumor’s main and specific 387

locations (in each of the five brain lobes), epilepsy or not, and 388

the involved hemisphere. 389

III. METHOD 390

We first introduce the notations used in this section. 391

X = [x1, · · · , xm] ∈ R
d×m denotes the feature matrix with 392

m samples and d features (for each sample). Each sample 393

(i.e., a column in X) represents one subject with SC, FC 394

or/and CL features. Y = [
y1, · · · , ym

] ∈ {−1, 1, ?}t×m
395

denotes the corresponding label matrix with t labels (here 396

t = 2, i.e., MGMT status and IDH1 status; 1 for MGMT-m 397

and IDH1-m, −1 for MGMT-u and IDH1-w; and ‘?’ for 398

unknown status). Furthermore, X is divided into Xtrain and 399

Xtest , where Xtrain is for training and Xtest is for testing 400

samples. Correspondingly, Y is also divided into Ytrain and 401

Ytest , where Ytrain may be partially unknown. Our purpose 402

is to predict Ytest for the testing samples. We also let Xlast 403

denotes the last row of matrix X. Xi j denotes the element 404

in the i -th row and j -th column of matrix X. 1 denotes the 405

all-ones row vector. Id×d denotes the d × d identity matrix. 406

XT denotes the transpose of matrix X. In addition, we denote 407

the Frobenius norm, �2,1-norm, and nuclear norm of matrix X 408

as ‖X‖F = (
∑

i

∑
j X2

i j )
1/2

, ‖X‖2,1 =
∑

i (
∑

j X2
i j )

1/2
, and 409

‖X‖∗ =
∑

i σi (X), respectively, where σi (X) denotes the i -th 410

largest singular value of matrix X. Finally, we let X0 ∈ R
d×m

411

denote the true underlying feature matrix corresponding to 412

X. Let Y0 ∈ R
t×m and sign

(
Y0

)
respectively denote the 413

true underlying soft label (i.e., the continuous value in R) 414

matrix, and the true underlying hard label (i.e., the discrete 415

value 1 or −1) matrix, where sign (·) is the element-wise sign 416

function. 417

A. Multi-Label Transductive Matrix Completion (MTMC) 418

The MTMC is a well-known multi-label matrix completion 419

model, which is developed with two assumptions. First, linear 420

dependence relationship is assumed between X0 and Y0, 421

i.e., Y0 = WT
[
X0; 1]

, where W ∈ R
(d+1)×t is an implicit 422

weight matrix. Second, X0 is also assumed to be low-rank, 423

i.e., rows (columns) of X0 could be represented by other 424

rows (columns). Letting M0 = [
Y0;X0; 1]

denote the true 425

underlying feature-label matrix corresponding to the observed 426

feature-label matrix M = [Y;X; 1], then, from rank
(
M0

) ≤ 427

rank
(
X0

)+1, we can infer that M0 is also low-rank. The goal 428

of MTMC is to impute M0 given M. In real applications, M is 429

usually contaminated by noise, so the MTMC is formulated 430

as: 431

min
z

μ ‖Z‖∗ + 1

2
‖ZX − X‖2F + γL (ZY, Y) s.t. Zlast = 1 432

(3) 433

where Z= [ZY;ZX;Zlast] ∈ R
(t+d+1)×m denotes the objec- 434

tive matrix to be optimized, ZX denotes the feature subma- 435

trix, and ZY denotes the soft label submatrix. L (ZY, Y) = 436∑
(i, j )∈�Y

l
(
(ZY)i j , Yi j

)
, where �Y denotes the index set of 437
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known labels in Y, and l (·, ·) denotes the element-wise logistic438

loss function:439

l (u, v) = log (1+ exp (−uv)) . (4)440

Once the optimal objective matrix Zopt is determined,441

the labels Ytest of the testing subjects can then be imputed442

by sign
(

Zopt
Ytest

)
, where Zopt

Ytest
is the submatrix of Zopt and443

denotes the optimal soft labels for the testing subjects. Based444

on the formulation of MTMC, we know that Zopt
Ytest

is implicitly445

obtained from Zopt
Ytest
= (Wopt )

T
[
Xopt

test; 1
]

