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Abstract

The present paper develops a novel aggregated gradient approach for distributed
machine learning that adaptively compresses the gradient communication. The
key idea is to first quantize the computed gradients, and then skip less informative
quantized gradient communications by reusing outdated gradients. Quantizing and
skipping result in ‘lazy’ worker-server communications, which justifies the term
Lazily Aggregated Quantized gradient that is henceforth abbreviated as LAQ. Our
LAQ can provably attain the same linear convergence rate as the gradient descent
in the strongly convex case, while effecting major savings in the communication
overhead both in transmitted bits as well as in communication rounds. Empirically,
experiments with real data corroborate a significant communication reduction
compared to existing gradient- and stochastic gradient-based algorithms.

1 Introduction

Considering the massive amount of mobile devices, centralized machine learning via cloud computing
incurs considerable communication overhead, and raises serious privacy concerns. Today, the
widespread consensus is that besides in the cloud centers, future machine learning tasks have to be
performed starting from the network edge, namely devices [16,|19]. Typically, distributed learning
tasks can be formulated as an optimization problem of the form

N,
min m(0) with f,(0) := L(Xm,n; 0 1
1 mgw Fm(0) Fm(0) ; ( ) )
where 8 € R? denotes the parameter to be learned, M with |[M| = M denotes the set of servers,
Xm,» represents the n-th data vector at worker m (e.g., feature and label), and N,, is the number of
data samples at worker m. In (I, £(x; 8) denotes the loss associated with 6 and x, and £, (6) denotes
the aggregated loss corresponding to € and all data at worker m. For the ease in exposition, we also
define f(0) = >, c s fm () as the overall loss function.

In the commonly employed worker-server setup, the server collects local gradients from the workers
and updates the parameter using a gradient descent (GD) iteration given by

GD iteration 0" = 6" —a Z Vim (ek) )
meM
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where 6% denotes the parameter value at iteration k, « is the stepsize, and Vf(8%) =
Y omem V fm (8%) is the aggregated gradient. When the data samples are distributed across workers,
each worker computes the corresponding local gradient V f,,, (8*), and uploads it to the server. Only
when all the local gradients are collected, the server can obtain the full gradient and update the
parameter. To implement (2)) however, the server has to communicate with all workers to obtain
fresh gradients {V f,, (6")})_;. In several settings though, communication is much slower than
computation [[15]. Thus, as the number of workers grows, worker-server communications become
the bottleneck [9]. This becomes more challenging when incorporating popular deep learning-based
learning models with high-dimensional parameters, and correspondingly large-scale gradients.

1.1 Prior art

Communication-efficient distributed learning methods have gained popularity recently [9} [22]. Most
popular methods build on simple gradient updates, and are centered around the key idea of gradient
compression to save communication, including gradient quantization and sparsification.

Quantization. Quantization aims to compress gradients by limiting the number of bits that repre-
sent floating point numbers during communication, and has been successfully applied to several
engineering tasks employing wireless sensor networks [21]. In the context of distributed machine
learning, a 1-bit binary quantization method has been developed in [5 24]]. Multi-bit quantization
schemes have been studied in [2, 18], where an adjustable quantization level can endow additional
flexibility to control the tradeoff between the per-iteration communication cost and the convergence
rate. Other variants of quantized gradient schemes include error compensation [32], variance-reduced
quantization [34], quantization to a ternary vector [31], and quantization of gradient difference [20].

Sparsification. Sparsification amounts to transmitting only gradient coordinates with large enough
magnitudes exceeding a certain threshold [27]. Empirically, the desired accuracy can be attained even
after dropping 99% of the gradients [[1]. To avoid losing information, small gradient components are
accumulated and then applied when they are large enough [[17]. The accumulated gradient offers
variance reduction of the sparsified stochastic (S)GD iterates [[L1, 126]. With its impressive empirical
performance granted, except recent efforts [3]], deterministic sparsification schemes lack performance
analysis guarantees. However, randomized counterparts that come with the so-termed unbiased
sparsification have been developed to offer convergence guarantees [28}30].

Quantization and sparsification have been also employed simultaneously [8} 12, [13]. Nevertheless,
they both introduce noise to (S)GD updates, and thus deterioratee convergence in general. For
problems with strongly convex losses, gradient compression algorithms either converge to the
neighborhood of the optimal solution, or, they converge at sublinear rate. The exception is [[18], where
the first linear convergence rate has been established for the quantized gradient-based approaches.
However, [[18] only focuses on reducing the required bits per communication, but not the total
number of rounds. Nevertheless, for exchanging messages, e.g., the p-dimensional 0 or its gradient,
other latencies (initiating communication links, queueing, and propagating the message) are at least
comparable to the message size-dependent transmission latency [23]]. This motivates reducing the
number of communication rounds, sometimes even more so than the bits per round.

