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Abstract
Transfer learning has been an important ingredient of state-of-the-art deep learning models. In
particular, it has significant impact when little data is available for the target task, such as in many
medical imaging applications. Typically, transfer learning means pre-training the target model
on a related task which has sufficient data available. However, often pre-trained models from
several related tasks are available, and it would be desirable to transfer their combined knowledge
by automatic weighting and merging. For this reason, we propose T-IMM (Transfer Incremental
Mode Matching), a method to leverage several pre-trained models, which extends the concept of
Incremental Mode Matching from lifelong learning to the transfer learning setting. Our method
introduces layer wise mixing ratios, which are learned automatically and fuse multiple pre-trained
models before fine-tuning on the new task. We demonstrate the efficacy of our method by the
example of brain tumor segmentation in MRI (BRATS 2018 Challange). We show that fusing
weights according to our framework, merging two models trained on general brain parcellation can
greatly enhance the final model performance for small training sets when compared to standard
transfer methods or state-of the art initialization. We further demonstrate that the benefit remains
even when training on the entire Brats 2018 data set (255 patients).
Keywords: Transfer Learning, Lifelong Learning, Segmentation, Brain, MRI

1. Introduction

Machine learning, especially deep learning, has produced impressive results in supervised learning
tasks, given that large and densely annotated training data is available (LeCun et al., 2015; Wainberg
et al., 2018). However, the generalization performance of deep learning models deteriorates quickly
when training data becomes scarce. This condition is one of the reasons that have prevented the
extensive use of deep learning models in applications which require expensive annotation, as is
often the case in health care.

Transfer learning (TL) (Pan et al., 2010) is a common approach in machine learning to mitigate
the the lack of target data. It is based on the intuition that humans can learn new tasks quickly
even without many examples, because they can rely on previous, similar experiences. Similarly,
TL pre-trains a model on a task, which is similar to the target task, but has sufficient training data
available. More specifically, the weights of the model are adjusted to minimize the loss of the first
learning task, before they are used as initialization for the target task, as shown in fig. 1(b). Besides
improving generalization, TL also offers a way to share information without sharing sensitive data,
because only the model parameters are revealed to the community of interest. Again, this advantage
is particularly evident in medical applications, which often exhibit a co-existence of many privately
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maintained models. It can be beneficial for the development of new applications to have access to
such prior models, but to date it is not clear how to merge knowledge from multiple models at once.

In order to address this question we propose T-IMM (Transfer-Incremental Mode Matching), an
algorithm for transfer learning with multiple prior models. The concept of IMM appears in context
of life-long learning (Lee et al., 2017). It differs from transfer learning as its original purpose is
not better initialization, but the sequential merging of models, which still retains good performance
on all the prior tasks (fig. 1(c)). Our work provides a useful re-interpretation of IMM for transfer
learning. Moreover, our extension T-IMM enables automatic, and adaptive merging of multiple
models, depicted in fig. 1(d). By the example of brain tumor segmentation in MR images, we
demonstrate that T-IMM provides a better initialization than common IMM, which represents the
corner case of uniform model merging. 1

Model 1

Model 2

Model 3

(a)

Model 1

Model 3

(b)

Model 1

Model 2

Model 3

(c)

Model 1

Model 2

Model 3

Database

Database

Database

(d)

Figure 1: T-IMM framework compared to standard transfer learning approaches. (a) red+green:
prior tasks, grey: target task (b) Common transfer learning (c) Sequential IMM (d) T-
IMM.

2. Related Work

Transfer Learning TL encompasses methods that discover shared parameters between prior tasks
and a target task (Pan et al., 2010). More specifically, TL improves learning of a target task in three
ways (Tommasi et al., 2010): (i) better initial performance, (ii) steeper performance growth, (iii)
higher performance at the end of training. Moreover, TL is an important part of many state-of-the-
art methods in image classification and segmentation. In these cases, TL is mainly performed by
reusing the filter parameters of convolutional neural networks (CNN) such as in the work of (Oquab
et al., 2014). They use a CNN pre-trained on ImageNet to compute mid-level image representations
for object classification in PASCAL VOC images (Everingham et al., 2012), leading to significantly
improved results. To this date, the top scoring submissions to the PASCAL VOC challenge continue
to use TL, e.g (Chen et al., 2018) pre-trained on the Coco-data set or (Iglovikov and Shvets, 2018)
pre-trained on ImageNet. Despite these success stories, little research has been done on leveraging
knowledge from multiple models for a new task. Some work is based on ensemble methods (Gao

