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ABSTRACT

The ability to predict matches between two sources of text has a number of appli-
cations including natural language inference (NLI) and question answering (QA).
While flexible neural models have become effective tools in solving these tasks,
they are rarely transparent in terms of the mechanism that mediates the prediction.
In this paper, we propose a self-explaining architecture where the model is forced
to highlight, in a dependent manner, how spans of one side of the input match
corresponding segments of the other side in order to arrive at the overall decision.
The text spans are regularized to be coherent and concise, and their correspon-
dence is captured explicitly. The text spans – rationales – are learned entirely
as latent mechanisms, guided only by the distal supervision from the end-to-end
task. We evaluate our model on both NLI and QA using three publicly available
datasets. Experimental results demonstrate quantitatively and qualitatively that
our method delivers interpretable justification of the prediction without sacrificing
state-of-the-art performance. Our code and data split will be publicly available.

1 INTRODUCTION

Text matching serves as a key subroutine facilitating many natural language processing (NLP) tasks
including natural language inference (NLI) (Bowman et al., 2015; Wang & Jiang, 2016a; Khot et al.,
2018), paraphrase detection (Wang et al., 2017c), question answering (QA) (Andreas et al., 2016a;
Wang et al., 2017b; Chen et al., 2017), and others. Much of the progress across such tasks has
come from the use of flexible neural architectures that can be trained to achieve high performance.
However, absent attention or rationale mechanisms, the resulting models lack transparency about
how the decisions are reached. Soft attention keeps the model differentiable, typically operates on
a word-by-word basis (Parikh et al., 2016; Seo et al., 2016; Chen et al., 2016b; Wang et al., 2016;
Wang & Jiang, 2016b), but does not strictly confer importance as weakly attended words can impact
decisions. In contrast, rationales (Lei et al., 2016) as hard selections are challenging to train but
provide a certificate of exclusion of any unattended part. We opt for rationales in this paper as our
goal is to identify clearly necessary text spans as opposed to individual words, and to do so across
the matched texts in a dependent way.

Our work builds on and relates to many recent advances in explaining neural predictions for NLP
(Lei et al., 2016; Li et al., 2016; Sharp et al., 2017; Koh & Liang, 2017; Alvarez-Melis & Jaakkola,
2017; 2018) but aims for rationalizing textual matching. Consider answer reranking or selection in
the state-of-the-art open domain QA pipeline1 (Wang et al., 2017b). The end goal in this case is
to classify whether the supporting passage indeed has the answer to the specific question. Figure 1
illustrates the problem with two answer candidates and their supporting passages. A rationale that
explains the correct match should not only highlight “Galileo Galilei” in the passage but also include
two additional facts from the question and their corresponding evidence in the passage (highlighted
in red and blue). In this paper, we seek rationales that identify necessary textual spans from each
question and, in a dependent way, their short and sufficient corresponding segments in the supporting

1The multi-step QA pipeline that follows the process of search, read and re-rank. In brief, an information
retrieval model first coarsely selects relevant passages to a given question. Then, a reading comprehension
model infers a list of candidate answers from the passages, followed by a re-ranking algorithm that reorders the
answer candidates based on aggregated evidence from different passages towards the final prediction.
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Question: Who is the physicist , mathematician and astronomer that discovered the first four moons of
Jupiter ?

Answer candidate: Galileo Galilei Label: positive
Passages: Galileo Galilei was an Italian physicist , mathematician , astronomer , and philosopher who
played a major role in the Scientific Revolution . Galileo Galilei is credited with discovering the first
four moons of Jupiter .

Answer candidate: Isaac Newton Label: negative
Passages: Sir Isaac Newton was an English mathematician , astronomer , and physicist who is widely
recognized as one of the most influential scientists ...

Figure 1: Examples of the corresponded rationales for QA. Words highlighted in the same color
from the question and a passage is a paired rationale. “Galileo Galilei” is the correct answer since
two facts from the question are matched in its passage. On the other hand, the passage of “Isaac
Newton” does not cover the second fact, which makes it a wrong answer.

passages. Only the selected text spans in aggregate – the rationales – are used as the basis for the
final decision about matching.