, where Xopt
test is the446

optimal denoised counterpart of Xtest , and Wopt is the optimal447

estimation of the weight matrix W. Although Wopt is not448

explicitly computed, it is implicitly determined by the training449

subjects and their known labels via low-rank approximation450

in Eq. (3). Therefore, for multi-label classification tasks with451

insufficient training subjects, as in our case, the MTMC will452

have the inherent overfitting problem.453

Moreover, as mentioned before, the formulation of the454

MTMC greatly relies on the assumptions of low rank and455

linear setting. Though the low-rank assumption is relatively456

solid and widely accepted, as real data usually lie on low-457

dimensional manifolds, the linear feature-to-label relationship458

assumption implying all subjects to be linearly separable in the459

original feature space is too ideal for the complex nonlinear460

classification problems, as in this study.461

In order to address the limitation of linear classification462

setting of MTMC, Alameda et al. employed a popular kernel-463

based approach and proposed the first kernel-based Nonlinear464

Transductive Matrix Completion (NTMC) model [32]. The465

primary theoretical motivation for the use of kernel tricks is466

the famous Cover’s Theorem [50], which states that, given467

a set of data that is not linearly separable on the original468

feature space, one can, with high probability, transform it to469

a new dataset that is linearly separable, by projecting it to470

a higher-dimensional space via nonlinear feature transforma-471

tion. However, though NTMC benefits from possible linear472

separability of the data in the mapped kernel feature space, it473

also suffers the increased overfitting risk caused by lifting the474

original features to a higher dimensional Reproducing Kernel475

Hilbert Space. Moreover, since the NTMC employs the kernel476

trick to conduct the implicit nonlinear feature transformation,477

it is difficult to further adopt any overfitting-resistant technique478

to alleviate the overfitting deficiency.479

B. Multi-Label Nonlinear Matrix Completion (MNMC)480

The alternative method of making linear models work for481

nonlinear classification is using kernel approximation [51],482

which explicitly maps the original data to a finite dimensional483

feature transformation space:484

� (xi) : Rd → R
h , (5)485

and assures that the expectation of the inner product of any486

two points in the transformed feature space is an unbiased487

estimation of the corresponding kernel function, i.e.,488

K
(
xi , x j

) = E
[〈�(xi ),�(x j )〉

]
. (6)489

The random Fourier feature mapping is a widely used 490

kernel approximation technique [51], which can help revealing 491

nonlinear features of data when used in conjunction with linear 492

algorithms and, for basic tasks such as regression or clas- 493

sification, using nonlinear random Fourier features incurs 494

little or no loss in performance compared with the exact kernel 495

methods [52], [53]. 496

Theoretically, for shift-invariant kernels, Bochner’s theo- 497

rem [54] implies that the random Fourier feature mapping 498

� (·) can be written as: 499

� (xi ) =
(

1/
√

h
) [

cos
(

uT
1 xi + b1

)
, · · · , cos

(
uT

h xi + bh

)]
, 500

(7) 501

where {u1, · · · , uh} are the projection directions sampled 502

according to the distribution from the Fourier transform of the 503

kernel function using Monte Carlo method, and {b1, · · · , bh} 504

are drawn uniformly from [0, 2π]. For instance, for the 505

popularly used Radial Basis Function (RBF) kernel with δ 506

representing the kernel width, 507

K
(
xi , x j

) = ex p
(
−δ

∥∥xi − x j
∥∥2

)
, (8) 508

its sampling distribution is a Gaussian distribution 509

N (0, 2δId×d ). 510

In this study, we propose a Multi-label Nonlinear Matrix 511

Completion (MNMC) model, which is a modification of the 512

conventional MTMC model by introducing random Fourier 513

feature mapping and transductive multi-task feature selection, 514

to jointly predict MGMT and IDH1 statuses. Fig. 2 illustrates 515

our MNMC model. As shown in Fig. 2, we first conduct 516

nonlinear feature transformation, i.e., random Fourier feature 517

