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ABSTRACT

We introduce geomstats, a Python package for Riemannian modelization and
optimization over manifolds such as hyperspheres, hyperbolic spaces, spaces of
SPD matrices or Lie groups of transformations. Our contribution is threefold. First,
geomstats allows the flexible modeling of many a machine learning problem
through an efficient and extensively unit-tested implementations of these manifolds,
as well as the set of useful Riemannian metrics, exponential and logarithm maps that
we provide. Moreover, the wide choice of loss functions and our implementation
of the corresponding gradients allow fast and easy optimization over manifolds.
Finally, geomstats is the only package to provide a unified framework for
Riemannian geometry, as the operations implemented in geomstats are available
with different computing backends (numpy, tensorflow and keras), as well
as with a GPU-enabled mode– thus considerably facilitating the application of
Riemannian geometry in machine learning. In this paper, we present geomstats
through a review of the utility and advantages of manifolds in machine learning,
using the concrete examples that they span to show the efficiency and practicality
of their implementation using our package1.

1 INTRODUCTION

From soft-classification to image recognition, Riemannian manifolds provide a natural framework to
many a machine learning problem. Consider the following standard supervised learning problem:
given an input X , the goal is to predict an output Y . The relation between X and Y is typically
modeled by a function fθ : X → Y , characterized by a set of parameters θ. Riemannian geometry
often naturally arises at each of the three different stages of the modelization: through the input X ,
the output Y , or the parameters θ. For instance, the input X might belong to a Riemannian manifold.
This is typically the case in image processing, where images X are frequently modeled as elements
of a low-dimensional manifold (17; 57; 61; 67; 18; 6). Such is the case in (62), in which the authors
consider spherical images as elements of the orthogonal rotation group SO(3). In some cases, X can
even be a manifold itself— in (8) for instance, the authors propose to model images as a function of a
2D smooth surface representing a shape such as a human pose. Similarly, the output Y often belongs
to a Riemannian manifold (42; 47). Such is the case in problems where the output is a member of the
set of doubly stochastic matrices –as for instance in some neurosciences applications (48; 11)—. or
when the optimization is carried on a given manifold (2; 44; 27). In (28) for example, the authors use
a neural network to predict the pose of a camera Y , which is defined as an element of the Lie group
SE(3). Finally, the parameter θ of a model can be constrained on a Riemannian manifold, such as
in the work of (29) which constrains the weights of a neural network on multiple dependent Stiefel
manifolds.

Manifolds offer intuitive and practical advantages for modeling inputs, outputs and parameters. When
applied to the input, they constitute lower dimensional spaces with fewer degrees of freedom, thus
potentially allowing faster computations and less substantial memory allocation costs. Moreover,
the non-linear degrees of freedom in these manifolds are often more intuitive and benefit from more
expressive power. For instance, the geolocation of points of interest on Earth is more efficiently
achieved through their longitude and latitude—i.e., their 2D manifold coordinates—rather than
through their position (x, y, z) in the 3D Cartesian space. Most current machine learning problems
make little use of this underlying manifold structure —rather viewing their optimization task as a

1The package is provided in a zip file at the following anonymized address: https://goo.gl/XV2Rb7.
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constrained optimization over Euclidean space. Riemannian geometry, on the other hand, attempts
to leverage the manifold structure to solve the corresponding optimization problem, replacing lines
by geodesics, partial differential by covariate differentiation (59)— thus potentially reducing the
dimension of the prblem space and the memory allocation costs.