Distinct from the aforementioned gradient compression schemes, communication-efficient schemes
that aim to reduce the number of communication rounds have been developed by leveraging higher-
order information [25, [36]], periodic aggregation [[19, |33, 35]], and recently by adaptive aggregation
[6, 10l 29]; see also [4] for a lower bound on communication rounds. However, whether we can save
communication bits and rounds simultaneously without sacrificing the desired convergence properties
remains unresolved. This paper aims to address this issue.

1.2 Our contributions

Before introducing our approach, we revisit the canonical form of popular quantized (Q) GD methods

[24]-[20] in the simple setup of (1)) with one server and M workers:

QGD iteration 0" =0"—a Y Qm(6") 3)
meM

where Q.. (8%) is the quantized gradient that coarsely approximates the local gradient V f,,, (6*). While

the exact quantization scheme is different across algorithms, transmitting @, (Ok) generally requires



fewer number of bits than transmitting V f,,(8"). Similar to GD however, only when all the local
quantized gradients {Q., (6*)} are collected, the server can update the parameter 6.

In this context, the present paper puts forth a quantized gradient innovation method (as simple as
QGD) that can skip communication in certain rounds. Specifically, in contrast to the server-to-worker
downlink communication that can be performed simultaneously (e.g., by broadcasting %), the server
has to receive the workers’ gradients sequentially to avoid interference from other workers, which
leads to extra latency. For this reason, our focus here is on reducing the number of worker-to-server
uplink communications, which we will also refer to as uploads. Our algorithm Lazily Aggregated
Quantized gradient descent (LAQ) resembles (3)), and it is given by

LAQ iteration 0" = 6" —aV* with VF=V*'+ 3" 6Q, &)
meMPk

where V* is an approximate aggregated gradient that summarizes the parameter change at iteration

k, and 5QF, := VQ..(6%) —VQm(éfnfl) is the difference between two quantized gradients of f,, at

. ~k—1 . C . . .
the current iterate 8 and the old copy 0,, . With a judicious selection criterion that will be
introduced later, M* denotes the subset of workers whose local 6Q¥, is uploaded in iteration k,

while parameter iterates are given by 0" = 0" vm e M and 05, == 0" ' vm ¢ MP”. Instead of
requesting fresh quantized gradient from every worker in (3)), the trick is to obtain V* by refining the
previous aggregated gradient V*~!; that is, using only the new gradients from the selected workers in
MP*, while reusing the outdated gradients from the rest of workers. If V*~! is stored in the server, this
simple modification scales down the per-iteration communication rounds from QGD’s M to LAQ’s
| MP¥|. Throughout the paper, one round of communication means one worker’s upload.

Compared to the existing quantization schemes, LAQ first quantizes the gradient innovation —
the difference of current gradient and previous quantized gradient, and then skips the gradient
communication — if the gradient innovation of a worker is not large enough, the communication of
this worker is skipped. We will rigorously establish that LAQ achieves the same linear convergence
as GD under the strongly convex assumption of the loss function. Numerical tests will demonstrate
that our approach outperforms existing methods in terms of both communication bits and rounds.

Notation. Bold lowercase letters denote column vectors; ||x||2 and ||x||« denote the ¢>-norm and
£~-norm of x, respectively; and [x]; represents i-th entry of x; while |a| denotes downward rounding
of a; and | - | denotes the cardinality of the set or vector.

2 LAQ: Lazily aggregated quantized gradient

To reduce the communication overhead, two complementary stages are integrated in our algorithm
design: 1) gradient innovation-based quantization; and 2) gradient innovation-based uploading or
aggregation — giving the name Lazily Aggregated Quantized gradient (LAQ). The former reduces
the number of bits per upload, while the latter cuts down the number of uploads, which together
guarantee parsimonious communication. This section explains the principles of our two-stage design.

2.1 Gradient innovation-based quantization -
1 (0,051, (V4@ 12,0,

Quantization limits the number of bits to represent a : U e | | \ |

gradier}t vector dqring communi.cation. Suppose. we | | : > T: 'I

use b bits to quantize each coordinate of the gradient ~ 2:R¥ R¥

vector in contrast to 32 bits as in most computers.

