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Abstract

We describe the use of an automated scheduling system
for observation policy design and to schedule operations of
the NASA (National Aeronautics and Space Administration)
ECOSystem Spaceborne Thermal Radiometer Experiment on
Space Station (ECOSTRESS). We describe the adaptation of
the Compressed Large-scale Activity Scheduler and Planner
(CLASP) scheduling system to the ECOSTRESS schedul-
ing problem, highlighting multiple use cases for automated
scheduling and several challenges for the scheduling technol-
ogy: handling long-term campaigns with changing informa-
tion, Mass Storage Unit Ring Buffer operations challenges,
and orbit uncertainty. The described scheduling system has
been used for operations of the ECOSTRESS instrument
since its nominal operations start July 2018 and is expected
to operate until mission end in Summer 2019.

Introduction
NASA's ECOSTRESS mission (NASA 2019) seeks to bet-
ter understand how much water plants need and how they
respond to stress. Two processes show how plants use water:
transpiration and evaporation. Transpiration is the process of
plants losing water through tiny pores in their leaves. Evap-
oration of water from the soil surrounding plants affects how
much water the plants can use. ECOSTRESS measures the
temperature of plants to understand combined evaporation
and transpiration, known as evapotranspiration.

ECOSTRESS launched on June 29, 2018 to the ISS (In-
ternational Space Station) on a Space-X Falcon 9 rocket as
part of a resupply mission. The instrument is attached to
the Japanese Experiment Module Exposed Facility (JEM-
EF) on the ISS and targets key biomes on the Earth's sur-
face, as well as calibration/validation sites. Other science
targets include cities and volcanoes. From the orbit of the
Space Station (Figure 1), the instrument can see target re-
gions at varying times throughout the day, rather than at a
fixed time of day, allowing scientists to understand plant wa-
ter use throughout the day.

The instrument used for ECOSTRESS is a thermal in-
frared radiometer. A double-sided scan mirror, rotating at
a constant 25.4 rpm, allows the telescope to view a 53°-wide
nadir cross-track swath with one scan per 1.18 seconds. The
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nominal observation unit is a scene, made up of 44 scans,
and takes roughly 52 seconds to acquire. For simplification
of operations, we consider that ECOSTRESS scenes are 52
seconds long. About 1000 scenes may be acquired in a given
week. Figure 2 shows a set of planned observations over
North America. Each square represents one 52-second long
scene.

CLASP (Knight and Chien 2006) was initially used pre-
launch as a tool to analyze the addition of a new science
campaign. CLASP was then used for operations to generate
command sequences for the instrument. The command se-
quences are translated from the observation schedule gener-
ated by CLASP, and include other time and location depen-
dent instrument actions besides observations, such as hard-
ware power cycles through high radiation environments.

Figure 1: Three Orbital Tracks of the ISS (Robinson 2013)

Each mission comes with its own set of challenges, and
there were three specifically that required adaptations to
CLASP as follows.
• ECOSTRESS has a long-term science campaign that we

need to satisfy. From week to week, the orbital ephemeris
can change, and thus the schedule needs to be updated
each week. We need to be able to account for previously
executed observations when scheduling for the future.

• An issue with the instrument Mass Storage Unit (MSU)
was discovered, and rather than performing an instrument
firmware update, we proposed a ground-based solution
that accounts for this additional complexity in the data
modeling in the schedule.

• The uncertainty in the orbital ephemeris (predictions of



Figure 2: Observations Over North America

the spacecraft location) required scheduling additional
observation time to ensure no targets are missed.

In the remainder of this paper, we describe these opera-
tional challenges and how we addressed them successfully.
We also validate our methods used through computational
analysis.

Initial Scheduling Problem
CLASP recieves as input (Figure 3) the ephemeris of the ISS
(predicted time-tagged locations), instrument constraints,
and a set of set of science campaigns, which are made up
of:

• target regions of interest on the Earth’s surface (Figure 4)

• illumination constraints

• a priority

We want to produce an observation schedule to view these
regions as many times as possible while respecting con-
straints such as memory capacity, downlink rate, and keep-
out zones (e.g. high radiation environments) where we do
not want to take any observations. Science campaigns can be
target regions or single point locations. We generate a grid-
ded approximation of target regions for faster computation,
to get a set of target points.