Yet, the adoption of Riemannian geometry by the machine learning community has been largely
hindered by the lack of a modular framework for implementing such methods. Code sequences
are often custom tailored for specific problems and/or computing backends, and are thus not easily
re-usable: . To address this issue, some packages have been written to perform computations
on manifolds. The theanogeometry package (39) provides an implementation of differential
geometric tensors on manifolds where closed forms do not necessarily exist, using the automatic
differentiation tool theano to integrate differential equations that define the geometric tensors. The
pygeometry package (10) offers an implementation primarily focused on the Lie groups SO(3)
and SE(3) for robotics applications. However, no implementation of non-canonical metrics on these
Lie groups is provided. The pymanopt package (63), originally implemented in Matlab as manopt,
provides a very comprehensive toolbox for optimization on a extensive list of manifolds. However,
not only is the choice of metrics on these manifolds rather restricted, the manifolds themselves are
often implemented using canonical embeddings in higher-dimensional euclidean spaces, with high
computational costs.

This paper presents geomstats, a package specifically targeted at the machine learning community
to perform computations on Riemannian manifolds with a flexible choice of Riemannian metrics. The
geomstats package makes three contributions. First, geomstats is the first Riemannian geome-
try package to be extensively unit-tested with more than 90 % code coverage. Second, geomstats
implements numpy (51) and tensorflow (1) backends, providing vectorized, intuitive computa-
tions, and available for GPU implementation. We also provide an updated version of the deep learning
framework,keras, equipped with Riemannian gradient descent on manifolds. Finally, geomstats
strives to be a user-friendly and educational a tool, presenting Riemannian geometry to computer
scientists and facilitating its use as a complement to theoretical papers or books. We refer to (55) for
the theory and expect the reader to have a high-level understanding of Riemannian geometry.

Our paper is organized as follows. We begin by providing an overview of geomstats in Section 2.
We then present concrete use cases of geomstats for machine learning on manifolds of increasing
geometric complexity, starting with manifolds embedded in flat spaces in Section 3, to a manifold
embedded in a Lie group with a Lie group action in Section 4, to the Lie groups SO(n) and SE(n)
in Section 5. Along the way, we present a review of the occurrences of each manifold in the
machine learning literature, some educational visualizations of the Riemannian geometry as well
as implementations of machine learning models where the inputs, the outputs and the parameters
successively belong to manifolds.

2 THE PACKAGE GEOMSTATS

2.1 GEOMETRY

The geomstats package implements Riemannian geometry through a natural object-
oriented approach based on two main families of classes: the manifolds, inherited
from the class Manifold and the Riemannian metrics, inherited from the class
RiemannianMetric. Children classes of Manifold considered here include: LieGroup,
EmbeddedManifold, SpecialOrthogonalGroup, SpecialEuclideanGroup,
Hypersphere, HyperbolicSpace and SPDMatricesSpace. Once the user has specified
an instance of Manifold, she or he must endow it with a particular choice of Riemanniann metric;
Instantiations of the RiemannianMetric class and its children classes are attributes of the
manifold objects.

The class RiemannianMetric implements the usual methods of Riemannian geometry, such as
the inner product of two tangent vectors at a base point, the (squared) norm of a tangent vector at a
base point, the (squared) distance between two points, the Riemannian Exponential and Logarithm
maps at a base point and a geodesic characterized by an initial tangent vector at an initial point or
by an initial point and an end point. Children classes of RiemannianMetric include the class
InvariantMetric, which implements the left—and right—invariant metrics on Lie groups,as
well as EuclideanMetric and MinkowskiMetric which are respectively the most standard
flat Riemannian and pseudo-Riemannian metrics.
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Contrary to prior existing packages, our methods have been extensively unit-tested, with more than
90% code coverage. The code is provided with numpy and tensorflow backends. Moreover,
geomstats strives for efficiency: the code is vectorized through the use of arrays in order to facili-
tate intuitive batch computation. The tensorflow backend also enables running the computations
on GPUs.

2.2 STATISTICS AND MACHINE LEARNING

The package geomstats also allows the user to easily perform statistical analysis on mani-
folds —specifically for Riemannian statistics— in the class RiemannianMetric (53). The class
RiemannianMetric implements the weighted Fréchet mean of a dataset through a Gauss-Newton
gradient descent iteration (21), the variance of a dataset with respect to a point on the manifold, as
well as tangent principal component analysis (20). This provides an easily and readily-applicable
tool for analysts to investigate and define summary statistics from the Riemannian perspective.