We do not assume that any rationale annotations are given. Instead, the rationales are learned as la-
tent selections based on the distal supervision (Mintz et al., 2009) from the downstream text match-
ing task. The rationale mechanism builds on the generator-predictor framework Lei et al. (2016)
introduced for sentiment analysis where the generator selects text spans as rationales that are then
fed to the predictor. In our case, the generator is tasked with a combinatorial selection across the
texts being matched. To make the combinatorial selection easier to learn we first identify key pieces
from a single side of the input (e.g. question or hypothesis) and then look for the corresponding
spans from the other side in a dependent manner. The predictor finally maps the extracted ratio-
nales in aggregate to task-specific values. The entire model along with the rationales is trained in an
end-to-end fashion through policy gradient (Williams, 1992).

We consider both NLI and QA as the evaluation tasks. Extensive experimental results on three
publicly available datasets show that the model delivers human-interpretable information while pre-
serving comparable performance to the state-of-the-art. Further, to quantify the quality of generated
rationales, we contrast the rationales arising from clean vs adversarial inputs. The generated ratio-
nales (as they operated over spans) are fairly robust against inserting irrelevant texts.

2 RELATED WORK

Learning interpretable models Improving interpretability has been approached primarily from
two different angles: learning self-explainable models and post-hoc prediction analysis. The former
encodes explainability in the architecture itself, for example, by generating understandable interme-
diate results, while the latter aims to explain the mechanism of prediction in already learned models.

An example of learning with self-explainable architecture is the neural module network, introduced
in Andreas et al. (2016b), and later extended Andreas et al. (2016a), Johnson et al. (2017), and
Mascharka et al. (2018). The interpretability comes from the mechanism of composing appropriate
modules following the logical program produced by a natural language component. The restriction
to a small set of pre-defined programs currently limits their applicability.

Input-level selection is another popular way to generate human interpretable explanations. These
approaches often integrate explanation generation as part of the learning problem. Lei et al. (2016)
highlighted fragments of the input text as a rationale. In contrasts, Li et al. (2016) finds the minimal
set of words that need to be erased before the decision changes. Our model is inspired by (Lei et al.,
2016) but extends the ideas towards combinatorial corresponding rationales across matched texts.
In other words, our rationales are structured, over a pair of inputs. Sharp et al. (2017) and Choi et al.
(2017) also address interpretability of QA but focus on document selections instead of reasoning
about the matching problem at the finer level. Ni et al. (2018) learns how to transform a natural-
language question into a query for an IR model by identifying essential terms. But they assume that
ground-truth selections are provided.
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Efforts in learning post-hoc explanations include analyzing and visualizing neural activations (Her-
mans & Schrauwen, 2013; Li et al., 2015; Karpathy et al., 2015; Bau et al., 2017; Selvaraju et al.,
2017), converting word embeddings into sparse or binary interpretable vectors (Faruqui et al., 2015),
and approximating the model via locally interpretable forms (Ribeiro et al., 2016; Alvarez-Melis &
Jaakkola, 2017; Lundberg & Lee, 2017; Lee et al., 2018). Recently, Chen et al. (2018) trained an
instance selection model based on the class distributions from the model to be explained, which
could be considered as a model-agnostic variant of (Lei et al., 2016). The approaches here provide
a posteriori explanations for previously trained models while we focus on learning explanations in
the course of model training.

Attention models Attention-based models (Bahdanau et al., 2014; Xu et al., 2015; Luong et al.,
2015; Rush et al., 2015) offer another means to elucidate the inner workings of neural models. These
models have been successfully applied to many tasks of sequence comparison. Parikh et al. (2016)
proposed word-by-word attention model for NLI and later extended by Seo et al. (2016) for QA.
Similar ideas also appeared in the work of (Chen et al., 2016b; Wang et al., 2016; 2017c). Kim
et al. (2017) proposed a structured attention mechanism, which induces a latent tree structure and
computes the alignment jointly. Later, based on the idea of comparing two sentences using their tree
structures (Chen et al., 2016a; Zhao et al., 2017), Liu et al. (2018) extended structured attention for
matching sentences.

The methods discussed here are primarily based on soft-attention instead of hard-selection. Al-
though such attention is easier to train and softly simulates the alignment, it serves as a proxy in
understanding how portions of the input contribute to final prediction. Absent additional regular-
ization, any small attention score can still in principle contribute significantly to later computations
through re-amplification in later stages. For the purpose of understanding neural predictions we opt
for hard-selections despite the more challenging training (Deng et al., 2018).