mapping, for all subjects X, and get the mapped nonlinear 518

feature matrix: 519

� (X) = [� (x1) , · · · ,� (xm)] . (9) 520

Then the corresponding MTMC model in the transformed 521

nonlinear feature space can be formulated as: 522

min
z

μ
∥∥∥Z̃

∥∥∥∗ +
1

2

∥∥∥Z̃X −� (X)
∥∥∥

2

F
+ γL

(
Z̃Y, Y

)
523

s.t. Z̃last = 1, (10) 524

where Z̃ =
[
Z̃Y; Z̃X; Z̃last

]
denotes the objective matrix to be 525

optimized in the mapped nonlinear feature space, Z̃Y denotes 526

the soft label submatrix, and Z̃X denotes the feature submatrix. 527

As previously stated, by mapping the original features 528

to a relatively higher-dimensional nonlinear feature space, 529

the subjects may be linearly separated with higher probability. 530

However, this advantage comes at the expense of exacerbating 531

the overfitting issue. To address this issue, we further employ 532

the transductive multi-task feature selection technique to refine 533

the imputed soft labels Z̃Y by introducing a following regu- 534

larization term into the Eq. (10): 535

min
Z̃,W̃

λ
∥∥∥W̃

∥∥∥
2,1
+ β

2

∥∥∥Z̃Y − W̃T
[
Z̃X; 1

]∥∥∥
2

F
, (11) 536

where W̃ ∈ R
(h+1)×t denotes the explicit predictor matrix 537

(with each column of W̃ corresponding to a predictor for 538
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Fig. 2. The illustration of Multi-label Nonlinear Matrix Completion (MNMC) model.

each task), and the l2,1-norm imposes the row sparsity on539

W̃ to learn the shared representations across all related tasks540

by selecting the common discriminative features. In addition,541

please note that, in the second term of Eq. (11), we use542

all subjects, including the training and testing samples, to543

simultaneously conduct feature selection. In other words, we544

leverage the testing subjects as an effective supplement to545

the limited training subjects to alleviate the over-fitting issue546

caused by limited training data. Finally, by combining Eq. (10)547

and Eq. (11), our proposed MNMC model is formulated as:548

min
Z̃,W̃

{
μ

∥∥∥Z̃
∥∥∥∗ +

1

2

∥∥∥Z̃X−� (X)
∥∥∥

2

F
+γL

(
Z̃Y, Y

)
+λ

∥∥∥W̃
∥∥∥

2,1
549

+β

2

∥∥∥Z̃Y − W̃T
[
Z̃X;1

]∥∥∥
2

F

}
s.t. Z̃last = 1. (12)550

Obviously, from Eq. (12), we can see that the conventional551

MTMC model is the special case of our proposed MNMC552

model if set � (X) to the identity function and set the553

parameters λ and β to zeroes.554

C. Optimizing MNMC via Block Prox-Linear Method555

The optimization of the MNMC model is not trivial, as it556

contains the two coupled variables (Z̃X and W̃) and one all-557

1-row constraint (Z̃last = 1), along with the fact that the558

�2,1-norm and nuclear norm are non-smooth penalties. Here,559

we employ BPL method [28] to design an algorithm for560

solving the optimization problem in the MNMC model. The561

BPL method is a recently proposed Block Coordinate Descent562

method, which can efficiently solve the following standard563

unconstrained optimization problems in the form of [28]: 564

min
X1,··· ,Xs

F (X1, · · · , Xs)+
∑s

i=1
Ri (Xi ), (13) 565

where X1, · · · , Xs ∈ R
m×n , F (X1, · · · , Xs) is continu- 566

ously differentiable nonconvex function, and Ri (Xi ) , i = 567

1, · · · , s, are proximable non-smooth functions (‘proximable’ 568

means that it is easy to obtain the minimizer of R (Xi ) + 569

1
2τ ‖Xi − A‖2F for any A ∈ R

m×n and τ > 0). The BPL 570

method cyclically updates each block of variables in Gauss- 571

Seidel style by minimizing a prox-linear surrogate function. 572

Specifically, at each iteration k, Xi , i = 1, · · · , s, are updated 573

as follows: 574

Xk
i = arg min

xi

{
Ri (Xi )+ 1

2τk
Xi

∥∥∥Xi − (Xk−1
i 575

−τk
Xi
∇Xi F(Xk

<i , Xk−1
i , Xk−1

>i ))
∥∥∥

2

F

}
, (14) 576

where (Xk
<i , Xk−1

i , Xk−1
>i ) denotes the point (Xk

1 , · · · , Xk
i−1, 577

Xk−1
i , Xk−1

i+1 , · · · , Xk−1
s ),∇Xi F

(
Xk

<i , Xk−1
i , Xk−1

>i

)
denotes 578

the gradient of F (X1, · · · , Xs) with respect to Xi at the 579

point (Xk
<i , Xk−1

i , Xk−1
>i ), and τk

Xi
is a step size which 580

can be determined by the line search according to the 581

Armijo-Goldstein rule. 582

For our proposed MNMC model, if let G
(

Z̃
)