CLASP uses the CSPICE Toolkit provided by the Navi-
gation and Ancillary Facility (NAIF) (Acton 1996) at JPL to
do geometric reasoning regarding the visibility swaths of in-
struments from the spacecraft they are attached to. The size,
shape, and location of the swaths depend on the position and
orientation of the spacecraft, and the field-of-view of the in-
strument. CLASP has the capability to schedule instruments
that can point off-nadir, but ECOSTRESS specifically has
no pointing capability, so each observation spans the whole
range of its field-of-view. The planning horizon is broken
up into fixed duration observations, and CLASP computes
the intersection between the target grid points and the ob-
servations. We use a one-pass greedy scheduling algorithm
to place observations according to the priority of the targets
they cover.

Figure 3: Scheduler inputs and outputs

Problem Statement
The CLASP problem statement (Knight and Chien 2006):

Given:

• a set of regions of interest R = {r1, ..., rn}
• a temporal knowledge horizon (hst, het) over which we

know the vehicle’s activities

• a set of observation opportunities O = {o1, ..., on} within
the horizon (hst, het) where each oi ∈ O consists of a
start (o.start) and a duration (o.duration)

• a set of instrument swaths I ={i1, ..., in} where ∀(oi ∈
O)∃(ri, ii) | (grid(oi) ∈ grid(ri))∧ (grid(oi) ∈ grid(ii))

• a scoring function U(ri)

• keepout zones where observations should not be taken

• a bound on memory Mmax

• a rate at which memory is used while the instrument is on
Ṁfill

• a rate at which memory is recovered during downlink
Ṁdrain, which occurs when the instrument is not observ-
ing and is not in a keepout zone

Our goal is to select A ⊆ O to maximize U(ri) ∀ri ∈ R
subject to instrument constraints involving available mem-
ory and keepout zones.

We introduce new and modified ECOSTRESS-specific
components to the problem statement in subsequent sec-
tions.

Figure 4: Science Campaigns can be made up of regions
(blue boxes) or point targets (purple dots)



Sliding Window Scheduling and Changing
Ephemeris

If we had perfect knowledge of the future and a perfect ob-
server, we could simply schedule the entire mission at once
and feed the instrument slices of the schedule to execute.
Unfortunately, there are uncertainties that require the sched-
ule to be updated:

• new or modified science campaigns

• special maneuvers for spacecraft docking that could put
the instrument in an unsafe position

• thruster burns to counteract orbital decay that change the
trajectory

The goal for most of the ECOSTRESS science campaigns
is to observe them whenever possible in daylight, to see how
their water use changes at different times throughout the
day over an extended period of time. During pre-operations
analysis, CLASP was used to understand how to effectively
make use of unused data volume. A new campaign was thus
inserted into the ECOSTRESS science operation goals - to
construct daytime maps of the global landmass. We found
that attempting to construct one global map per month would
not violate any instrument memory constraints, and allow all
of the primary science campaigns to still be fulfilled as much
as possible.

The ECOSTRESS payload is commanded weekly after
a new ISS ephemeris prediction is received, uploading two
weeks worth of command sequences to the instrument. Op-
erationally, only the first week of sequences will get exe-
cuted before the next set of sequences is uploaded, with the
second week only being executed if, for some reason, a new
schedule is not able to be uploaded the next week. Since
the global map takes four weeks to construct, but only two
weeks worth of sequences are planned, we need to deter-
mine which parts of the global landmass have been previ-
ously observed, so in the next schedule we can attempt to
observe currently unobserved regions. This required adapt-
ing CLASP to be able to receive a previous schedule as in-
put, and account for those observations in scheduling for the
current planning horizon.