1. All the code is available at https://github.com/cyrusgeyer/TIMM.git
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et al., 2008), which is problematic when the number of available sources is large. A different
direction of merging multiple models relies on the particular choice of the SVM model (Tommasi
et al., 2010).

Lifelong learning Lifelong Learning (LL) describes the scenario when new tasks arrive sequen-
tially, and should be incorporated into the current model one at a time. In contrast to the TL setting,
in LL we require to maintain high performance over prior tasks, too. The reason is, when tasks
are learned sequentially, performance typically decreases significantly on earlier tasks. This effect
is called catastrophic forgetting (Goodfellow et al., 2013), but it is irrelevant for TL, because we
usually only care about performance on the target task. Recent developments in LL such as Elastic
Weight Consolidation (EWC) (Kirkpatrick et al., 2016) and Learning Without Forgetting (LwF) (Li
and Hoiem, 2016)) attempt to overcome catastrophic forgetting by regularization of the target loss
function. Incremental Moment Matching (IMM) (Lee et al., 2017) does not change the target loss
function, but instead provides a parameter merging scheme for a pair of prior models. Specifically,
IMM approximates the posterior distribution of parameters for every prior task as a Gaussian with
diagonal co-variance, and then computes the parameter distribution for the new task as the best
approximation of the prior mixture of Gaussians.

3. The T-IMM Method

3.1. Adaptively fusing parameters

Let us consider T different but related tasks. Moreover, we assume T models that share the same
architecture, and they are trained incrementally on the T tasks. Incremental training means that the
parameters of model i are used as initialization for model i+1. This procedure is in fact necessary,
otherwise it would be impossible to maintain a correspondence between parameters. The parameter
set Φ of each model is partitioned into two sets of parameters, i.e. Φ = P ∪S , P ∩S = /0.
The first set P contains all parameters used for fusion, e.g. convolution filters. The second set S
contains all task-specific parameters, e.g. batch normalization parameters or the weights of the top-
level layers. Following the work of (Lee et al., 2017), we approximate the parameter co-variance
matrix of each model with the diagonal of the inverse empirical fisher information matrix. Ignoring
off-diagonal entries in the fisher information matrix is critical for our approach, because it allows
simple splitting into parameter subsets. Moreover, we can even introduce multiple IMM-mixing
ratios for different subsets of P , e.g. one ratio for each layer. This enables layer-specific, adaptive
merging of models. More formally, let the parameter subset Pt of each task t be composed of N
parameter vectors: Pt = {θt

i}N
i=1.

We also introduce the set Ft which holds the Fisher information matrices for each parameter
vector in Pt , i.e. Ft = {F t

i }N
i=1.

Lastly, set A holds mixing coefficients according to which the parameters in P will be fused:

A = {αt}t∈{1...T} where αt = (α t
1 . . .α

t
N)

T and
T

∑
t
αt = 1N (1)

The fused parameters of the new model T +1 are given by (Lee et al., 2017)
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3.2. Equally weighted IMM Transfer

Without any further information, the choice of the mixing coefficients is arbitrary. The common
IMM method assumes equally weigthed merging, hence it sets α t

i = 1/T , for all tasks t and layers
i. After the task-specific parameters ST+1 are randomly initialized, the entire model ΦT+1 is fine-
tuned on task T +1.

3.3. T-IMM

To achieve the best possible performance on the new task, we desire to find a better non-uniform
mixing. However, it is clearly impractical to search the space of all possible A manually, in partic-
ular if T is large. For this reason, the Transfer-IMM (T-IMM) method splits transfer learning into
two stages: a short adaption stage and an extensive fusing stage.