From a machine learning viewpoint, geomstats strives to facilitate the use of Riemannian geometry
in machine learning and deep learning settings by providing easy and practical frameworks to
incorporate manifold constraints into the optimization objective. Let us suppose for instance that we
want to train a neural network to predict an output Y on the manifold of our choice. Geomstats
provides off-the-shelf loss functions on Riemannian manifolds, implemented as squared geodesic
distances between the predicted output and the ground truth. These loss functions are consistent
with the geometric structure of the Riemannian manifold. The package gives the closed forms of
the Riemannian gradients corresponding to these losses, so that back-propagation can be easily
performed. Let us suppose now that we want to constrain the parameters of a model, such as the
weights of a neural network, to belong to a manifold. We provide modified versions of keras
and tensorflow, so that they can constrain weights on manifolds during training. As such, the
availability of geomstats from many different computing backends, as well as its computational
efficiency should greatly facilitate the use of Riemannian geometry in machine learning/

In the following sections, we demonstrate the use of the manifolds implemented in geomstats. For
each manifold, we present a literature review of its appearance in machine learning and we describe
its implementation in geomstats along with a concrete use case.

3 EMBEDDED MANIFOLDS - HYPERSPHERE AND HYPERBOLIC SPACE

We begin by considering the hypersphere and the hyperbolic space, often considered as the simplest
and most standard Riemannian manifolds of constant curvature (55). The manifolds are respectively
implemented in the classes Hypersphere and HyperbolicSpace. The logic of the Riemannian
structure of these two manifolds is very similar. They are both manifolds defined by their embedding
in a flat Riemannian or pseudo-Riemannian manifold.

To be more specific, the n-dimensional hypersphere Sn is defined by its embedding in the (n+ 1)-
Euclidean space, which is a flat Riemannian manifold, as

Sn =
{
x ∈ Rn+1 : x21 + ...+ x2n+1 = 1

}
. (1)

Similarly, the n-dimensional hyperbolic space Hn is defined by its embedding in the (n + 1)-
dimensional Minkowski space, which is a flat pseudo-Riemannian manifold, as

Hn =
{
x ∈ Rn+1 : −x21 + ...+ x2n+1 = −1

}
. (2)

The classes Hypersphere and HyperbolicSpace therefore inherit from the class
EmbeddedManifold. They implement methods such as: conversion functions from intrinsic
n-dimensional coordinates to extrinsic (n+ 1)-dimensional coordinates in the embedding space (and
vice-versa); projection of a point in the embedding space to the embedded manifold; projection of a
vector in the embedding space to a tangent space at the embedded manifold.

The Riemannian metric defined on Sn is derived from the Euclidean metric in the embedding
space, while the Riemannian metric defined on Hn is derived from the Minkowski metric in the
embedding space. They are respectively implemented in the classes HypersphereMetric and
HyperbolicMetric.
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3.1 HYPERSPHERE - REVIEW OF USE CASES IN MACHINE LEARNING

The hypersphere naturally appears in a number of settings. In particular, hyperspheres are common
objects in circular statistics (31), directional statistics (45) or orientation statistics (16), that is, areas
which focus on the analysis of data on circles, spheres and rotation groups. Concrete applications are
extremely diverse and range from biology to physics (49; 37; 32) or trajectory analysis (9; 40) among
many others (46; 65). In biology for instance, the sphere S2 is used in nalysis of protein structures
(36). In physics, the semi-hypersphere S4

+ is used to encode the projective space P4 for representing
crystal orientations in applied crystallography (56; 14).