be an 583

indicator function defined as: 584

G
(

Z̃
)
=

{
0, Z̃last = 1
∞, otherwise,

(15) 585
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and let:586

R1

(
Z̃
)
= μ

∥∥∥Z̃
∥∥∥∗ + G

(
Z̃

)
, (16)587

R2

(
W̃

)
= λ

∥∥∥W̃
∥∥∥

2,1
, (17)588

F
(

Z̃, W̃
)
= β

2

∥∥∥Z̃Y − W̃T
[
Z̃X; 1

]∥∥∥
2

F
+ γL

(
Z̃Y, Y

)
589

+ 1

2

∥∥∥Z̃X −� (X)
∥∥∥

2

F
, (18)590

the proposed MNMC model can be reformulated as the591

following unconstrained form:592

min
Z̃,W̃

F
(

Z̃, W̃
)
+ R1

(
Z̃
)
+ R2

(
W̃

)
. (19)593

Therefore, according to the BPL method, the variables Z̃ and594

W̃ can be iteratively updated as follows:595

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z̃k = arg min
Z̃

{
R1

(
Z̃
)
+ 1

2τk
Z̃

×
∥∥∥Z̃− (Z̃

k−1 − τk
Z̃
∇Z̃F(Z̃k−1, W̃k−1))

∥∥∥
2

F

}
(20a)

W̃k = argarg min
W̃

{
R2

(
W̃

)
+ 1

2τk
W̃∥∥∥W̃− (W̃k−1 − τk

W̃
∇W̃F(Z̃k, W̃k−1))

∥∥∥
2

F

}
. (20b)

596

Specifically, the variables Z̃k in Eq. (20a) can be analytically597

solved by the following steps:598

⎧
⎨

⎩
Z̃k = DDDμτk

Z̃

(
Z̃k−1 − τk

Z̃
∇Z̃F

(
Z̃k−1, W̃k−1

))

(
Z̃k

)

last
= 1,

(21)599

where DDDμτk
Z̃

(·) denotes the proximal operator of the nuclear600

norm (with the details provided in the online Supplementary601

Materials) [55], and ∇Z̃F (·, ·) can be calculated as:602

∇Z̃F
(

Z̃, W̃k−1
)

603

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
(Z̃X −� (X))

+ βŴk−1
((

W̃k−1
)T [

Z̃X;1
]
− Z̃Y

)}
, (i, j) ∈ �X

{
−γ Yi j

/ (
exp

(
Z̃i j · Yi j

)
+ 1

)

+β

(
Z̃i j −

((
W̃k−1

)T
[
Z̃X; 1

])

i j

)}
, (i, j) ∈ �Y

β

(
Z̃i j −

((
W̃k−1

)T
[
Z̃X;1

])

i j

)
, (i, j) ∈ �C

Y

0, otherwise

604

(22)605

where �X denotes the index set of elements in Z̃X, Ŵk−1
606

denotes the first h rows of W̃k−1, and �C
Y denotes the index607

set of unknown labels in Y. Also, the variables W̃k in Eq. (20b)608

can be analytically solved by:609

W̃k = JJJ λτk
W̃

(
W̃k−1 − τk

W̃
∇W̃F

(
Z̃k , W̃k−1

))
(23)610

Algorithm 1 Proposed MNMC Algorithm
Input: Matrices X, Y, and parameters h, δ, λ, μ, γ, β.
Output: W̃opt , Z̃opt

1 Compute � (X) according to Eq. (9);
2 Initialize W̃0 as the zeroes matrix, and Z̃0 as the rank 1

approximation of [Y;� (X);1] with the unobserved
entries set to 0;

3 While not converged do
4 Update Z̃k according to Eq. (21);
5 Update W̃k according to Eq. (23);
6 End while;
7 Return W̃opt ← W̃k , Z̃opt ← Z̃k .

where JJJ λτk
W̃

(·) denotes the proximal operator of l2,1-norm 611

(with the details provided in the online Supplementary Mate- 612

rials) [56], and ∇W̃F (·, ·) can be calculated as: 613

∇W̃F
(

Z̃k, W̃
)
= β

[
Z̃k

X; 1
]([

Z̃k
X; 1

]T
W̃ −

(
Z̃k

Y

)T
)

