
Under review as a conference paper at ICLR 2019

UNDERSTANDING AND IMPROVING SEQUENCE-
LABELING NER WITH SELF-ATTENTIVE LSTMS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper improves upon the line of research that formulates named en-
tity recognition (NER) as a sequence-labeling problem. We use so-called
black-box long short-term memory (LSTM) encoders to achieve state-of-
the-art results while providing insightful understanding of what the auto-
regressive model learns with a parallel self-attention mechanism. Specif-
ically, we decouple the sequence-labeling problem of NER into entity
chunking, e.g., BarackB ObamaE wasO electedO , and entity typing, e.g.,
BarackPERSON ObamaPERSON wasNONE electedNONE , and analyze how the
model learns to, or has difficulties in, capturing text patterns for each of the
subtasks. The insights we gain then lead us to explore a more sophisticated
deep cross-Bi-LSTM encoder, which proves better at capturing global interactions
given both empirical results and a theoretical justification.

1 INTRODUCTION

Named entity recognition is an important task in information extraction in which we seek to locate
entity chunks in text and classify their entity types. Originally a structured prediction task, NER has
since been formulated as a task of sequential token labeling, much like text chunking and part-of-
speech tagging. With the ability to compute representations of past and future context respectively
for each token, bidirectional LSTM (Bi-LSTM) has proved a robust building block for sequence-
labeling NER (Huang et al., 2015; Ma & Hovy, 2016; Chiu & Nichols, 2016). However, it has
been predominantly used as a black box; research directed to understanding how the model learns
to tackle the task is minimal.

In this work, we decouple sequence-labeling NER into the entity chunking and entity typing sub-
tasks, and seek insight into what patterns LSTM learns to capture or has difficulties capturing. We
propose the use of a fast and effective parallel self-attention mechanism alongside Bi-LSTM. Unlike
traditional attention mechanisms used for tasks such as machine translation (Luong et al., 2015) and
sentence classification (Conneau et al., 2017; Lin et al., 2017), our self-attentive Bi-LSTM uses the
hidden state of each token as its own query vector and computes context vectors for all tokens in par-
allel. For both subtasks, we then find important global patterns that cross past and future context, and
in particular discover the way multi-chunk entities are handled. Furthermore, we discover that the
theoretical limitations of traditional Bi-LSTMs harms performance on the task, and hence propose
using a cross construction of deep Bi-LSTMs. As a result, with these cross structures, both self-
attentive Bi-LSTM and cross-Bi-LSTM achieve new state-of-the-art results on sequence-labeling
NER.

In Section 3, the normal Bi-LSTM-CNN model is formulated. Section 4 details the computation of
the parallel self-attention mechanism. Section 5 presents the empirical results and detailed analyses
of the models, with a particular focus on patterns captured for {B, I,E} labels. Finally in Sec-
tion 6, cross-Bi-LSTM-CNN is formulated and evaluated on a theoretical basis. Our contribution is
threefold:

• We provide insightful understanding of how a sequence-labeling model tackles NER and
the difficulties it faces;

• We propose a fast and effective self-attention mechanism for sequence labeling;
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• We propose using cross-Bi-LSTM-CNN for sequence-labeling NER with theoretically-
grounded improvements.

2 RELATED WORK

Many have attempted tackling the NER task with LSTM-based sequence encoders (Huang et al.,
2015; Ma & Hovy, 2016; Chiu & Nichols, 2016; Lample et al., 2016). Among these, the most
similar to the proposed Bi-LSTM-CNN is the model proposed by Chiu & Nichols (2016). In contrast
to previous work, Chiu & Nichols (2016) stack multiple layers of LSTM cells per direction, and also
use a CNN to compute character-level word vectors alongside pre-trained word vectors. We largely
follow their work in constructing the Bi-LSTM-CNN, including the selection of raw features, the
CNN, and the multi-layer Bi-LSTM. The subtle difference is that they send the output of each
direction through separate affine-softmax classifiers and then sum their probabilities, effectively
forming an ensemble of forward and backward LSTM-CNNs. Another difference is that they focus
on proposing a new representation of external lexicon features, which we do not make use of in this
work.