Time is divided into three regions with varying certainty:
past (high certainty), current (moderate certainty) and future
(low certainty). All three regions contribute to the score of
a schedule against the science observation campaigns. We
force a boundary condition that the data recorder is empty at
the end of each planning period to simplify operations. We
add the following component to our problem statement:

• a planning horizon (phst,phet) ⊆ (hst,het) over
which the schedule may be modified
The schedule is a living document that is updated weekly

during operations. Figure 6 shows the inputs and outputs of
the scheduler for each week’s run.

Ring Buffer Scheduling Constraint
The MSU onboard ECOSTRESS is a ring buffer. Ring
buffers consist of two pointers - a read pointer (r(t)) and
a write pointer (w(t)) (Knuth 1997). During downlink, the

Past

Score everything

FutureCurrent Current
hst phst phet het

Scope the solver (scheduler) to modify 
(phst, phet) ⊆ (hst,het)

+time

Figure 5: Planning horizon accounting for the past

Figure 6: Scheduler now takes in previous week’s schedule

data is read from the read pointer position, and the read
pointer advances. New data is written to the write pointer
position, and the write pointer advances. When functioning
correctly, the read and write pointers move back to the start
of memory when they reach the end of memory. An issue in
the instrument firmware causes the read pointer to stay at the
end of the memory rather than move to the start of memory
as expected, continuously reading the same data from that
position, even though new data may have been written at the
start of memory.

The undesired condition resulting in data loss occurs
when

w(t) < r(t) (1)

indicating the write pointer has wrapped back around but the
read pointer has not.

Rather than update the instrument firmware, which poses
a higher risk, we opted to attempt a ground-based solution.
A command can be issued that will reset the pointers back
to the start. When scheduling the pointer reset times as well
as the observations, we consider two constraints:

• Constraint 1: The amount of data acquired in between
reset commands should not exceed the capacity of the
buffer.

• Constraint 2: At the time of a reset command, the loca-
tions of the read pointer and the write pointer should be
equal.

Constraint 1 prevents the write pointer from wrapping
around the buffer, and Constraint 2 prevents any undown-
linked data from being in the buffer at the time of a reset. If
either constraint is not met, data will be lost.

Both constraints are specific to the ECOSTRESS mission
and does not apply to the CLASP problem in general. Our
scheduling goal then changes to:



• Our goal is to select A ⊆ O to maximize U(ri) ∀ri ∈
R subject to instrument constraints involving available
memory, keepout zones, and Constraints 1 and 2.

We schedule in two passes, outlined in Algorithm 1. The
first pass determines the ring buffer reset times, and the sec-
ond pass returns the final schedule. In the initial pass, the
scheduler is run with just the highest priority targets, with
reset times at the end of each week. New schedules are up-
loaded weekly, so having the buffer empty at the end of each
week allows for a more simple handover. When schedul-
ing the observations, CLASP enforces the above constraints.
We then examine the memory profile of the resulting sched-
ule. We search forward through the memory profile until
the point in time when the data has filled to some fraction
of the buffer. This fraction is an estimate of the amount of
memory going towards the high priority data, so there is
enough memory still available to observe lower priority tar-
gets. Moving backwards from this point, we look for a time
when the amount of memory onboard is lower than some
threshold. If there is no memory onboard at a specific time,
that means we are able to place a ring buffer reset there with-
out sacrificing observing an high priority targets for that time
period in the final schedule. The larger the amount of data
scheduled to be in the buffer, the more observations will fail
to be scheduled in the next run of CLASP. If a suitable point
is not found, the threshold increases and the process repeats
until a time for the reset is found. Then the search contin-
ues moving forward from the time chosen for the reset, and
this repeats until we reach the end of the planning horizon.
Figure 7 shows an example of reset times chosen after ex-
amining the memory profile.

Once all the reset times are found, the scheduler is run
again with high and low priority targets to produce the final
schedule, enforcing Constraints 1 and 2. Figure 8 shows the
memory profile with data from high and low priority cam-
paigns, and the buffer is empty at the reset times.