(24) 614

Based on the aforementioned analysis, the proposed algo- 615

rithm can be summarized as in Algorithm 1. 616

Theoretically, for nonconvex non-smooth problems with the 617

separable non-smooth terms, Xu and Yin [28] have demon- 618

strated that the BPL method is guaranteed to converge to a 619

critical point, as long as ∇Xi F
(

Xk
<i , Xi , Xk−1

>i

)
, i = 1, · · · , s, 620

has Lipschitz continuity constant Lk
Xi

with respect to variable 621

Xi , i.e., 622

∥∥∥∇Xi F
(

Xk
<i , U, Xk−1

>i

)
−∇Xi F

(
Xk

<i , V, Xk−1
>i

)∥∥∥
F

623

≤ Lk
Xi
‖U− V‖F , ∀U, V ∈ Rm×n . (25) 624

For our MNMC model, we can easily see that the objec- 625

tive function in Eq. (19) has the two separable non-smooth 626

terms, i.e., R1

(
Z̃
)

and R2

(
W̃

)
, and it is easy to verify that 627

∇Z̃F
(

Z̃, W̃k−1
)

and ∇W̃F
(

Z̃k, W̃
)

are Lipschitz continuous 628

with constants Lk
Z̃

and Lk
W̃

(with the details provided in the 629

online Supplementary Materials): 630

Lk
Z̃
= max

{√
4σ 2

1

(
βŴk−1

)
+4β2 + γ 2/8 , 631

√

2+ 4σ 2
1

(
βŴk−1

(
Ŵk−1

)T
)
+ 4σ 2

1

(
β

(
Ŵk−1

)T
)}

632

(26) 633

Lk
W̃
= σ1

(
β

[
Z̃k

X; 1
] [

Z̃k
X; 1

]T
)

. (27) 634

Based on this fact, our proposed optimization algorithm also 635

has the provable convergence, and the concrete convergence 636

analysis is the same as in [28]. 637

IV. RESULTS 638

A. Experimental Setting 639

Due to the limited number of samples, we use 10-fold 640

cross validation to evaluate the performance of MGMT and 641
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TABLE II
COMPARISON OF CHARACTERISTICS FOR THE COMPETING METHODS