The modeling of global context for sequential-labeling NER has been accomplished using traditional
models with intensive feature engineering and conditional random fields (CRF). Ratinov & Roth
(2009) build the Illinois NER tagger with feature-based perceptrons. In their analysis, the usefulness
of Viterbi decoding is minimal, as class transition patterns only occur in small chunks and greedy
decoding can handle them comparatively well. On the other hand, recent research on LSTM or CNN-
based encoders report empirical improvements brought by CRF (Huang et al., 2015; Ma & Hovy,
2016; Lample et al., 2016; Strubell et al., 2017), as it discourages illegal predictions by explicitly
modeling class transition probabilities. In contrast, the cross structures of self-attention and cross-
Bi-LSTM studied in this work provide for the direct capture of global patterns and extraction of
better features to improve class observation likelihoods.

Various attention mechanisms have been proposed and shown success in natural language tasks.
They lighten the LSTM’s burden of compressing all relevant information into a single hidden state
by consulting past memory. For seq2seq models, attention has been used for current decoder hidden
states (Luong et al., 2015). For models computing sentence representations, trainable weights are
used for self-attention (Conneau et al., 2017; Lin et al., 2017). In this work, we propose using a
token-level parallel self-attention mechanism for sequential token-labeling and show that it enables
the model to capture cross interactions between past and future contexts.

3 BI-LSTM-CNN FOR SEQUENCE LABELING

3.1 CNN AND WORD FEATURES

All models in our experiments use the same set of raw features: word embedding, word capitaliza-
tion pattern type, character embedding, and character type.

For character embedding, 25d vectors are randomly initialized and trained end-to-end with the
model. Appended to these are 4d one-hot character-type features indicating whether a character
is uppercase, lowercase, digit, or punctuation (Chiu & Nichols, 2016). In addition, an unknown
character vector and a padding character vector are also trained. We unify the word token length to
20 by truncation and padding. The resulting 20-by-(25+4) feature map of each token are applied to
a character-trigram CNN with 20 kernels per length 1 to 3 and max-over-time pooling to compute a
60d character-based word vector (Kim et al., 2016; Chiu & Nichols, 2016; Ma & Hovy, 2016).

For word embedding, pre-trained 300d GloVe word vectors (Pennington et al., 2014) are used with-
out further tuning. In addition, 4d one-hot word capitalization features indicate whether a word is
uppercase, upper-initial, lowercase, or mixed-caps (Collobert et al., 2011; Chiu & Nichols, 2016).

Throughout this paper, we use X to denote the n-by-dx matrix of raw sequence features, with n
denoting the number of word tokens in a sentence and dx = 60 + 300 + 4.
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3.2 DEEP BI-LSTM

Given a sequence of input feature vectors x1, x2, . . . , xT ∈ Rd1, an LSTM cell computes a sequence
of hidden feature vectors h1, h2, . . . , hT ∈ Rd2 by

gt = tanh(Wgxt + Vght−1 + bg)

it = σ(Wixt + Viht−1 + bi)

ft = σ(Wfxt + Vfht−1 + bf )

ot = σ(Woxt + Voht−1 + bo)

ct = gt � it + ct−1 � ft
ht = tanh(ct)� ot,

where h0, c0 ∈ Rd2 are zero vectors, Wg,Wi,Wf ,Wo ∈ Rd2×d1, Vg, Vi, Vf , Vo ∈ Rd2×d2,
bg, bi, bf , bo ∈ Rd2 are trainable weight matrices and biases, tanh denotes hyperbolic tangent, σ
denotes sigmoid function, and � denotes element-wise multiplication.

Bidirectional LSTMs (Bi-LSTMs) are used to capture the future and the past for each time step.
Following Chiu & Nichols (2016), 4 distinct LSTM cells – two in each direction – are stacked to
capture higher level representations:

−→
H =

−−−−→
LSTM2(

−−−−→
LSTM1(X))

←−
H =

←−−−−
LSTM4(

←−−−−
LSTM3(X))

H =
−→
H ||

←−
H,

where
−−−−→
LSTM i,

←−−−−
LSTM i denote applying LSTM cell i in forward, backward order,

−→
H,
←−
H denote

the resulting feature matrices of the stacked application, and || denotes row-wise concatenation. In
all our experiments, 100d LSTM cells are used, so H ∈ Rn×dh and dh = 200.

3.3 AFFINE-SOFTMAX AND CHUNK LABELS

Finally, suppose there are dp token classes, the probability of each of which is given by the compo-
sition of affine and softmax transformations:

st = HtWp + bt

pti =
esti∑dp

j=1 e
stj
,

where Ht is the tth row of H , Wp ∈ Rdh×dp , b ∈ Rdp are a trainable weight matrix and bias, and
sti and stj are the i-th and j-th elements of st.