3 RATIONALIZING TEXT MATCHING

We formalize here the problem of learning corresponding rationales. Consider a pair of word se-
quences, namely q = {q1, · · · , qm} and p = {p1, · · · , pn}, where qi, pj ∈ Rd denote vector repre-
sentations. The learning problem is to output a task-specific prediction l based on matching q and p.
For example, in NLI, the task is to classify the hypothesis-premise pair as entailment, contradiction
or neutral. On the other hand, the prediction task for QA could be in the form of answer generation,
classification or ranking.

Our goal is to generate human-interpretable information to gain insight into the mechanism of pre-
diction. Specifically, we aim to select a list of pairwise text-spans as corresponding rationales,
namelyR = {(xk, yk)}, where xk and yk are the kth rationale pair selected from sequence q and p,
respectively. xk = {xk1 , · · · , xkm} ∈ {0, 1}m and yk = {yk1 , · · · , ykn} ∈ {0, 1}n are binary indicator
sequences of lengths m and n where each nonzero entry denotes a selected word. The cardinality
of the setR varies with the input pair. In order for these pairwise text-spans to qualify as rationales,
we ask them to satisfy the following desiderata.

• Coherent and concise: spans selected from each side of q and p need to be short and coherent
compared to the original text.

• Correspondent: for every pair of text spans, the selected words in xk and yk should be relevant
and correspond to each other in a task-specific manner toward the end decision.

• Sufficient: the selected words in the rationale collectionR should serve as a substitute of the full
original texts for the predictive task without degrading performance

For example, in QA, each xk indicates a key factor that a particular question is asking, while yk is
the corresponding supporting evidence in the passage. We call the selection of words as the rationale
generator.

In this work, we assume that no rationale annotations are given. Thus, the rationale generation is
learned entirely in an unsupervised manner, guided only by the distal supervision from the end task,
in accordance with the above desiderata. The rationales are latent variables where selections from
q and p are the combinatorial objects. The supervision from text matching guides the model to
indirectly learn to choose the word combinations that provide good explanations for predictions that
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Figure 2: The architecture of the rationale generator. The model is comprised of (a) a module for
identifying rationales on q, (b) a rationale re-encoding module, and (c) a component for generating
corresponding rationales on p. The sentence encoder is shared across all modules.

are themselves learned concurrently. We will next describe the generator and predictor in greater
detail.

3.1 RATIONALE GENERATOR

Selecting words from q and p with desired properties is a combinatorial problem. It would be
infeasible to consider all possible selections across the sequences jointly. Instead, we propose a
dependent selection mechanism that follows a generation-encoding-generation scheme. Concretely,
we first identify all rationales xk from sequence q. For every xk we re-encode the selected words to
construct a standalone rationale vector. These vectors are then used to find corresponding rationales
from p. Figure 2 illustrates the architecture of our rationale generator.

Identifying rationales from q We aim to obtain a set of rationales {xk} from q. Let z =
{z1, · · · , zm} ∈ {0, 1}m be the super-set of highlighted words from all xk. We generate {xk}
by first generating z, followed by partitioning. The problem of generating z is cast as sequence
tagging, where z ∼ p(z|q). In a simple case, we parameterize the probability distribution with a
bi-directional long short-term memory (LSTM) network (Hochreiter & Schmidhuber, 1997). Each
zi is selected conditionally independently given q. Thus joint probability factors according to

p(z|q) =

m∏
i=1

p(zi|q) =

m∏
i=1

σ(Wzh
q
i + bz), (1)

where hqi is the ith hidden state of the LSTM taking input q, and σ(·) denotes the sigmoid function.
Once z is selected, we partition the sequence by grouping successive ones to yield a list of new
binary sequences {xk}, all of the same length. The newly generated sequences satisfy the following
two properties: 1) each xk contains only localized group of ones without intervening zeros; and 2)
z =

∑
k x

k. For example, the partition outcome for the sequence “00111011” will be {00111000,
00000011}. It is worth mentioning that by construction, there is no textual overlap between different
rationale selections from q, and that the number of rationales varies for different inputs.