The shape statistics literature (34) is also manipulating data on abstract hyperspheres. For instance,
in (35), the author studies shapes of k landmarks in m dimensions and introduces the "pre-shape"
spaces which are hyperspheres Sm(k−1). The s-rep, a skeletal representation of 3D shapes, also deals
with hyperspheres S3n−4 as the object under study is represented by n points along its boundary
(26).

Lastly, hyperspheres can be used to constrain the parameters of a machine learning model. For
example, training a neural net with parameters constrained on a hypersphere has been shown to result
in an easier optimization, faster convergence and comparable (even better) classification accuracy
(43).

3.2 GEOMSTATS USE CASE - OPTIMIZATION AND DEEP LEARNING ON HYPERSPHERES

We now demonstrate how to use geomstats for constraining a neural network’s weights on
manifolds during training, as advocated in (43). A detailed and reproducible implementation of this
example can be found in the deep_learning folder of our package.

Figure 1: Minimization of a scalar field on the sphere S2. The color map indicates the scalar field
values, where blue is the minimum and red the maximum. The red curve shows the trajectory taken
by the Riemannian gradient descent, which converges to a minimum (blue region).

This setting requires to first implement Riemannian gradient descent on the hypersphere, a process
which we demonstrate in figure 1 on a toy example: here, the goal is to minimize a quadratic form
xTAx with A ∈ Rn×n and xTAx > 0 constrained on the hypersphere Sn−1. Geomstats allows
us to conveniently generate a positive semidefinite matrix by doing a random uniform sampling on
the SPDMatricesSpace manifold. The red curve in figure 1 shows the trajectory of the algorithm
along the hypersphere.

Coming back to our example, in order to train the neural network’s weight on the hypersphere, we
have modified the optimization step in keras, so that the stochastic gradient descent is done on
the manifold through the Exponential map. In our implementation, the user can pass a Manifold
parameter to each neural network layer. The stochastic gradient descent optimizer has been modified

4



Under review as a conference paper at ICLR 2019

to operate the Riemannian gradient descent in parallel. It infers the number of manifolds directly
from the dimensionality by finding out how many manifolds are needed in order to optimize the
number of kernel weights of a given layer.

We provide a modified version of a simple deep convolutional neural network and a resnet (25) with
its convolutional layers’ weights trained on the hypersphere. They were trained respectively on the
MNIST (41) and (38) datasets.

3.3 HYPERBOLIC SPACE - USE CASE REVIEWS IN MACHINE LEARNING

We now focus on the applications of hyperbolic spaces in the machine learning literature. Hyperbolic
spaces arise in information and learning theory. Indeed, the space of univariate Gaussians endowed
with the Fisher metric densities is a hyperbolic space (13). This characterization is used in various
fields, such as in image processing, where each image pixel is represented by a Gaussian distribution
(3), or in radar signal processing where the corresponding echo is represented by a stationary Gaussian
process (4).

The hyperbolic spaces can also be seen as continuous versions of trees and are therefore interesting
when learning hierarchical representations of data (50). Hyperbolic geometric graphs (HGG) have
also been suggested as a promising model for social networks, where the hyperbolicity appears
through a competition between similarity and popularity of an individual (52).

3.4 GEOMSTATS USE CASE - VISUALIZATION ON THE HYPERBOLIC SPACE H2

We present the visualization toolbox provided in geomstats. This toolbox plays an educational
role by enabling users to test their intuition on Riemannian manifolds. Users can run and adapt
the examples provided in the geomstats/examples folder of the supplementary materials. For
example, we can visualize the hyperbolic space H2 through the Poincare disk representation, where
the border of the disk is at infinity. The user can then observe how a geodesic grid and a geodesic
square are deformed in the hyperbolic geometry on Figure 2.
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Figure 2: Left: Regular geodesic grid on the Hyperbolic space H2 in Poincare disk representation.
Right: Geodesic square on the Hyperbolic space H2, with points regularly spaced on the geodesics
defining the square’s edges.