Following Chiu & Nichols (2016), we use the 5 chunk labels O,S,B, I , and E to denote if a word
token is {O}utside any entities, the {S}ole token of an entity, the {B}eginning token of a multi-
token entity, {I}n the middle of a multi-token entity, or the {E}nding token of a multi-token entity.
Hence when there are P types of named entities, the actual number of token classes dp = P × 4+1
for sequence labeling NER.

4 SELF-ATTENTIVE BI-LSTM-CNN FOR SEQUENCE LABELING

4.1 PARALLEL MULTI-HEAD SELF-ATTENTION

We propose using a token-level self-attention mechanism (Figure 1) that is computed after the auto-
regressive Bi-LSTM in Section 3.2. This has two benefits over traditional auto-regressive attention,
which wraps stacked LSTM cells to look at past tokens at each time step for each direction of Bi-
LSTM. First, it allows each token to look at both past and future sequences simultaneously with
one combined hidden state of past and future, thus capturing cross interactions between the two
contexts. And secondly, since all time steps run in parallel with matrix computations, it introduces
little computation time overhead.
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Figure 1: Computation of i-th attention head of 4th word token

Table 1: Dataset Statistics

Split #Tokens #Entities Entity type: names Entity type: values
Train 1,088,503 81,828 PERSON, NORP, FAC,

ORG, GPE, LOC,
PRODUCT, EVENT,
WORK OF ART, LAW,
LANGUAGE

DATE, TIME,
PERCENT, MONEY,
QUANTITY,
ORDINAL,
CARDINAL

Validate 147,724 11,066
Test 152,728 11,257

Total 1,388,955 104,151

Specifically, given the hidden features H of a whole sequence, we project each hidden state to
different subspaces, depending on whether it is used as the {q}uery vector to consult other hidden
states for each word token, the {k}ey vector to compute its dot-similarities with incoming queries, or
the {v}alue vector to be weighted and actually convey information to the querying token. Moreover,
as different aspects of a task can call for different attention, multiple “attentions” running in parallel
are used, i.e., multi-head attention (Vaswani et al., 2017).

Formally, let m be the number of attention heads and dc be the subspace dimension. For each head
i ∈ {1..m}, the attention weight matrix and context matrix are computed by

αi = σ

(
HW qi(HW ki)

T

√
dc

)

Ci = αiHW vi,

where W qi,W ki,W vi ∈ Rdh×dc are trainable projection matrices and σ performs softmax along
the second dimension. Each row of the resulting α1, α2, . . . , αm ∈ Rn×n contains the attention
weights of a token to its context, and each row of C1, C2, . . . , Cm ∈ Rn×dc is its context vector.
Since H =

−→
H ||

←−
H , the computation of αi and Ci models the cross interaction between past and

future.

4.2 AFFINE-SOFTMAX WITH MULTI-HEAD CONTEXT

Finally, for Bi-LSTM-CNN augmented with the attention mechanism, the hidden vector and context
vectors of each token are considered together for classification:

sct = (Ht||C1
t ||C2

t ||...||Cm
t )Wc + bt

pcti =
es

c
ti∑dp

j=1 e
sctj
,

where || denotes row-wise concatenation, Ci
t is the t-th row of Ci, and Wc ∈ R(dh+mdc)×dp are

trainable weight matrices. In all our experiments, we use m = 5 and dc = dh

5 , so Wc ∈ R2dh×dp .
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Table 2: Overall Results

Model Validate Test
Prec. Recall F1 Prec. Recall F1

Finkel & Manning (2009) - - - 84.04 80.86 82.42
Ratinov & Roth (2009) - - - 82.00 84.95 83.45
Passos et al. (2014) - - - - - 82.24
Durrett & Klein (2014) - - - 85.22 82.89 84.04
Chiu & Nichols (2016) - - - 86.04 86.53 86.28 (±0.26)
Strubell et al. (2017) - - - - - 86.84 (±0.19)
Li et al. (2017) 85.5 84.7 85.08 88.0 86.5 87.21
Bi-LSTM-CNN 86.64 86.06 86.35 88.00 87.12 87.56 (±0.07)
Bi-LSTM-CNN +ATT 87.22 86.69 86.95 88.79 87.81 88.29 (±0.20)

5 EVALUATION AND ANALYSIS

5.1 DATASET

We conduct experiments on the challenging OntoNotes 5.0 English NER corpus (Hovy et al., 2006;
Pradhan et al., 2013). OntoNotes is an ambitious project that collects large corpora from diverse
sources and provides multi-layer annotations for joint research on constituency parsing, semantic
role labeling, coreference resolution, and NER. The data sources include newswires, web, broadcast
news, broadcast conversations, magazines, and telephone conversations. Some are transcriptions of
talk shows and some are translated from Chinese or Arabic. Such diversity and noisiness requires
that models are robust and able to capture a multitude of linguistic patterns.