Rationale re-encoding In order to find the corresponding rationale yk for each xk, we re-
encode the selected words of each rationale to a vector representation. This is done by feeding
the element-wise product of xk and q to the previously used LSTM. The LSTM’s hidden states
hq∗x

k

= {hq∗x
k

1 , · · · , hq∗xk

m } are further masked by xk followed by max pooling to obtain the ratio-
nale vector. We denote the re-encoded rationale as rk = max(hq∗x

k ∗xk), and ∗ is the element-wise
product. One may argue whether it is necessary to re-encode, i.e., feed q ∗ xk to the LSTM to get
new hidden states so as to calculate rk. An alternative way would be to directly use the hidden states
from the LSTM of q to obtain max(hq ∗ xk), which requires less effort. However, even though the
hidden states would be masked by xk, we couldn’t prevent information from other unselected words
influencing rk. This is due to the nature of bi-directional LSTM, where any hidden state might
potentially (and often does) encode information beyond the immediate context. A similar argument
would hold if we used a convolutional encoder assuming the length of consecutive rationale words
were smaller than the width of the receptive field. Thus, re-encoding step ensures that the rationale
vectors only contain information from the actually selected words.
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Generating corresponding rationales from p For each rationale vector rk generated from q, our
goal is to find the corresponding text-spans in p. We encode the input sequence p using the same
sentence encoder, where the hidden states are now hp = {hp1, · · · , hpn}. To generate rationales, we
could either use a tagging model as before or a boundary model (Vinyals et al., 2015; Wang & Jiang,
2016b) which marks the start and end tokens. Here, we introduce and use the boundary model,
where the words in between the two tokens are used as the rationale. The probability of selection is
simply

p(yk| hp, rk) = p(ykstart| hp, rk) · p(ykend| h
p, rk, ykstart). (2)

We produce the start and end tokens by first generating two head vectors

rkstart = ReLU (Wstartr
k + bstart), and rkend = ReLU (Wendr

k + bend). (3)

followed by

ykstart ∼ p(ykstart = i| hp, rk) =
exp (〈hpi , r

k
start〉)∑

j exp (〈hpj , rkstart〉)
, (4)

where 〈·, ·〉 denotes the inner product. We sample the end token ykend similarly, but conditioned on
the selection of ykstart so as to ensure that the end selection appears only at or after the location of
ykstart. Compared to a tagging model, the rationale selected by a boundary model is by construction
consecutive. In addition, the boundary model has the flexibility of not choosing anything if p does
not contain information corresponding to rk. This can be achieved by selecting both start and end
tokens at the “EOS” symbol in p.

3.2 MODEL PREDICTOR

For simplicity, let us consider classification as the guiding task to instantiate the predictor, where
both NLI and answer selection fall within the setup. The framework itself generalizes to other text-
matching tasks. Given the list of generated rationale pairs R referring to input texts p and q, our
goal is to make these rationales alone useful for the final prediction. For each k, we first re-encode
the rationale yk (as we did for xk) and obtain LSTM hidden states hp∗y

k

. We then construct a sparse
matrix Sk ∈ Rm×n as follows:

Sk = [(hq∗x
k

)Thp∗y
k

] ∗ [xk ⊗ yk], (5)

where ⊗ is the outer product. The (i, j) entry of matrix Sk is nonzero if and only if words qi and pj
are both selected in the corresponded rationale pair, i.e., xki 6= 0 and ykj 6= 0.

To predict the final label, we follow a strategy reminiscent of Match-LSTM (Wang & Jiang, 2016a).
Concretely, for each Sk, we first normalize it using softmax in a row-by-row fashion to construct
an attention matrix Ak. If qi is a rationale word in xk, then

∑
j s.t., yk

j 6=0A
k
ij = 1. Otherwise, the

values in the corresponding row are all zeros. Next, we introduce aggregate representations for each
qi as h̃q∗x

k

i =
∑

j A
k
ij ∗ h

p∗yk

i . This can be interpreted as a measure of how qi can be matched by p.

By construction, for each entry i for which xki = 0, h̃q∗x
k

i is also zero. Following (Wang & Jiang,
2016a), we construct

hk = [(hq∗x
k

∗ xk) ; h̃q∗x
k

; (hq∗x
k

∗ xk)− h̃q∗x
k

; (hq∗x
k

∗ xk) ∗ h̃q∗x
k

], (6)

where [·; ·] represents vector concatenation. We repeat the aforementioned construction for every k
and aggregate these representations to a unified vector h =

∑|R|
k=1 h

k. The distribution over labels l
is then obtained by max-pooling on h (per dimension) followed by a softmax linear prediction layer.

