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Abstract

Foveation is an important part of human vision, and a number of deep networks1

have also used foveation. However, there have been few systematic comparisons2

between foveating and non-foveating deep networks, and between different variable-3

resolution downsampling methods. Here we define several such methods, and4

compare their performance on ImageNet recognition with a Densenet-121 network.5

The best variable-resolution method slightly outperforms uniform downsampling.6

Thus in our experiments, foveation does not substantially help or hinder object7

recognition in deep networks.8

1 Introduction9

The retinas of humans, monkeys, and many other animals have a high-resolution fovea. In humans,10

this disproportionate representation of the central visual field carries through the whole visual cortex,11

and eye movements to foveate task-relevant features are an essential part of vision. Deep convolutional12

networks are inspired by the primate visual system, but they usually lack foveation, which may be a13

limitation in some contexts. In humans, foveation allows both the wide field of view needed for tasks14

like visual navigation, and the high resolution needed for tasks like reading, without impractical brain15

size or metabolic cost. Similar benefits may await deep networks. Some previous studies have used a16

rough approximation of natural foveation, made up of several distinct images at different resolutions.17

In contrast, resolution changes gradually in natural systems. This may have benefits, but it is not clear18

how to arrange such a representation for input to a convolutional network. A circular image with19

high magnification at the centre wastes pixels at the corners. A polar representation does not, but it20

sacrifices translational equivariance. In summary, while foveation could potentially have benefits for21

deep networks, it is not clear when, or how best to implement foveation.22

To help fill this gap, we compare several foveated downsampling approaches to uniform downsampling23

in object recognition. In this context, the different foveated methods perform fairly similarly to each24

other, and the best performs slightly better than uniform downsampling (top-1 validation accuracy25

48.95% vs. 47.72%; Table 1). Therefore, foveation does not seem to be important for object26

recognition (which is unsurprising given the good performance of standard deep networks), but it27

does not greatly interfere either. This suggests that foveation could be incorporated into more general28

vision systems that perform multiple tasks, such as in robots that must recognize objects and also29

read text in the environment.30

2 Methods31

2.1 Network architecture and training32

We trained deep networks on the ImageNet recognition task, with various kinds of downsampled33

images as input. In each case we used a DenseNet-121 [1] network with original hyperparameters34
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Figure 1: Estimate of retinal ganglion cell (RGC) density as a function of degrees from the fovea. We
use estimates from [3], which provides data along the nasal-temporal axis. [4] shows that density
is similar in temporal, dorsal, and ventral directions, but higher in the nasal direction. To calculate
radially symmetric mean values, we sum nasal and temporal fits from [3] with weights 0.25 and 0.75
(to account for the fact that nasal density is atypical).

and training procedure, including random horizontal flips, batch size etc. We trained each network35

for 90 epochs, using SGD (initial learning rate 0.1, reduced by 10x every 30 epochs).36

2.2 Downsampling techniques37

Uniform downsampling: As a baseline method, ImageNet images were uniformly downsampled to a38

32x32 resolution.39

Multi-resolution downsampling: We produced a simple foveated representation composed of four40

16× 16 downsampled images with different magnifications. The first spanned the whole image, the41

second spanned the central half of the width and height of the image, the third a quarter the width and42

height, and the fourth an eighth. Several past papers have used a similar approach, e.g. [2].43

Polar retinal downsampling: We sampled the image in polar coordinates, creating a rectangular44

image (44× 23 pixels) in which the long edge corresponded to the angle and the short edge the radial45

distance from the fovea. The density of samples in the radial direction declined with greater distance46

from the centre. We based the sampling density on retinal ganglion cell (RGC) density (see Figure 1).47

We used gaussian filters with radially increasing widths to reduce artefacts. See example in Figure 2.48

Cartesian retinal downsampling: We sampled the image with the same radially-varying density49

as above, but created a circular image with strong barrel distortion (Figure 3), rather than a polar50

representation. This resulted in a transformation that better retains the translational equivariance51

property of convolutional networks, at the cost of wasting pixels in the corners.52