Table 1 summarizes the dataset statistics. Following previous lines of research, we use the standard
split provided by Pradhan et al. (2013), excluding the New Testament corpus as it contains no entity
annotations. Despite this million-token corpus with over 100K annotated entities, previous work has
struggled to reach state-of-the-art NER results on the dataset. This is due partly to the fact that there
are 18 types of entities to be classified. Eleven of these are classes of general names, with NORP
including nationalities such as American, FAC including facilities such as The White House, and
WORK OF ART including titles of books, songs, and so on. Moreover, various forms of values of
the seven numerical classes must also be identified.

5.2 IMPLEMENTATION DETAILS

The hyperparameters of our models were given in Sections 3 and 4. When training the models, we
minimized per-token cross-entropy loss with the Nadam optimizer (Dozat, 2016). In addition, we
randomly dropped 35% hidden features (dropout) and upscaled the same amount during training.
Following previous lines of work, we evaluated NER performance with the per-entity F1 score. The
tokens for an entity were all to be classified correctly to count as a correct prediction; otherwise it was
counted as either a false positive prediction or a false negative non-prediction. We stopped training
when the validation F1 had not improved for 20 epochs. All models were initialized and trained 5
times; we report the mean precision, recall, and F1 scores (%) of the experiments. Validation scores
are also reported for future research on this task.

5.3 OVERALL RESULTS

Table 2 shows the overall results of our models against notable previous work. It can be seen that
simple LSTM-based sequence encoders already beat the previous best results without using exter-
nal lexicons (Chiu & Nichols, 2016), document-level context (Strubell et al., 2017), or constituency
parsers (Li et al., 2017). Furthermore, with the proposed parallel self-attention mechanism (ATT),
we achieve a new state-of-the-art result (88.29 F1) with a clear margin over past systems. More im-
portantly, the attention mechanism allows us to conduct insightful analyses in the following sections,
yielding important understanding of how Bi-LSTM learns or has difficulty tackling the different
sequence-labeling NER subtasks: entity chunking and entity typing.
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Table 3: Chunking Results

HCall H Call C1 C2 C3 C4 C5 NativeH

O 99.05 -1.68 0.75 0.95 -1.67 -45.57 -0.81 -35.46 -0.03
S 93.74 2.69 -91.02 -90.56 -90.88 -25.61 -86.25 -84.32 0.13
B 90.99 1.21 -52.26 -90.78 -88.08 -90.88 -12.21 -87.45 -0.63
I 90.09 -28.18 -3.80 -87.93 -60.56 -50.19 -57.19 -79.63 -0.41
E 93.23 2.00 -71.50 -93.12 -36.45 -39.19 -91.90 -90.83 -0.38

(a) α2

(b) α3

(c) α4

Figure 2: Attention heat maps for “...a meeting at the White house Saturday...”
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5.4 ENTITY CHUNKING

We decouple the entity chunking task from sequence-labeling NER. Specifically, for a sentence such
as {Barack Obama moves out of the White House .}, the task is to correctly label each token as
{BarackB ObamaE movesO outO of O theB WhiteI HouseE .O}.

5.4.1 QUANTITATIVE ANALYSIS

Table 3 shows the performance of different setups on validation data. We take the pre-trained models
from Table 2 without re-training for this subtask. {O,S,B, I, E} are the chunk classes. The column
of HCall lists the performance of the full Bi-LSTM-CNN+ATT model on each chunk class, where
Call stands for C1, . . . , C5. Other columns list the performance of other setups compared to the full
model. Columns H to C5 are when the full model is deprived of all other information by zeroing
all other vectors for the affine-softmax classification layer in testing time, except for those specified
by the column header. NativeH is the native Bi-LSTM-CNN trained without attention. The figures
shown in the table are the per-token recalls for each chunk class, which tells if a part of the model is
responsible for signaling the whole model to predict the class.

Looking at the three columns on the left, the first thing we discover is that Bi-LSTM-CNN+ATT
designates the task of predicting {I} to the attention mechanism. The model performance on tokens
{I}n the middle of an entity significantly degrades (-28.18) in the absence of global context Call,
when token hidden state H is left alone. On the other hand, without the information on the token
itself, it is clear that the model strongly favors predicting I (-3.80) given its global context Call.