4 MANIFOLD OF SYMMETRIC POSITIVE DEFINITE (SPD) MATRICES

The previous section dealt with the Hypersphere and the Hyperbolic space, that is, manifolds
embedded in flat spaces. We now increase the geometric complexity and consider a manifold
embedded in the general linear group of invertible matrices. The manifold of symmetric positive
definite (SPD) matrices in n dimensions is defined as:

SPD =
{
S ∈ Rn×n : ST = S,∀z ∈ Rn, z 6= 0, zTSz > 0

}
. (3)

The class SPDMatricesSpace inherits from the class EmbeddedManifold and has an
embedding_manifold attribute which stores an object of the class GeneralLinearGroup.
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We equip the manifold of SPD matrices with an object of the class SPDMetric that implements the
affine-invariant Riemannian metric of (54) and inherits from the class RiemannianMetric.

4.1 SPD MATRICES MANIFOLD - USE CASES IN MACHINE LEARNING

SPD matrices are ubiquitous in machine learning across many fields (12), either as input or output to
the problem. In diffusion tensor imaging (DTI) for instance, voxels are represented by “diffusion
tensors" which are 3x3 SPD matrices. These ellipsoids spatially characterize the diffusion of water
molecules in the tissues. Each DTI thus consists in a field of SPD matrices, which are inputs to
regression models. In (66) for example, the authors use an intrinsic local polynomial regression
applied to comparison of fiber tracts between HIV subjects and a control group. Similarly, in
functional magnetic resonance imaging (fMRI), it is possible to extract connectivity graphs from a set
of patients’ resting-state images’ time series (60; 64; 30)– a framework known as brain connectomics.
The regularized graph Laplacians of the graphs form a dataset of SPD matrices. They represent a
compact summary of the brain’s connectivity patterns which is used to assess neurological responses
to a variety of stimuli (drug, pathology, patient’s activity, etc.). SPD matrices can also encode
anatomical shape changes observed in images. The SPD matrix JTJ1/2 represents the directional
information of shape change captured by the Jacobian matrix J at a given voxel (23).

More generally speaking, covariance matrices are also SPD matrices which appear in many set-
tings. We find covariance clustering used for sound compression in acoustic models of automatic
speech recognition (ASR) systems (58) or for material classification (19) among others. Covariance
descriptors are also popular image or video descriptors (24).

Lastly, SPD matrices have found applications in deep learning, where they are used as features
extracted by a neural network. The authors of (22) show that an aggregation of learned deep
convolutional features into a SPD matrix creates a robust representation of images that enables to
outperform state-of-the-art methods on visual classification.

4.2 GEOMSTATS USE CASE - CONNECTIVITY GRAPH CLASSIFICATION

We show through a concrete brain connectome application how geomstats can be easily leveraged
for efficient supervised learning on the space of SPD matrices. The folder brain_connectome of
the supplementary materials contains the implementation of this use case.

We consider the fMRI data from the 2014 MLSP Schizophrenia Classification challenge2, consisting
of the resting-state fMRIs of 86 patients split into two balanced categories: control vs people suffering
schizophrenia. Consistently with the connectome literature, we tackle the classification task by using
a SVM classifier on the precomputed pairwise-similarities between subjects. The critical step lies in
our ability to correctly identify similar brain structures, here represented by regularized Laplacian
SPD matrices L̂ = (D − A) + γI , where A and D are respectively the adjacency and the degree
matrices of a given connectome. The parameter γ is a regularization shown to have little effect on the
classification performance (15).

Following two popular approaches in the literature (15), we define similarities between connectomes
through kernels relying on the Riemannian distance dR(L̂1, L̂2) = || log(L̂−1/2

1 .L̂2.L̂
−1/2
1 )||F and

on the log-Euclidean distance, a computationally-lighter proxy for the first: dLED(L̂1, L̂2) =

|| logI(L̂2) − logI(L̂1)||F . In these formulae, log is the matrix logarithm and F refers to the
Frobenius norm. Both of these similarities are easily computed with geomstats, for example the
Riemannian distance is obtained through metric.squared_dist where metric is an instance
of the class SPDMetric.