Adaption Stage In the adaption stage, we aim to learn the mixing coefficients that are best suited
for transferring knowledge. We start by randomly initializing the task-specific layers in ST+1. The
merged parameters PT+1 are initialized according to eq. (2), as a function of A . The adaption
stage optimization can be formalized as:

minimize
A ,S

LossT+1(A ,S |PT+1(·)) subject to
T

∑
t
αt = 1N and αt � 0,∀t (3)

The constraints on the mixing coefficients can be enforced reparametrizing the mixing ratios.
We introduce a set of new unconstrained variables {δt}t∈{1,...,T} and using the sigmoid activation
function σ we can write the mixing ratios as:

α
t
i =

σ(δ t
i )

∑
T
j=1 σ(δ t

j)
with δ

t
j ∈ R

The adaption stage terminates once the loss converges, and returns a set of mixing coefficients
adapted to the new task.

Fine tuning stage After determination of the mixing ratios A according to eq. (3), all parameters
ΦT+1 = (PT+1,ST+1) are fine-tuned until convergence on a validation set. We also reuse ST+1
from the adaption stage as initialization for the fine-tuning stage. More formally:

minimize
P,S

LossT+1(P,S )

The T-IMM method is depicted in fig. 2.

4. Experiments and Results

4.1. FCNN architecture

Medical image segmentation Fully convolutional neural networks (fCNN) are state of the art in
medical image segmentation (2D and 3D). For instance, in segmentation of brain MRI, both BRATS
and MRBrainS challenges are lead by fCNN-approaches. This is also the case for interactive seg-
mentation, where 2D- and 3D-fCNNs define the state-of-the-art (Wang et al., 2017a,b). Therefore,
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Figure 2: T-IMM framework: T models trained on T different tasks are merged as initialization for
task T + 1. All the parameters in the light-blue layers are in the P set. The parame-
ters of the new model {θT+1

i } in the dark blue layers are merged according to eq. (2).
The parameters of the red layers (parameters in S ) account for task specific layers (i.e.
batch-norm, instance normalization layers, or the last classification layers) and hence are
randomly initialized.

we also choose this type of neural network for our demonstration of T-IMM in medical image seg-
mentation. Specifically, we use the fCNN-architecture proposed by (Isensee et al., 2017). This net-
work is inspired by the U-net (Ronneberger et al., 2015), and is comprised of 30 3D-convolutional
layers, and 27 instance normalization layers. The task specific parameters S contain the three top-
level segmentation layers, and all instance normalization layers. The remaining convolutional filter
parameters comprise the set P of transferred parameters.

4.2. Data and Tasks

In our experiments we perform three different tasks of brain tissue and brain tumor segmentation.
Two tasks concern the parcellation of different brain regions, while the third task is about brain
tumor segmentation. While the first two tasks are learned incrementally, the third task is learned
with different initializations: random, transfer from either of the two prior tasks, initialization with
IMM of model 1+2, and initialization with T-IMM of model 1+2.

Task 1 & Task 2 The data used for the first and second task are brain MR images from the Human
Connectome Project. The data set holds a total of 58 brain images with T1+T2 weighting. For each
brain, 14 different classes were annotated by (Karani et al., 2018), using the FreeSurfer software:
(1) cerebellum gray matter (2) Cerebral gray matter, Cortex and Accumbens, (3) Thalamus, (4)
Amygdala and Choroid Plexus, (5) Caudate, (6) Pallidum, (7) Celebrospinal Fluid, (8) Cerebellum
white matter, (9) Cerebral white matter, (10) Hippocampus, (11) Ventricel, (12) Putamen, (13)
Ventral DC ,(14) Brainstem. The data is split into three non-overlapping groups of size 23,23 and
12 respectively. Task 1 is defined as segmenting labels 1 through 7 on the first split of 23 brains.
Task 2 is defined as segmenting labels 8 through 14 on the second split of 23 brains. The third split
of 12 brains is the test set both tasks can be evaluated on.