IDH1 status prediction. Specifically, we randomly partition642

the whole dataset into 10 roughly equivalent subsets, and then643

successively select each subset as the testing data and assemble644

the remaining subsets as the training data. This process is645

independently repeated for 20 times, and the average accuracy646

(ACC), average sensitivity (SEN), average specificity (SPE)647

and the average area under receiver operating characteristic648

curve (AUC) are reported as the final performance measures.649

Specifically, the average ACC, SEN, and SPE are obtained650

by averaging all the 20 ACC, SEN, and SPE scores across651

the 20 trials, respectively, while the average AUC is obtained652

by computing AUC once based on all prediction scores of 20653

trials. To this end, we label the subjects with MGMT-m and654

IDH1-m statuses as “positive” samples (favorable prognosis),655

and those with MGMT-u and IDH1-w as “negative” samples656

(unfavorable prognosis).657

In our experiments, the proposed MNMC method involves658

6 parameters (i.e., h, δ, μ, γ , λ and β) that need659

to be determined. To this end, we use a two-stage660

grid searching strategy to determine the optimal values661

of these parameters. Specifically, we start with conduct-662

ing the first-stage hierarchical optimization-based coarse-663

grained grid searches on the training data with wide ranges664

(h ∈ {1000, 2000, 3000, 4000, 5000}, δ, μ, γ , λ, β ∈665

{0.0001, 0.001, 0.01, 0.1, 1, 10, 20, 30, 50, 100}) to explore666

the bounds of the search spaces. For each parameter, we use667

10-fold cross-validation with 20 repetitions to evaluate the668

average prediction performance (i.e., accuracy, ACC) by vary-669

ing its value while fixing the other five parameters (i.e.,670

h is fixed as 3000, and δ, μ, γ , λ, β are fixed as 1,671

respectively), so that we can select a narrowed parameter672

range with a relatively better ACC as the new search bounds673

in the second-stage fine-grained optimizations. Based on this674

principle, we can determine the search bounds of 5 para-675

meters as follows: δ ∈ [0.01, 10], μ ∈ [0.001, 0.1], γ ∈676

[0.1, 20], λ ∈ [0, 20] and β ∈ [1, 30]. Exceptionally, for677

parameter h, we observed that, with its increase from 3000 to678

5000, the ACC increased slightly; however, the computation679

cost increased significantly. Therefore, in order to balance680

the performance and computation complexity, we select its681

search bounds as [1000, 3000]. After that, to further determine682

the optimal parameter values, we conduct the second-stage683

global optimization-based fine-grained grid searches with684

the following ranges: h ∈ {1000, 1500, 2000, 2500, 3000},685

δ ∈ {0.01, 0.05, 0.1, 0.5, 1, 10}, μ ∈ {0.001, 0.01,686

0.02, 0.04, 0.06, 0.08, 0.1}, γ ∈ {0.1, 0.5, 1, 5, 10, 15, 20},687

λ ∈ {0, 2, 4, 6, 8, 10, 20}, and β ∈ {1, 5, 10, 15, 20, 25, 30}. 688

Specifically, we conduct another 10-fold cross validation with 689

20 repetitions on the training data to evaluate the average 690

ACC with each combination of the above parameter values; 691

those leading to the best ACC are used to construct the 692

optimal MNMC model. Finally, the constructed optimal model 693

is applied to the testing data. 694

B. Competing Methods 695

To validate the effectiveness of our proposed method, 696

we have performed extensive experiments by also comparing 697

with five different competing methods, including two widely- 698

used classic methods (RF [57] and kernel Transductive SVM 699

(TSVM) [58]) and three state-of-the-art matrix completion 700

methods (MTMC [23], MIMC [27], and NTMC [32]). Table II 701

summarizes the five competing methods and our proposed 702

MNMC method with the characteristics of linear/nonlinear 703

classification setting, inductive/transductive learning scheme, 704

single-label/multi-label classification mode, and adaptive fea- 705

ture selection strategy. All the involved parameters in these 706

competing methods are optimized by using the same nested 707

10-fold cross-validation procedure as in our MNMC model. 708

Specially, for RF method, we conduct grid search for the 709

number of decision trees from the range {10, 20, 50, 100, 710

200, 300, 400, 500}, the number of predictors from the range 711

{2, 5, 10, 20, 50, 100, 150, 200}, and the minimum number 712

of observations per tree leaf from the range {1, 2, 3}; For 713

TSVM method, we conduct grid search for the regularization 714

parameter from the range {0.00001, 0.0001, 0.001, 0.01, 715

0.1, 1, 10}, and the RBF kernel (variance) parameter from 716

the range {0.01, 0.05, 0.1, 0.5, 1, 5}; For MTMC and MIMC 717

methods, we conduct grid search for those counterpart parame- 718

ters with the same ranges as our MNMC method. For NTMC 719

model, we conduct a grid search for the regularization para- 720

meter and the RBF kernel (variance) parameter with the same 721

range as TSVM, and the decomposition size with the range 722

{2, 3, 4, 5}. In addition, since our proposed MNMC, MIMC 723

and RF have the inline adaptive feature selection function, 724

to make a fair comparison, for those methods without feature 725

selection, we adopt the popular feature selection methods to 726

help them remove irrelevant or redundant features. Specifi- 727

cally, the LASSO (Least Absolute Shrinkage and Selection 728

Operator) [59] is employed to facilitate the single-task TSVM 729

method. Also, the semi-supervised multi-task feature selection 730

method proposed by Li et al. [33] is employed to facilitate 731

multi-task MTMC and NTMC methods. 732
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TABLE III
COMPARISON OF PREDICTION PERFORMANCE FOR THE COMPETING METHODS USING Single Modality (STD: STANDARD DEVIATION)

TABLE IV
COMPARISON OF PREDICTION PERFORMANCE FOR THE COMPETING METHODS USING Multiple Modalities (STD: STANDARD DEVIATION)

TABLE V
COMPARISON OF PREDICTION PERFORMANCE FOR THE COMPETING METHODS AND OUR PROPOSED MNMC METHOD UNDER THE THREE

DIFFERENT EXPERIMENTAL SETTINGS USING MULTIPLE MODALITIES (STD: STANDARD DEVIATION)