3.3 JOINT TRAINING

We minimize the discrepancy between l̂ and l via a cross-entropy loss L(p, q,R, l), which makes
generated rationales corresponded and sufficient. In addition, we want the generator to realize short
and coherent rationales which is encouraged by two regularizers over selections {xk} and {yk}
separately. For example

Ω({xk}) =
1

m

|R|∑
k=1

(λ1‖xk‖1 + λ2

m∑
i=1

|xki − xki−1|), (7)
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where the first term penalizes the number of selected words, the second term makes the selections
coherent and controls the total number of rationales generated from q. The regularizer is normalized
by the length of the sequence. We introduce an analogous regularization for {yk}. Note that the loss
function depends on the sampled rationales inR and therefore we minimize the expected cost:

min
θ

∑
(p,q,l)∈D

ER [ L(p, q,R, l) + Ω({xk}) + Ω({yk}) ], (8)

where θ is the set of parameters and D is the collection of training data. Directly minimizing the ex-
pected cost is hard due to discrete rationale selections and thus we appeal to policy gradient method
(Williams, 1992) to derive stochastic gradients. Due to the loss and the regularization, the generated
rationales inR are encouraged to satisfy all the three desired properties. It is worth mentioning that
although the Gumble reparameterization trick (Jang et al., 2016) can alleviate training difficulties in
similar settings, it won’t offer the same certificate of exclusion of unselected parts. For this reason
(clarity), we opt for keeping the hard selections also during training.

4 EXPERIMENTS

4.1 SETTINGS

Datasets To evaluate the proposed method, we conduct experiments on three representative
datasets. Specifically, we consider SciTail (Khot et al., 2018) as the benchmark for NLI and two
QA datasets that are AskUbuntu (Dos Santos et al., 2015) and SearchQA (Dunn et al., 2017).

AskUbuntu is a non-factoid answer selection benchmark, which has been previously used for ana-
lyzing model interpretability (Lei et al., 2016). We follow the same setting and data split using both
question body and title. On the other hands, SearchQA is an open-domain QA benchmark. The
questions are Jeopardy-style queries, which are mostly clued sub-clauses and phrases separated by
commas. Since the question is not in the format of natural language, we directly split the question
with commas and take each segment as a question rationale. In other words, we assume the ques-
tion rationale is given on SearchQA and the goal is to generate corresponded passage rationales.
For simplicity, we only consider the answer selection problem in the multi-step open-domain QA
pipeline (Wang et al., 2017b), where all candidate answers are generated by an existing reading
comprehension model (Wang et al., 2017a).

Since SciTail provides data in form of both natural language and OpenIE tuple, we consider two
setups: 1) we aim to generate corresponded rationales from the hypothesis-premise pair in natural
language; 2) a similar setup as SearchQA that assume rationales on the hypothesis side is pre-defined
base on the OpenIE results. We term these two settings as SciTail and SciTailfactwise, respectively.
For SciTailfactwise, since the OpenIE extractions could be nested, we segment the provided tuple with
the largest text coverage of the hypothesis and treat each argument as a separate rationale.

Baselines We compare our approach to the following methods:

• Independent: The model treats two sequences q and p as independent texts. The generator first
generates {xk} based on equation (1). And then, for each xk, the generator generates yk regard-
less of the selection. After that, we use the same re-encoding procedure and the predictor.

• No rationalization: This method uses the entire text from both q and p without rationale genera-
tion, which reduces to the standard Match-LSTM algorithm (Wang & Jiang, 2016a).

• No rationalization w/ re-encoding: This method is only applicable to these experiments that the
rationales of one side of text are given. Similar to “No rationalization”, the method uses all the
words as input. However, it re-encodes the rationales from q and generates hidden representations
based on each rationale assignments. Consequently, each piece of question/hypothesis rationale
is encoded independently of the other pieces.

It worth mentioning that the last two baselines do not satisfy the purpose of learning corresponded
rationales. However, their predictive accuracy serves as the upper bound of our proposed method.