Taking this one step further and zeroing out all other vectors except for each attention head, the roles
of context for entity chunking become even clearer. C2 and C3 send strong signals (-36.45,-39.19)
on entity chunk {E}nding to the model, plus weak signals (-60.56,-50.19) on entity chunk {I}nside,
while C4 sends a strong signal (-12.21) on entity chunk {B}eginning plus weak signals (-57.19) on
{I}nside. When all these heads fire simultaneously, the model produces a strong signal to {I}.
However, NativeH – Bi-LSTM-CNN trained without attention – underperforms in chunk labels
{B} (-0.63), {I} (-0.41), {E} (-0.38) in comparison to HCall, the model trained with ATT. This
suggests that entity chunking is indeed a crucial aspect in sequence-labeling NER, and that it is
difficult for pure LSTM encoders to compress all necessary information in each hidden state to
correctly label all the tokens of a multi-token entity.

5.4.2 QUALITATIVE ANALYSIS

Aside from knowing that entity chunking is a crucial, challenging aspect in sequence-labeling NER
for Bi-LSTM, one remaining question is how exactly the encoder is attempting to properly classify
the {B}egin, {I}nside, and {E}nd of a multi-token entity. To shed light on this question, we
visualize samples from validation data and discover consistent patterns in the attention weight heat
maps across sentences and entities.

Figure 2 shows one of the samples, where the attention weights α2, α3, α4 of a sentence con-
taining theB WhiteI houseE are visualized. The full Bi-LSTM-CNN+ATT (HCall) classifies
the tokens correctly, but when in the absence of the context vectors (H), the predictions become
theB WhiteS houseE . For Bi-LSTM-CNN trained without attention at all (NativeH ), the predic-
tions are theO WhiteS houseO . Each row of the matrix shows the attention weight distribution for
the diagonal token in bold font.

We observe that α2 and especially α3 have a tendency to focus on the previous tokens: the diagonal
shifted left. In contrast, α4 tends to look at the immediate following tokens: the diagonal shifted
right. By looking for previous tokens that belong to the same entity chunk and finding some, an
attention head, via its context vector, can signal to the model that the token spoken of might be the
{E}nding token or {I}nside token. The same is true for an attention head looking at next tokens, but
this time signaling for {B}egin and {I}nside. This also dictates that both signals need to be weaker
for {I} but stronger when combined. This behavior can be observed throughout the heat maps of
α2, α3, α4. In particular for the White house , Call predicts theB WhiteI houseO as Saturday is
wrongly focused by α4 for house .
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Table 4: Notable Typing Results

HCall H Call C1 C2 C3 C4 C5 NativeH

FAC 63.84 -36.17 -2.83 -62.90 -39.00 -29.25 -13.84 -53.46 -4.41
LOC 73.47 -15.56 -42.09 -73.47 -67.35 -67.60 -41.33 -60.97 -5.36
LAW 54.03 -25.80 -1.61 -54.03 -11.29 -11.29 -24.19 -12.90 3.23
LAN 63.64 -27.28 -60.61 -63.64 -63.64 -63.64 -60.61 27.27 -9.09

(a) α1 of “...Dutch into English...”

(b) α5of “...Dutch into English...”

(c) α1 of “...Chinese and English...”

(d) α5 of “...Chinese and English...”

Figure 3: Attention heat maps of “...Dutch into English...” and “...Chinese and English...”

From Table 3, we already know that NativeH has some difficulties in handling multi-token entities,
being more inclined to predict {S}ingle-token entities, and that HCall mitigates this problem by
delegating work to Call, especially by relying on the latter to signal for {I}n tokens. The heat maps
further tell the story of how the related labels {B, I,E} are handled collectively. In addition, this
also suggests that modeling interactions between future and past contexts is crucial for sequence-
labeling NER and motivates the use of a deep cross-Bi-LSTM encoder in Section 6.

5.5 ENTITY TYPING

When the entity chunking task is decoupled from sequence-labeling NER, the remaining en-
tity typing task requires a model to label {Barack Obama moves out of the White House .}
as {BarackPERSON ObamaPERSON movesNONE outNONE of NONE theFAC WhiteFAC

HouseFAC .NONE}. Table 4 shows the entity classes for which HCall yields notably different
performance (> 2%) from that of NativeH . Of particular interest is C5’s strong signal (27.27) for
LAN (language) in comparison to the NativeH ’s struggles (-9.09) on this class without attention.