C. Prediction Results733

First, we evaluate MGMT/IDH1 status prediction perfor-734

mance using features from single modality, i.e., based on CL,735

SC, and FC features, separately. Table III reports the experi-736

mental results of the five competing methods and our proposed737

method, where the best results are highlighted. From Table III,738

we can see that, except that the TSVM achieves higher SEN739

than our proposed MNMC method (i.e., 72.3% vs. 70.8%)740

in IDH1 status prediction using SC features, the MNMC 741

consistently outperforms all other competing methods (i.e., 742

RF, TSVM, MTMC, NTMC and MIMC) in almost all per- 743

formance metrics. The results indicate that our proposed 744

nonlinear feature transformation and transductive multi-task 745

feature selection strategies can improve the performance of 746

MGMT and IDH1 status prediction. 747

Second, considering that different modalities could pro- 748

vide complementary information and thus may enhance the 749
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prediction performance, we also perform experiments based750

on multiple modality fusion. We construct a new feature751

matrix with concatenated CL, FC and SC features at each752

column. Table IV summarizes the prediction results of the753

five competing methods and our proposed MNMC method. As754

expected, the modality fusion can help improve the prediction755

performance. Our proposed method not only achieves the high-756

est ACC for MGMT (74.6%) and IDH1 (87.0%) prediction,757

but also consistently outperforms the single-task RF/TSVM758

and the multi-task MTMC/NTMC/MIMC in terms of SEN759

and AUC.760

Third, we also investigate the prediction performance when761

applying the proposed MNMC method to the only 45 subjects762

with both known MGMT and IDH1 statuses (indicated by763

‘MNMC(45)’), and applying it to the two binary classification764

tasks separately (indicated by ‘MNMC(S)’). Table V reports765

the experimental results of the MNMC method with the three766

different experimental settings, i.e., MNMC, MNMC(45), and767

MNMC(S). From Table V, we can observe (1) the MNMC(45)768

method consistently outperforms the classic methods (RF and769

TSVM) in all performance metrics, and it also obtains a770

comparable prediction performance with the MNMC method771

applied to all 47 subjects, and (2) the MNMC(S) method772

obtains a lower prediction performance than the MNMC773

method applied to the two binary classification tasks simul-774

taneously, but outperforms the classic methods applied to the775

two binary classification tasks separately. The results further776

validated that our proposed MNMC model can effectively777

exploit the potential relationship between the two molecular778

indicators (i.e., MGMT and IDH1) to improve the overall779

prediction performance.780

In addition, to check the statistical significance of our781

results, we further conduct Delong’s test [60] at 95% con-782

fidence level between AUC values of our proposed method783

and the competing methods, with the corresponding p-values784

shown in Table III, Table IV, and Table V. DeLong’s test785

is a widely-used nonparametric statistical approach to the786

analysis of areas under correlated ROC curves, which can be787

employed to assess statistical significance by using the theory788

on generalized U-statistics to generate an estimated covariance789

matrix [61]–[63]. The results indicate that, except that our790

method is marginally significantly better than MIMC (with791

p-value = 0.079) in IDH1 status prediction using multiple792

modalities, our method is statistically superior to all other793

competing methods in terms of AUC.794

D. Effects of the Proposed Strategies795

The main argument in our work is that the nonlinear feature796

transformation and the transductive multi-task feature selection797

strategies can advance the linear separability of the data and798

adaptively select a small set of crucial features across the799

related tasks, respectively, and thus reduce the prediction errors800

of MGMT/IDH1 statuses. To validate the effects of these two801

strategies, we further carry out some experiments to compare802

our proposed MNMC method that considers only one of the803

two strategies. Specifically, we use the “MTMC-S” to indicate804

the counterpart with only the transductive multi-task feature805

selection strategy, i.e., the MNMC model with � (·) being806

Fig. 3. Comparison of prediction performance (%) of the MNMC and its
counterparts without nonlinear feature transformation (MTMC-S), multi-
task feature selection (MTMC-N), and both (MTMC). (a) IDH1-m vs.
IDH1-w (b) MGMT-m vs. MGMT-u.

Fig. 4. Sensitivity analysis of parameters h and δ in our proposed MNMC
method.