Figure 3 (left) shows the performance of these similarities for graph classification, which we bench-
mark against a standard Frobenius distance. With an out-of-sample accuracy of 61.2%, the log-
Euclidean distance here achieves the best performance. Interestingly, the affine-invariant Riemannian
distance on SPD matrices is the distance that picks up the most differences between connectomes.
While both the Frobenius and the log-Euclidean recover only very slight differences between con-
nectomes –placing them almost uniformly afar from each other–, the Riemannian distance exhibits
greater variability, as shown by the clustermap in Figure 3 (right). Given the ease of implementation

2Data openly available at https://www.kaggle.com/c/mlsp-2014-mri
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Distance Accuracy F1-Score
Riemannian 30.8% 47.1

Log Euclidean 62.5 36.4
Frobenius 46. 2% 0.00
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Figure 3: Left: Connectome classification results. Right: Clustermap of the recovered similarities
using the Riemannian distance on the SPD Manifold. We note in particular the identification of
several clusters (red blocks on the diagonal)

of these similarities with geomstats, comparing them further opens research directions for in-depth
connectome analysis.

5 LIE GROUPS SO(n) AND SE(n) - ROTATIONS AND RIGID
TRANSFORMATIONS

The previous sections tackled the case of manifolds which were embedded in other manifolds, the
latter being either flat or endowed with a Lie group structure. We now turn to manifolds that are Lie
groups themselves. The special orthogonal group SO(n) is the group of rotations in n dimensions
defined as

SO(n) =
{
R ∈ Rn×n : RT .R = Idn and detR = 1

}
. (4)

The special Euclidean group SE(n) is the group of rotations and translations in n dimensions defined
by its homegeneous representation as

SE(n) =

{
X ∈ Rn×n | X =

[
R t
0 1

]
, t ∈ Rn, R ∈ SO(n)

}
(5)

The classes SpecialOrthogonalGroup and SpecialEuclideanGroup both inherit from
the classes LieGroup and EmbeddedManifold, as embedded in the General Linear group.
They both have an attribute metrics which can store a list of metric objects, instantiations of
the class InvariantMetric. A left- or right- invariant metric object is instantiated through an
inner-product matrix at the tangent space at the identity of the group.

5.1 LIE GROUPS SO(n) AND SE(n) - USE CASES IN MACHINE LEARNING

Lie groups SO(n) and SE(n) for data and parameters representation are also a popular object in
many a machine learning problem. In 3D, SO(3) and SE(3) appear naturally when dealing with
articulated objects. A spherical robot arm is an example of an articulated object whose positions can
be modeled as the elements of SO(3). The human spine can also be modeled as an articulated object
where each vertebra is represented as an orthonormal frame that encodes the rigid body transformation
from the previous vertebra (5; 7). In computer vision, elements of SO(3) or SE(3) are used to
represent the orientation or pose of cameras (33). Supervised learning algorithm predicting such
orientations or poses have numerous applications for robots and autonomous vehicles which need to
localize themselves in their environment.
Lastly, the Lie group SO(n) and its extension to the Stiefel manifold are found very useful in the
training of deep neural networks. The authors of (29) suggest to constrain the network’s weights on
a Stiefel manifold, i.e. forcing the weights to be orthogonal to each other. Enforcing the geometry
significantly improves performances, reducing for example the test error of wide residual network on
CIFAR-100 from 20.04% to 18.61% .

5.2 GEOMSTATS USE CASE - GEODESICS ON SO(3)

Riemannian geometry can be easily integrated for machine learning applications in robotics using
geomstats. We demonstrate this by presenting the interpolation of a robot arm trajectory by
geodesics. The folder robotics of the supplementary materials contains the implementation of
this use case.
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In robotics, it is common to control a manipulator in Cartesian space rather than configuration space.
This allows for a much more intuitive task specification, and makes the computations easier by
solving several low dimension problems instead of a high dimension one. Most robotic tasks require
to generate and follow a position trajectory as well as an orientation trajectory.