Implementation Details Unless specified otherwise, all the models are implemented with Py-
Torch (Paszke et al., 2017). The size of the hidden states of the LSTM encoder is 200 and the

6



Under review as a conference paper at ICLR 2019

SearchQA SciTailfactwise
% Alignment Test MAP Test Acc % Alignment Test Acc

Independent ∼ 10% 58.3 49.6 ∼ 20% 71.9
∼ 40% 59.4 51.5 ∼ 40% 75.1

Ours ∼ 10% 59.6 51.8 ∼ 20% 74.2
∼ 40% 60.2 52.9 ∼ 40% 76.9

No Rationalization w/ re-encoding 100% 59.9 52.3 100% 78.0

Table 1: Experiment results on SearchQA and SciTailfactwise.

batch size is set to 40 pairs of texts. All models use fixed Glove 100-dimension word embeddings
(Pennington et al., 2014), except for the AskUbuntu where we used the same word embeddings as
(Lei et al., 2016). The maximum number of rationales we considered is three. For the case that the
generator identifies more than three rationales on q, we extract the first three and discard the rest. We
use Adam optimizer (Kingma & Ba, 2014) to train our model. We choose to use the tagging based
model to generate rationales on p except for the SciTail dataset. Other hyperparameters including
the learning rate are tuned and selected according to the development set. We report the testing set
results corresponding to the best development set settings. In addition, since both development and
test sets of AskUbuntu are small (∼200 questions), we report the averaged results over five runs.

Due to the training difficult of policy gradient, we also study an additional regularizer, which aims
to make the rationale generator benefit from the soft-attention scores between words in q and p.
Specifically, we calculate a word-by-word similarity matrix using LSTM contexts and then normal-
ized it in a row-by-row fashion. We denote the newly constructed attention matrix A. Then for each
rationale xk, we select the row of A that xki = 1. We rank all entries and pick the words in p with
top K scores to form a new binary sequence ŷk with length n. K is set to be

∑
i x

k
i . We found that

although ŷk is insufficient to serve as rationales, it provides indirect supervision to help the model
training. Λ({yk}) = λ3

1
m

∑|R|
k=1 |yk − ŷk| used as the additional regularizer for these experiments

that the rationales on q are provided. According to the development results, this regularizer helps
SciTailfactwise since it introduces contrastive information among words in p. But it fails to improve
SearchQA. Thus, all the reported results on SciTailfactwise include the additional regularizer.

4.2 MAIN RESULTS

We demonstrate that the proposed framework is able to match spans from on side of the input to
corresponding segments by first reporting the performances of SearchQA and SciTailfactwise. We
report the accuracy of both datasets. In addition, we also calculate the mean average precision
(MAP) for SearchQA. We report performances at different highlight percentages on the alignment
matrix, which is defined as

∑R
k=1 x

k ⊗ yk ∈ Rm×n. With a proper re-encoding process, this
quantity characterizes how much information is utilized for matching two sequences based on the
corresponded information only. The sparsity control is achieved by constraining the percentage of
selected words2 in p for each rationale generated in q.

Table 1 shows that our proposed method manages to select a small fragment of the alignment matrix
while maintaining the accuracy. Furthermore, when selecting the same level of corresponded words,
our dependent selection performs consistently better than the independent one. Surprisingly, our
approach even outperforms the model without rationale generation on SearchQA when 40% of the
alignment matrix is selected. This is might due to the fact that the passages are often redundant.
Some examples of the generated rationales by the proposed model are shown in Figure 3. Given
rationales in q, rationales in p are selected as consecutive spans that with similar meanings. Such
corresponded matches provide an interpretable way about how the model makes the prediction.

The next, we test the performance of our pipeline on AskUbuntu and SciTail and report results in
Table 2. Since the average length of the question and passage for AskUbuntu is much larger, we
are able to select much fewer words to predict the answer. Specifically, our dependent generation
manages to use only 8% of the matchings to achieve 50.9 MAP. On the other hands, we select

2One way is to replace the `1 norm in equation (7) to a hinge-loss that controls the percentage of selection
to be less than a fixed level.
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AskUbuntu SciTail
% Alignment Test MAP Test Acc |R| % Alignment Test Acc

Independent ∼ 8% 50.3 49.4 5 ∼ 30% 74.9

Ours ∼ 2% 50.9 48.5 3 ∼ 30% 76.0
∼ 8% 51.5 50.0 5 ∼ 30% 79.4

No Rationalization 100% 53.5 51.7 - 100% 82.2

Table 2: Experiment results on AskUbuntu and SciTail.