the identity function. On the other hand, we use “MTMC- 807

N” to indicate the counterpart with only the nonlinear feature 808

transformation, i.e., the MNMC method with parameters λ = 0 809

and β = 0. 810

We present experimental results of the counterpart methods 811

and our proposed method in Fig.3. For better understanding, 812

we also present the performance of MTMC as baseline method 813

that does not consider any of the two strategies. From the 814

two graphs in Fig. 3, we can observe (1) a method that 815

utilizes any of the two strategies is still better than the MTMC 816

baseline method, and (2) the inclusion of both strategies into 817

the objective function is better than the inclusion of just one 818

strategy. 819

E. Sensitivity Analysis of Parameters 820

Next, we investigate the sensitivity of the proposed MNMC 821

method to the parameter setting. There are six different para- 822

meters (i.e., h, δ, μ, γ , λ, β) that need to be determined 823

in our method. Considering that parameters h and δ, which 824

determine the nonlinear feature mapping in Eq. (7), are 825

relatively independent to other four parameters, we design a 826

set of experiments to investigate how these two parameters 827

jointly affect the prediction performance of MNMC. Fig. 4 828

reports the average ACC of both the MGMT and IDH1 status 829

predictions, with varying h and δ by fixing the other four 830

parameters, i.e., μ = 0.04, γ = 10, λ = 8, β = 10. As shown 831

in Fig. 4, the optimal working point of our proposed method 832

is at h = 2500 and δ = 0.1. We also notice that the working 833

point is on a relatively flat part of the performance surface, 834

implying that our proposed method is not very sensitive to 835

the variations of the parameters h and δ around the optimal 836

working point. 837

On the other hand, we also carry out four sets of experi- 838

ments to explore the sensitivity of parameters μ, γ , λ and β, 839
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Fig. 5. Sensitivity analysis of the parameters μ, γ, λ and β in our proposed MNMC method. (a) ACC performance w.r.t.μ. (b) ACC performance
w.r.t. γ. (c) ACC performance w.r.t. λ. (d) ACC performance w.r.t. β.

respectively. Fig. 5 reports the average ACC of both the840

MGMT and IDH1 status predictions, with varying μ, γ , λ841

and β, respectively, when fixing the other parameters. First,842

we can observe that the performance is relatively stable if the843

parameters μ, γ and β respectively falls in a certain range844

(i.e., μ ∈ [0.04, 0.08], γ ∈ [5, 15], β ∈ [10, 25]), and the845

performance deteriorates when they fall outside of the range.846

Second, we observe that the performance is largely affected847

by the value of λ, suggesting the importance of selecting848

the optimal λ value for MGMT and IDH1 status predictions.849

This is reasonable since the parameter λ controls the sparsity850

of the weight matrix and hence determines the scale of851

the optimal feature subset. Finally, Fig. 5(c) shows that the852

prediction accuracy with feature selection (i.e., λ > 0) is better853

than the counterpart without feature selection (i.e., λ = 0),854

demonstrating again the importance of feature selection.855

V. CONCLUSION856

In this paper, we aim to predict MGMT and IDH1 statuses857

for HGG patients. Considering that the available imaging data858

are constrained in size and have a complex feature-to-label859

relationship, we propose a novel multi-label nonlinear classi-860

fication model within a transductive learning framework, i.e.,861

Multi-label Nonlinear Matrix Completion (MNMC) model,862

to address this task. Compared with the conventional MTMC863

model, the proposed MNMC not only addresses the limitation864

of linear classification setting by lifting the original features865

to a more possible linearly separable nonlinear feature space,866

but also conducts a transductive multi-task feature selection867

to refine the predictions of MGMT and IDH1 statuses for868

the testing subjects. Finally, in order to validate our proposed869

method, we conduct extensive experiments using 47 subjects870

with both the DTI and RS-fMRI imaging data and the incom-871

plete MGMT/IDH1 statuses. The promising results verify the872

advantages of our proposed MNMC method over the widely-873

used single-task or multi-task classifiers. Also, for the first874

time, we show the feasibility of MGMT and IDH1 status pre-875

diction based on the preoperative multi-modality neuroimaging876

and connectomics analysis.877

However, this study still has some limitations. First, larger878

patient populations with more heterogeneous data origins are879

needed to investigate the generalizability and robustness of880

our proposed method. Second, our proposed MNMC model881

is able to deal with the missing values in the label matrix,882

but cannot handle the missing values in the feature matrix.883

Future work will focus on extending our proposed MNMC884

model to handle the missing features, and integrate other885

useful sources of information for improving the prediction 886

performance of MGMT and IDH1 statuses. Finally, based on 887

RS-fMRI, other FC metrics such as partial correlation-based 888

FC can be extracted as additional features. Note that partial 889

correlation is also widely used in functional network construc- 890

tion and has been suggested to measure mainly the direct and 891

effective connectivities [64], [65]. It could supplement the 892

Pearson’s correlation-based FC to achieve better prediction, 893

which will be our future work. 894
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