189



TRANSFER LEARNING BY ADAPTIVE MERGING OF MULTIPLE MODELS

Table 1: Description of the different tasks and datasets.
Total Training Validation Labels

Task 1 23 18 5 1:7
Task 2 23 18 5 8:14

Task 3
4 % 10 8 2 ET, TC, WT
8 % 20 16 4 ET, TC, WT
100 % 255 215 40 ET, TC, WT

Total
Test set Task 1 & Task 2 12 1:14
Test set Task 3 40 ET, TC, WT
Online-Val set Task 3 66 ET, TC, WT

Task 3 The third task is brain tumor segmentation as defined by the BRATS-2018 challenge. The
data set holds 255 patients. For each patient we have four different modalities (T1,T1w,T2,Flair)
and an expert’s annotation of the enhancing tumor (ET), the tumor core (TC) and the whole tumor
(WT). Furthermore, we are provided an online validation set (Online-Val) of 66 non-annotated
patients. We evaluate our framework for different portions of the total data: using 4 %, 8% and
100% of the Brats data-set. 40 brains are used as a test set to evaluate the individual experiments
on. For the 100 %-experiments, theses 40 brains are used as the validation set and the online, non-
annotated set of 66 patients is used as a test set. This is in order to make our experimental results
comparable to each other but also to state of the art benchmarks. An outline of the different tasks
and datasets is available in table 1.

Data preprocessing We conduct very simple data preprocessing. For data used in Task 3 (Brats),
ANTS N4-Bias field correction is conducted. Furthermore, all data is histogram-normalized to filter
out irrelevant differences.

4.3. Experiments

Testing the Framework We start by training an fCNN model on Task 1 (M1). After convergence
we use the parameters of M1 to initialize M2, which is then trained on task 2 until convergence.
Having trained M1 and M2, the main experiments are conducted. For each data portion (4%, 8% and
100%) the following five initialization methods for task 3 are tested: Xavier random initialization
(referred to as ’No Transfer’), Parameter Transfer from Model 1, Parameter Transfer from Model 2,
Parameter Transfer using IMM and Parameter Transfer using T-IMM.

Understanding T-IMM In order to better understand T-IMM, we further conduct the following
three experiments (only for the 8% portion due to computational reasons): parameter transfer from
a model that was trained on all HCP-data and on all labels 1:14, parameter transfer from a model
that was trained on all HCP-data but only on labels 1:7 and parameter transfer from a model that
was trained on all HCP-data but only on labels 8:14. All these are then compared to 8% T-IMM.

Transfer Learning and catastrophic forgetting In a last experiment we evaluate how much of
tasks 1 & 2 is remembered by the different initialization models. For this, the task specific sets of pa-
rameters S1,S2 of M1 and M2 are used in combination with the parameter sets P1,P2,PIMM,PT−IMM.

190



TRANSFER LEARNING BY ADAPTIVE MERGING OF MULTIPLE MODELS

4.4. Evaluation

The metric we chose to asses an fCNN’s performance is the Dice Coefficient (DC) averaged over
all relevant labels reached on the test set examples. table 2 holds our main results for 4%, 8%
and 100% of Brats data. We are dealing with paired-samples, i.e. for each patient in the test
set we evaluate the DC difference between T-IMM and all other methods. The differences are
visualized in fig. 4. The numbers reported on the 100%-scenario are the feedback of submissions
of the 66-unannotated examples to the BRATS validation leader-board. Table 3 shows the length
of the different training stages of T-IMM and the final validation score reached at the end of the
adaption stage. The distribution of the mixing ratios after the adaption stage is displayed in the
appendix Table 4 evaluates how well the models used for transfer remember tasks 1 and 2. This is
also visualized in fig. 3.

Table 2: Mean Dice Coefficient of ET,TC and WT for different transfer scenarios and different
portions of Brats data

Transfer: No Model 1 Model 2 IMM T-IMM
All HCP
all labels

All HCP
labels 1:7

All HCP
labels 8:14

4% 0.30 0.39 0.52 0.55 0.58 - - -
8% 0.55 0.60 0.61 0.63 0.65 0.60 0.63 0.63
100% 0.79 0.81 0.81 0.81 0.82 - - -

Table 3: Epochs needed and validation dice
score reached for adaption stage
and fine-tuning stage