Figure 7: Scheduling resets after looking at memory profile
with data from high priority campaigns (blue)

Uncertainty of Predicted Ephemeris
The ISS is in a region of orbit known as Low Earth Or-
bit (LEO). Objects in LEO experience drag from the at-
mosphere, which results in the ISS experiencing some drift

Figure 8: Memory profile of final schedule with memory
from high priority campaigns (blue) and low priority cam-
paigns (green), with no data in the buffer when resets occur

from its predicted location. This can cause an observation to
be taken that misses the region it was intended to observe.

In the original version of CLASP, each observation has
a start time (o.start), and a duration (o.duration). For
ECOSTRESS, the duration is fixed at 52 seconds long. If a
target is predicted to be viewed at any time between o.start
and o.start + o.duration, that target is satisfied by that ob-
servation. If a target was predicted to be viewed near the
start or the end or the observation window, that target may
be missed operationally due to the uncertainty in the ISS po-
sition.

The initial solution to this problem was to spend extra
time observing before and after each set of contiguous ob-
servations. Because the ECOSTRESS instrument takes data
in scenes lasting 52 seconds, we add 26 seconds of obser-
vational time before and after, so each set of contiguous
observations still has a duration that is a multiple of an
ECOSTRESS scene. During scheduling, this extra time is
accounted for when checking data volume constraints, but
those times are not considered to satisfy any science tar-
gets. However, this extra time spent observing is wasteful
and takes up data volume that could potentially be used by
other productive observations.

A solution that could schedule observations such that no
science targets would be missed due to drift, but would also
allocate data volume efficiently, was warranted. Rather than
choosing from 52 second observations to add to the sched-
ule, we adapted CLASP to schedule from the second a target
was predicted to be observed, and then build the observa-
tions from there accounting for some amount of uncertainty
in the position and the fixed observation size.

The new method of scheduling observations is outlined
in Algorithm 2. When a target is attempted to be scheduled
that is visible at time t, we create an observation record that
holds the start time (st), end time (et), as well as the latest
start time (lst) and earliest end time (eet). These last two
parameters are necessary when merging observations. We
have two time-dependent functions pb and pa, which deter-
mine the amount of pad time necessary for a target visible
at time t to ensure it is not missed. The latest start time and
earliest end time will be t− pb(t) and t+ pa(t) respectively.
We consider three ways to determine st and et by shifting



procedure schedule()
write resets at week ends
run clasp with high priority campaigns
last reset point = start time
while progress is made do

last reset point =
findNextReset(last reset point)

write last reset point to file
end
run clasp with high and low priority campaigns

procedure findNextReset(lower bound)
upper bound = find upper bound based on

lower bound
while reset time not found do

t = upper bound
while t > lower bound do

if memory at time t < threshold then
return t

else
decrement t

end
end
increment threshold
t = upper bound

end
Algorithm 1: Algorithm for scheduling ring buffer resets

the observation forward or backwards. We choose the first
shifting strategy, if any, that results in the observation being
able to successfully be added to the schedule. We can center
the observation, so that the amount of pad time on either side
of lst and eet are equal. We can also make the observation
as early or as late as possible, by adding all extra time before
lst or after eet respectively.

Then we check to see if this observation is interfering with
any previously scheduled observations. Interference could
be a direct overlap in time spent observing, or it could violate
the minimum length necessary between observations. If this
observation does not interfere with any previously scheduled
observations, and it does not violate any other constraints
(memory, keepout times) it can be placed, and any targets
observed during (t, t + 1) have one viewing requirement
satisfied. If this observation does interfere with surrounding
observations that, we merge this observation and the inter-
fering one, and recursively merge until there are no inter-
fering observations. In the merging algorithm, we check for
interference between the newly created observation (x) and
its immediate neighbors. For the preceding neighbor n1, if
there is interference, we create a new observation that has

lst← min(x.lst, n1.lst)

and

eet← max(x.eet, n1.eet)