2.3 Selection of image points to foveate53

A saliency map was generated for each image with a DeepGaze II model [5]. This map estimated the54

likelihood of a human orienting to each pixel. Human gaze often orients to areas of interest such as55

faces and foreground objects, which often correspond to the target label. We selected the point of56

highest saliency, subject to a constraint that avoided points near image edges (as selecting a point57

near the edge would render much of the crop blank). Specifically, we only chose points around which58

at least 80% of a 256 × 256-pixel crop would fall within the image boundaries (Figure 4). If the59

resulting crop went outside the image boundaries, we extrapolated by copying edge pixels.60

We sometimes chose multiple points in a single image. The highest-saliency points are typically close61

together, and contain similar information. To avoid selecting multiple similar points, we modified the62

saliency maps after each selection. Specifically, we subtracted a square-gaussian function from the63

saliency map, with a peak equal to the saliency at the chosen point, and a width of 60 pixels.64
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a) Focal point (in red) b) Cropping which centers fo-
cal point c) Polar-Retinal

foveation
d) Uniform Down-
sampling

Figure 2: An example of polar-retinal downsampling. (a) The focal point (highest saliency) is
determined (red dot). (b) The image is then cropped so the center is at the focal point. (c) The image
is then ’foveated’ resulting in pixels closer to the center becoming over-represented while pixels
close to the edge are under-represented. In this case, the white area on the left of the foveated image
is representing the white pixels inside the loop of steel wire of the source image. (d) The result is
downsampled uniformly.

Figure 3: An image before and after cartesian-retinal downsampling. Much like polar foveation, the
center of the image is over-represented in the downsample while the extremities are under-represented,
proportional to RGC density data.

a) Saliency output of DeepGaze
II

b) The ineligible region in pur-
ple

c) Saliency map clipped to re-
move ineligible areas

Figure 4: The process of finding a valid saliency map from which the point of highest saliency is
chosen. (a) A DeepGaze II model determines a general saliency map. (b) An ineligible region is
identified (in purple) where points would result in too much of the resultant crop (20% or more)
falling outside the image. (c) The saliency map is clipped and normalized before points are chosen.

3 Results65

Figure 5 shows training curves for each of the downsampling methods. During training, each crop66

surrounded one of the three most salient points (with sequential updating of the salience map, as67
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Table 1: Performance on the validation set
Model Top 1 Accuracy Top 5 Accuracy

Most Salient: Uniform 37.66 63.03
Most Salient: Polar-Retinal 33.85 57.50
Top-3 Salient: Uniform 47.72 70.95
Top-3 Salient: Polar-Retinal 47.88 70.26
Top-3 Salient: Cartesian-Retinal 48.95 71.79
Top-3 Salient: Multi-Resolution 47.34 69.91

described in the Methods) at random. We also separately trained networks with the uniform and polar68

methods using the single most salient crop. Table 1 summarizes validation performance of the trained69

models. For Top-3 salient results, predictions were based on three foveations for each image (logits70

averaged across foveations).71

4 Discussion72

The cartesian method performed best in this study. Each of the foveated methods has a limitation that73

could potentially be improved in future work. The polar mapping sacrificed translational equivariance74

(e.g. the same edge detector could respond to a vertical edge at the bottom of the image and a75

horizontal edge at the side). This might be mitigated by adding rotational equivariance. The cartesian76

representation wasted pixels at the corners of the image, which limits computational efficiency. Our77

version of the multi-resolution representation arranged resolutions side-by-side, which introduced78

edge effects. The resolutions could also be treated as separate input channels. We did not do this79

because we wanted to hold constant the numbers of parameters and sizes of the representations across80

models. Given that foveated views seem not to impair object recognition performance, it would be81

interesting to explore potential benefits within more general vision systems.82

Figure 5: Top 1 (left) and Top 5 (right) validation accuracy during training
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