Adaption Stage Fine Tuning Stage
Epochs Val-score Epochs Val-score

4 % 16 0.44 88 0.72
8 % 20 0.40 178 0.68
100 % 10 0.67 129 0.77

Table 4: Mean dice coefficient when the
models used for initialization are
evaluated on the test set of Task 1
& Task 2

Labels 1:7 Labels 8:14
M1 0.89 0.00
M2 0.01 0.89
IMM 0.38 0.42
T-IMM 0.50 0.39

5. Discussion

We can assert multiple things from the results in table 2 and fig. 4. We see the fact confirmed, that
the benefit of transfer learning grows with smaller training sets. This was shown in several studies
before. We also see that M1 and M2 are not equally well suited for parameter transfer. Especially for
the 4% and 8%-scenario, model 2 clearly brings more advantage than model 1. However, initializing
with model 1 still outperforms no transfer. T-IMM manages to solve the dilemma of having to
choose a priori which model to transfer knowledge from. The experiments for 8% of Brats data
show that initializing training with T-IMM even outperforms initialization with a model that was
trained on all tasks and all data that T-IMM is able to fuse from. table 4 shows, that both IMM
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Figure 3: Catastrophic forgetting of task 1, which is learned before task 2. Each task consists of the
parcellation of seven different brain regions (colors), and background (grey). First col-
umn: Prediction after fine-tuning on task 2 using model from task 1 as initialization.
The model forgot to predict the blue classes from task 1. Second column: Prediction of
model obtained with IMM between models trained on task 1 and 2. Clearly reduced for-
getting of task 1. Third column: Prediction of model obtained after the adaption stage
of T-IMM. Even though the model was fused to perform a third task, it remembers tasks
1+2 very well. Fourth column: Ground truth class labels.

and T-IMM do overcome catastrophic forgetting to a certain extend and manage to remember task
1 and task 2 (even though with lower performance). For T-IMM this is especially interesting, as the
model underwent the adaption stage, were it trains to suit task 3. This reassures the assumption that
indeed, feature representations from both models/tasks are reused by T-IMM. We were able to show
that fusing different CNN for parameter transfer using T-IMM can give a decisive advantage over
settling for a singe transfer source, especially when training data is sparse. We further show that the
advantage shrinks but remains significant even for large data sets.
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Doel, Anna L. David, Jan Deprest, Sébastien Ourselin, and Tom Vercauteren. Interactive medical
image segmentation using deep learning with image-specific fine-tuning. CoRR, abs/1710.04043,
2017a. URL http://arxiv.org/abs/1710.04043.

Guotai Wang, Maria A. Zuluaga, Wenqi Li, Rosalind Pratt, Premal A. Patel, Michael Aertsen, Tom
Doel, Anna L. David, Jan Deprest, Sébastien Ourselin, and Tom Vercauteren. Deepigeos: A deep
interactive geodesic framework for medical image segmentation. CoRR, abs/1707.00652, 2017b.
URL http://arxiv.org/abs/1707.00652.

194

http://arxiv.org/abs/1710.04043
http://arxiv.org/abs/1707.00652


TRANSFER LEARNING BY ADAPTIVE MERGING OF MULTIPLE MODELS

Appendix A. Subject-level comparison of T-IMM vs. other initializations

In this section we show the sample-wise performance of T-IMM method compared to other methods
on the Brats set. The samples are sorted in ascending order according to the performance of T-IMM.
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Figure 4: Absolute Dice coefficient increase of T-IMM compared to other transfer methods for
training an fCNN on (a): 4 % of Brats data, (b) 8% of Brats data and on (c) 100% of
Brats data (the 100% is evaluated on the online validation set)
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Appendix B. Mixing ratios after adaption stage of T-IMM

In this section we show the distribution of mixing ratios after the adaption stage of T-IMM was
completed and before the fine tuning stage started.

(a)

(b)

(c)

Figure 5: Mixing ratios for each convolutional layer in the set P of transferable weights, after the
adaption stage of T-IMM was completed. Experiments of (a): 4 % of Brats data, (b) 8% of
Brats data and on (c) 100% of Brats data (the 100% is evaluated on the online validation
set)
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