This ensures that for any targets satisfied by O or N, the
amount of pad time required on either side of them is main-
tained. Then we extend the observation to a multiple of a

scene by setting st and et using the current shifting strat-
egy. Figure 9 shows an example of created x′ from merging
x and n1. We then recursively merge with this new obser-
vation (x′), and check for interference with the following
neighbor n2 and recursively merge once again if necessary.
Once we obtain the newly merged observation, we can check
if it violates any other constraints. If it does not violate any
constraints, we can delete from the schedule any old obser-
vations that were merged to form this new one, and place
the new one in the schedule. If it does, we consider the next
shifting strategy for determining st and et, and return that
the observation is not able to be placed once we consider all
three strategies.

Figure 9: x′ is the result of merging the newly created obser-
vation x with its preceding neighbor n1

Validation
We validate the approaches previously presented with two
experiments. The first experiment is an analysis of how well
the algorithm for scheduling the ring buffer resets performs
compared to a schedule produced discounting the issue. The
second experiment is a comparison of the schedules pro-
duced by the two methods used to account for the uncer-
tainty in the ephemeris.

The algorithm for scheduling the ring buffer resets is ana-
lyzed by comparing the schedule produced when accounting
for the resets against a schedule produced when we only en-
force the data recorder being empty at the end of each week.
The goal with the algorithm is to avoid violating Constraints
1 and 2 while still taking as much high priority data as pos-
sible.

The change from adding one whole scene to each contigu-
ous set of observations to building observations up from the
second each target is observable will be validated by com-
paring the schedules produced by each method. We use a
constant padding function that gives a pad time of 10 sec-
onds on either side of each target. The schedules should have
similar numbers of observations, since this value is limited
by data constraints, but the resulting coverage should in-
crease with the second method since the data availability is
being used more effectively.



procedure canPlaceObservation(t)
for shift in shift strategies do

create observation x with lst = t− pb(t) and
eet = t+ pa(t), st and et according to shift
x′ = mergeObservations(x, shift)
temporarily delete any interfering observations

merged to create x′

if x′ does not violate any other constraints then
put back any deleted observations
return True

end
put back any deleted observations

end
return False

procedure mergeObservations(O, shift)
if x interferes with previous observation n1 then

x′ = merge x and n1 together according to
shift
x = mergeObservations (x′, shift)

end
if x interferes with next observation n2 then

x′ = merge x and n2 together according to
shift
x = mergeObservations (x′, shift)

end
return x

Algorithm 2: Algorithm for checking if observations can
be placed

Results
Ring Buffer Management
Figure 10 shows the coverage amount at each priority level
for a schedule produced when considering the ring buffer
constraint (orange), and one produced without considering
the constraint (blue). When adding in this additional con-
straint, we achieve a level of coverage of high priority data
that is very close to what we would achieve if this was not
an issue.

The minimal impact on acquiring the high priority data is
due to factors such as the locations of the high priority tar-
gets, the instrument data rate, and the downlink rate. There
exists times in the schedule with only high priority targets
when all of the data has been downlinked and the buffer is
empty, allowing resets to be placed with no negative im-
pacts. Had the downlink rate been slower, the instrument
data rate been higher, or if there were more high priority
targets, it is possible there would be no time when the buffer
would be empty.

Uncertain Ephemeris
Figure 11 shows the difference in target coverage when us-
ing the method of building up observations from a smaller
time, and Figure 12 shows the number of observations
scheduled. For the six weeks tested, there was an average of
29.9% increase in coverage and a 3.75% decrease in obser-
vations scheduled when comparing the method of building

Figure 10: Plot showing gridpoints covered at each priority
level by schedules produced when considering or not con-
sidering Constraints 1 and 2

scenes from a smaller time delta to adding a scene to each
contiguous set of scenes. This shows there had been a signif-
icant amount of data volume being wasted with the original
padding method. With the original method, the minimum ac-
quisition length was two scenes. In the absolute worst case,
if all targets were far enough apart that there were no con-
tiguous scenes, the first method of padding would require
double the scenes required by the second method of padding.