With Q denoting the quantization operator, the quan-
tized gradient for worker m at iteration k is Q. (0%) = Q(V f, (6%), Qm(éf,;l)), which depends on

the gradient V f,,,(8%) and the previous quantization Q, 9:;1 . The gradient is element-wise quan-
g P q g q

tized by projecting to the closest point in a uniformly discretized grid. The grid is a p-dimensional
Sk—1

hypercube which is centered at Q... (9%, ') with the radius B, = ||V f (8%) — Qu (0% )||oo. With
7 :=1/(2° — 1) defining the quantization granularity, the gradient innovation f,, (6%) — Qm(éf,:l) can
be quantized by b bits per coordinate at worker m as:
Sk—1
[V (0)]i = [Qm (6 )i+ Ri | 1

[qm(e )]’L QTR'Fn + 2 y 15 yD (5)

Figure 1: Quantization example (b = 3)




which is an integer within [0, 2° — 1], and thus can be encoded by b bits. Note that adding R, in the
numerator ensures the non-negativity of [¢.,(6%)];, and adding 1/2 in (5) guarantees rounding to the
closest point. Hence, the quantized gradient innovation at worker m is (with 1 := [1,--- ,1]7)

5Qlfn = Qm(ek) — Qm(éfn_l) = QTanqm(Ok) — R’fnl :  transmit an and gm (Bk) 6)

which can be transmitted by 32 + bp bits (32 bits for R¥, and bp bits for ¢,,(8")) instead of the original
32p bits. With the outdated gradients Qm(@f,:l) stored in the memory and 7 known a priori, after

receiving 6QF, the server can recover the quantized gradient as Q,,(8%) = Qm(é}:n )+ 6QE,.

Figure |I| gives an example for quantizing one coordinate of the gradient with b = 3 bits. The
original value is quantized with 3 bits and 2* = 8 values, each of which covers a range of length
27 R%, centered at itself. With &%, := V £,,(8%) — Q.,(8") denoting the local quantization error, it is
clear that the quantization error is less than half of the length of the range that each value covers,
namely, ||}, || < TR}, The aggregated quantized gradient is Q(6*) = 3> _ ., Qm(8"), and the
aggregated quantization error is * := V£(6%) — Q(8%) = S-M_ ek ; thatis, Q(8%) = V f(6%) — €.

m=1

2.2 Gradient innovation-based aggregation

The idea of lazy gradient aggregation is that if the difference of two consecutive locally quantized
gradients is small, it is safe to skip the redundant gradient upload, and reuse the previous one
at the server. In addition, we also ensure the server has a relatively “fresh" gradient for each
worker by enforcing communication if any worker

has not uploaded during the last ¢ rounds. We seta o . 0+ = 9 — g V¥

clock t,,, m € M for worker m counting the number

of iterations since last time it uploaded information. o ./SQk ol PIAN \SQk
Equipped with the quantization and selection, our Workers ' /=" b Y\ "
LAQ update takes the form as (). Quantization _ Quantization _  Quantization

Now it only remains to design the selection criterion REl SRy Cesen

to decide which worker to upload the quantized gra-
dient or its innovation. We propose the following
communication criterion: worker m € M skips the upload at iteration k, if it satisfies

Figure 2: Distributed learning via LAQ

D
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o 2 &allo T =0 B 3 (k3 + e E) s )
d=1

tm <t (7b)

1Qum (85 ") — Qu (6”12 <

where D < f and {¢4}2_, are predetermined constants, €, is the current quantization error, and
~k—1 ~k— . . . .
EF T =V im0, ) — Qm(0,, 1) is the error of the last uploaded quantized gradient. In next section

we will prove the convergence and communication properties of LAQ under criterion (7).

2.3 LAQ algorithm development

In summary, as illustrated in Figure 2] LAQ can be implemented as follows. At iteration k, the server
broadcasts the learning parameter to all workers. Each worker calculates the gradient, and then
quantizes it to judge if it needs to upload the quantized gradient innovation §Q¥,. Then the server
updates the learning parameter after it receives the gradient innovation from the selected workers.
The algorithm is summarized in Algorithm [}

To make the difference between LAQ and GD clear, we re-write @) as:

6" =0" —alVQ(O") + Y (Qu(Bn ) = Qu(6"))] (82)
memk
=0" —alVf(0") "+ 3 QB )~ Qm(6"))] (8b)
meMk

where M¥ := M\ MP¥, is the subset of workers which skip communication with server at iteration k.
Compared with the GD iteration in (2), the gradient employed here degrades due to the quantization

error, € and the missed gradient innovation, D mentk (Qm(ékil) — Qm(0))]. It is clear that if large
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Algorithm 1 QGD Algorithm 2 LAQ