Qualitatively, we study the two sentences shown in Figure 3, containing DutchLAN intoNONE

EnglishLAN and ChineseLAN andNONE EnglishLAN . HCall classifies the tokens correctly, but
both H and NativeH wrongly predict DutchNORP intoNONE EnglishLAN and ChineseNORP

andNONE EnglishLAN . Here NORP stands for nationality, meaning that both models without
attention wrongly judge that Dutch and Chinese here refer to people from these countries.

With attention, in Figure 3, we see that α1 attends to Dutch and English at the same time for the two
tokens and attends to Chinese and English at the same time for the other two. On the other hand,
α5 focuses on all possible LAN tokens, including a small mis-attention to Taiwanese in the second
sentence, which is actually a NORP in this case. These attention weights signify that the model
learns a pattern of cross interaction between entities: when two ambiguous entities of NORP ,LAN
occur together in the same context, the model predicts both as LAN .
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6 CROSS STRUCTURES FOR SEQUENCE LABELING

6.1 THEORETICAL LIMITATION OF BI-LSTM

In Section 4.1, we briefly mentioned that the computation of attention weights αi and context fea-
tures Ci models the cross interaction between past and future. Mathematically, since H =

−→
H ||

←−
H ,

the computation of attention scores can be rewritten as

HW qi(HW ki)
T
= (
−→
H ||

←−
H )(W qiW kiT )(

−→
H ||

←−
H )

T
.

The un-shifted covariance matrix of the projected (
−→
H ||

←−
H ) thus computes the interaction between

past context and future context for each token, capturing cross-context patterns that the deep Bi-
LSTM-CNN specified in Section 3 cannot. The consequence of this inability has been empirically
shown in Section 5. Here, we further consider the following four simple phrases that form an XOR:

{Key and Peele}WOA; {You and I }WOA; {Key and I }; {You and Peele}

where WOA stands for WORK OF ART . The first two phrases are respectively a show title
and a song title. The other two are not entities, where the last one actually occurs in an interview
with Keegan-Michael Key. Suppose the phrases themselves are the only available context for the
classification of and . Then the Bi-LSTM-CNN cannot capture good enough features to classify
and correctly simultaneously for the four cases, even if they are the training data, no matter how
many LSTM cells are stacked. The key is that given the same half-context of past or future, and is
sometimes {WOA : I } but sometimes {NONE : O}. It is only when patterns that cross past and
future are captured that the model is able to decide the correct label.

6.2 CROSS-BI-LSTM-CNN FOR SEQUENCE LABELING

Motivated by the limitation of the conventional Bi-LSTM-CNN for sequence labeling, we propose
the use of Cross-Bi-LSTM-CNN by changing the deep structure in Section 3.2 to

H1 =
−−−−→
LSTM1(X) ||

←−−−−
LSTM3(X)

H =
−−−−→
LSTM2(H

1) ||
←−−−−
LSTM4(H

1).

Note that when computing sentence embeddings for tasks such as sentence classification, both di-
rections of a normal Bi-LSTM look at the whole sentence. However, when computing hidden node
features for sequence labeling, each direction of a normal Bi-LSTM looks at only half of the sen-
tence. Cross-Bi-LSTM remedies this problem by interleaving the hidden features between LSTM
layers. The output of the first layers of both directions are sent to the second layers of both di-
rections, allowing higher layers to capture interactions between past and future contexts for each
token. Empirically, we experiment with cross construction 5 times and find it further improves the
performance of Bi-LSTM-CNN from 87.56 (±0.07) to 88.09 (±0.16).

7 CONCLUSION

In this paper, we have decoupled named entity recognition into entity chunking and entity typing
and demonstrated how sequence-labeling models can learn to handle each of these two subtasks. By
using a fast parallel self-attention mechanism, we have discovered how the beginning and ending
of a multi-token entity is determined and how they are jointly correlated to locate the inside tokens.
Further, through our quantitative and qualitative analyses for both chunking and typing, we have
shown that it is crucial to capture global patterns that cross both sides of a token. We demonstrate
the theoretical limitation of the conventional deep Bi-LSTM-CNN used in sequence labeling tasks.
In addition to the interpretability of the proposed parallel self-attention, it is shown that it constitutes
a way to correlate past and future contexts. We have also provided deep cross-Bi-LSTM-CNN as
another way to extract global context features. With their respective cross structures, both self-
attentive Bi-LSTM and cross-Bi-LSTM achieve new state-of-the-art results on sequence-labeling
NER.
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