Figure 4: A Riemannian geodesic computed with the canonical bi-invariant metric of SO(3), applied
to the extremity of the robotic arm.

While it is quite easy to generate a trajectory for position using interpolation between several via
points, it is less trivial to generate one for orientations that are commonly represented as rotation
matrices or quaternions. Here, we show that we can actually easily generate an orientation trajectory
as a geodesic between two elements of SO(3) (or as a sequence of geodesics between several via
points in SO(3)). We generate a geodesic on SO(3) between the initial orientation of the robot and
its desired final orientation, and use the generated trajectory as an input to the robot controller. The
trajectory obtained is illustrated in Figure 4.

This opens the door for research at the intersection of Riemannian geometry, robotics and machine
learning. We could ask the robot arm to perform a trajectory towards an element of SE(3) or SO(3)
predicted by a supervised learning algorithm trained for a specific task. The next subsection presents
the concrete use case of training a neural network to predict on Lie groups using geomstats.

5.3 GEOMSTATS USE CASE - DEEP LEARNING PREDICTIONS ON SE(3)

We show how to use geomstats to train supervised learning algorithms to predict on manifolds,
specifically here: to predict on the Lie group SE(3). This use case is presented in more details in the
paper (28) and the open-source implementation is given. The authors of (28) consider the problem of
pose estimation that consists in predicting the position and orientation of the camera that has taken a
picture given as inputs.

The outputs of the algorithm belong to the Lie group SE(3). The geomstats package is used to
train the CNN to predict on SE(3) equipped with a left-invariant Riemannian metric. At each training
step, the authors of (28) use the loss given by the squared Riemannian geodesic distance between the
predicted pose and the ground truth. The Riemannian gradients required for back-propagation are
given by the closed forms implemented in geomstats.

Any CNN Architecture

p = 𝑟$, 𝑟& , 𝑟', 𝑡$, 𝑡& , 𝑡' ∈ 𝔰𝔢(3)

p/

𝑑 1
2
3
(p
,p /
)

𝐿𝑜𝑠𝑠

Figure 5: Image courtesy of (28). CNN with a squared Riemannian distance as the loss on SE(3).

The effectiveness of the Riemannian loss is demonstrated by experiments showing significative
improvements in accuracy for image-based 2D to 3D registration. The loss functions and gradients
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provided in geomstats extend this research directions to CNN predicting on other Lie groups and
manifolds.

6 CONCLUSION AND OUTLOOK

We introduce the open-source package geomstats to democratize the use of Riemannian geometry
in machine learning for a wide range of applications. Regarding the geometry, we have presented
manifolds of increasing complexity: manifolds embedded in flat Riemannian spaces, then the case of
the SPD matrices space and lastly Lie groups with invariant Riemannian metrics. This provides an
educational tool for users who want to delve into Riemannian geometry through a hands-on approach,
with intuitive visualizations for example in subsections 3.4 and 5.2.

In regard to machine learning, we have presented concrete use cases where inputs, outputs and
parameters belong to manifolds, in the respective examples of subsection 4.2, subsection 5.3 and
subsection 3.2. They demonstrate the usability of geomstats package for efficient and user-
friendly Riemannian geometry. Regarding the machine learning applications, we have reviewed
the occurrences of each manifold in the literature across many different fields. We kept the range
of applications very wide to show the many new research avenues that open at the cross-roads of
Riemannian geometry and machine learning.

geomstats implements manifolds where closed-forms for the Exponential and the Logarithm maps
of the Riemannian metrics exist. Future work will involve implementing manifolds where these
closed forms do not necessarily exist. We will also provide the pytorch backend.
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