Figure 11: Plot showing coverage difference between the
two padding methods

Figure 12: Plot showing number of observations scheduled
with the two padding methods



Related Work
CLASP was previously used for on-orbit scheduling of the
IPEX CubeSat (Chien et al. 2015), but IPEX did not require
the scheduler to be aware of previously executed schedule
or long-term observational campaigns. This paper describes
extensions to CLASP that are aware of prior execution and
long term observational campaigns.

CLASP has been used for long term mission studies for
the upcoming Europa Clipper and JUICE missions (Troesch,
Chien, and Ferguson 2017), as well as the NISAR mis-
sion (Doubleday and Knight 2014). The ARIEL mission
study (Roussel et al. 2017) also focused on long term ob-
servation planning. The ARIEL and Europa Clipper stud-
ies assume perfect knowledge of future ephemeris and cer-
tain execution of scheduled observations, which is appropri-
ate for early mission design analysis, but not mission op-
erations. This paper focuses on the mission operations use
case, where the schedule is continously updated to handle
missed/unsatisfactory observations and changes in the ob-
server’s ephemeris.

CLASP was also used as a prototype for early stage
mission planning of the THEMIS instrument on the Mars
Odyssey spacecraft (Rabideau et al. 2010). The focus in
the THEMIS study is performance of the squeaky wheel
scheduling algorithm. This paper only considers a single
pass of squeaky wheel when scheduling.

The receding horizon, sliding window scheduling ap-
proach has been implemented for Earth observational
scheduling before (Lemaı̂tre et al. 2002; Aldinger et al.
2013; Lewellen et al. 2017). These three papers assumed
perfect knowledge of vehicle state, perfect execution and fo-
cused on optimization and orientation path planning for ag-
ile spacecraft. ECOSTRESS is not agile and this paper does
not explore optimization. This paper uses the sliding win-
dow scheme to address only imperfect state knowledge on
longer timescales.

Future Work
Our decision to require the data recorder to be empty al-
lowed for easier operations because it did not require an in-
terface between the actual vehicle telemetry and the initial
conditions of our data recorder fill state model. This simpler
interface came at a cost – we prevent the scheduler from
taking new science data near the end of each planning pe-
riod so that the data recorder can drain. ECOSTRESS could
produce more science data if we seeded the data recorder fill
state with a predicted fill level based on the prior schedule or
actual vehicle telemetry. Future missions should consider in-
terfacing data recorder telemetry with the initial conditions
of the scheduler’s data recorder resource model.

A correctly scheduled and executed observation may be
useless because of cloud cover at the time of observation.
System malfunctions may also prevent the instrument from
executing the scheduled observations. Both of these condi-
tions require an observation to be rescheduled. Future work
should handle the previous week’s schedule carefully, re-
moving activities that were not actually executed and pre-
serving the resource consumption, but removing the the

credit of unsatisfactory observations.
Currently a constant padding function is used when de-

ciding the earliest end and latest start times. This value is an
upper bound on the amount of drift there may be in a one
week period. The drift may be time-dependent. The farther
an observation from the creation of the ephemeris, the more
likely the drift is larger. A better understanding of the drift
may allow the padding functions to be truly time-dependent
and allow for more observations to be scheduled.

Conclusion
This paper has described the use of an automated scheduling
system in the analysis and operations for the ECOSTRESS
mission. Changing orbital ephemeris and long-term cam-
paign goals required adapting CLASP to consider past ob-
servations in scheduling for the future. The issue with the
instrument ring buffer required scheduling with additional
constraints, as well as scheduling another type of instrument
activity. The uncertainty of the ISS orbital position required
adapting how observations are scheduled. Through compu-
tational analysis we showed that our method for address-
ing the ring buffer approached the performance of schedules
produced that did not have the added constraints, and that
the second method of building observations up rather out-
performed the method of adding a fixed amount of observa-
tional time to ensure no regions of interest were missed.
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