Hypothesis: Two light nuclei combine to produce a heavier nucleus and great energy in the nuclear
fusion process
Premise: Nuclear fusion is when two or more light nuclei join together to form a heavier nucleus ,
releasing energy in the process

Hypothesis: protein is an important part of a healthy diet because it is needed to repair tissue
Premise: protein is needed in the diet for muscle and tissue growth and repair

Figure 3: Examples of the corresponded rationales extracted from the SciTailfactwise dataset. Ratio-
nales are highlighted in different color. Text spans from the hypothesis and premise with the same
color indicate a corresponded match. If a word in the premise is selected by two rationale pairs (e.g.
red and yellow color), we change the text color (to red) and highlight (to yellow) accordingly.

30% for the shorter sentences in SciTail. The proposed rationalization approach outperforms the
independent baseline, however, there is still a small gap compared to the Match-LSTM algorithm
without any rationalization. In addition, for the SciTail dataset, we also investigate the choice of
the maximum number of rationale we generate from q. This is denoted as the |R| in the table.
We observe that by considering a larger number of rationale pairs, the overall performance gets
improved. This because the larger number makes the sampling process of z more robust.

4.3 FURTHER ANALYSES

To analyze the quality of generated rationale in a quantitative way, we design an experiment that adds
non-relevant sentences to the premise using the SciTailfactwise dataset. Specifically, for each (q, p)
pair, we select a non-relevant premise sentence p′. We make sure that the corresponding hypothesis
of p′ is not same to q. We construct a new premise by concatenating two sequences [p; p′], and then
feed the new pair (q, [p; p′]) to a previously trained model for inference. Please note that the testing
model does not see any adversary inputs with additive noise during its training. We hope the selected
spans on the premise side should not cover any text in p′. To quantify the measure, for any rationale
xk in q, we check if the corresponding rationale yk cover any words in the span of p′.

We conduct the aforementioned experiment on our pre-trained model. We first consider (q, [p; p′])
pairs that q, p is a “entail” relation. We observe that among these inputs, our dependent rationaliza-
tion model is fairly robust. Consider all selected words in {yk}, there are 13.1% of words come from
the irrelevant piece p′. Furthermore, in total, 13.0 % of the words in p′ are accidentally selected for
at least once. These two numbers serve as a similar flavor of the “precision” and “recall” measures.
Moreover, for these pairs that have “contradict” relations, we observe performance drops. Particu-
larly, 16.7% of our selections are from p′ and 17.5% of the words in p′ are selected as rationales for
at least once. The drop of performance might due to the difficulty of policy gradient optimization,
which the selection model is hard to learn the option of not choosing any words for those rationales
facts that are not covered by p. We will investigate the problem in our future work. Qualitative
results of the above experiments can be found in Appendix A.

5 CONCLUSION

In this paper, we propose a novel self-explaining architecture to predict matches between two se-
quences of texts. Specifically, we introduce the notion of corresponded rationales and learn to extract
them by the distal supervision from the downstream task. To evaluate, we compare our method to
state-of-the-art on both NLI and QA. We show quantitatively and qualitatively that our algorithm
delivers human interpretable justification while preserving high predictive performances.
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A EXAMPLES OF CORRESPONDED RATIONALES EXTRACTED FROM THE
NOISY SCITAILFACTWISE TASK

Hypothesis: A ribosome consists of two elements , rrna and proteins
Premise: After mrna leaves the nucleus , it moves to a ribosome , which consists of rrna and proteins
. Thus , cell-free viral replication reactions are a proven technology which can be used for detailed bio-
chemical and genetic dissection of the molecular mechanisms involved in the replication of picornaviruses

Hypothesis: A hookworm is classified as a parasite
Premise: Hookworm is a parasite that lives in the gut and causes anemia . Ecoregions are classified by
biome type , which are the major global plant communities determined by rainfall and climate

Hypothesis: Mollusks can be divided into seven classes
Premise: These materials can be divided into seven main groups . Gases kinetic molecular theory : the
theory that explains the behavior of ideal gases

Figure 4: Examples of the corresponded rationales extracted from the noisy SciTailfactwise task. The
italic sentences are the added noises. The first two examples are “entail” pairs while the last one is
a “contradict”.
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