1: Inpgtz. steps}gze «a > 0, quantization bit b. 1: Input: stepsize o > 0, b, D, {£d}dD:1 and £.
2 Imtlallze: 0. 2: Initialize: 8", and {Qm(éi)7tm}m€M.
3: fork=1,2,--- K do :
k 3: fork=1,2,--- ,K do
4:  Server broadcasts 8 to all workers. : k
: — 4:  Server broadcasts 8" to all workers.
5: form=1,2,--- M do . X 5 form —1.2. - . Mdo
6 Worker m computes kam(,e ) and Q@ (6%). 6: Worker m computes V f,, (8%) and Q.. (8").
7: Worker m uploads 6Qy, via (). 7: if (7) holds for worker m then
8:  end for 8: Worker m uploads nothing.
9:  Server updates 0 following @) with M* = M. K A1
10: end for 9: Set Om = Gm and t,, < t,m + 1.
10: else
11: Worker m uploads 6QF, via (@).
12: Set éfn = Bk, and t,, = 0.
13: end if
14:  end for
15:  Server updates 6 according to ().
16: end for

Table 1: A comparison of QGD and LAQ.

enough number of bits are used to quantize the gradient, and all {£;}_; are set 0 thus M* := M,
then LAQ reduces to GD. Thus, adjusting b and {£,}%_; directly influences the performance of LAQ.

The rationale behind selection criterion (/) lies in the judicious comparison between the descent
amount of GD and that of LAQ. To compare the descent amount, we first establish the one step
descent amount of both algorithms. For all the results in this paper, the following assumption holds.

Assumption 1. The local gradient ¥ f,,(-) is L,,-Lipschitz continuous and the global gradient
V f(-) is L-Lipschitz continuous, i.e., there exist constants L., and L such that

||vf'm(01) - VfTTL(02)H2 SL"LHGI - 92”27 veh 027 (93)
IVf(61) = Vf(02)|2 <L[61 — 2]|2, V61, O2. (9b)

Building upon Assumption [I} the next lemma describes the descent in objective by GD.
Lemma 1. The gradient descent update yields following descent:

F(OF) — f(6") < Adp (10)
where Agp := —(1— %F)al|VF(6°)3.
The descent of LAQ distinguishes from that of GD due to the quantization and selection, which is
specified in the following lemma.

Lemma 2. The LAQ update yields following descent:
1O — f(6") < ALag +alle™|3 (11)

~k—1
where A} 1q := =5 |VFO")3 + all e pin (Qm(Om ) — Qu(@))E + (5 — 55)116°T" — 6°I3.

In lazy aggregation, we consider only A} 4, with the quantization error in (TT)) ignored. Rigorous
theorem showing the property of LAQ taking into account the quantization error will be established
in next section.

The following part shows the intuition for criterion (7a)), which is not mathematically strict but
provides the intuition. The lazy aggregation mechanism selects the quantized gradient innovation by
judging its contribution to decreasing the loss function. LAQ is expected to be more communication-
efficient than GD, that is, each upload results in more descent, which translates to:

! K
ALag _ Agp

. 12
MH S M 2
which is tantamount to (see the derivations in the supplementary materials)
~k—1
1(Qun (0 ) = Qu(8")I3 < IVF(0")]13/(2M?), ¥m € M. (13)



However, for each worker to check locally is impossible because the fully aggregated gradient
V £(8%) is required, which is exactly what we want to avoid. Moreover, it does not make sense to
reduce uploads if the fully aggregated gradient has been obtained. Therefore, we bypass directly
calculating ||V £(6")||3 using its approximation below.

D
2 - -
IVFO")~ —5 > gall0™ ' — 03 (14)

k=1

where {¢4}5_, are constants. The fundamental reason why (74) holds is that V f(6*) can be approxi-
mated by weighted previous gradients or parameter differences since f(-) is L-smooth. Combining
({73) and ([74) leads to our communication criterion (7a) with quantization error ignored.

We conclude this section by a comparison between LAQ and error-feedback (quantized) schemes.

Comparison with error-feedback schemes. Our LAQ approach is related to the error-feedback
schemes, e.g., [3} 11} 24,26} 27, 32]. Both lines of approaches accumulate either errors or delayed
innovation incurred by communication reduction (e.g., quantization, sparsification, or skipping),
and upload them in the next communication round. However, the error-feedback schemes skip
communicating certain entries of the gradient, yet communicate with all workers. LAQ skips
communicating with certain workers, but communicates all (quantized) entries. The two methods are
not mutually exclusive, and can be used jointly.

3 Convergence and communication analysis

Our subsequent convergence analysis of LAQ relies on the following assumption on f(6):

Assumption 2. The function f(-) is u-strongly convex, e.g., there exists a constant p > 0 such that

1(81) = [(62) = (V£(82),01 — 82) + £ 161 — 6213, ¥61, 2. (s)

With 6* denoting the optimal solution of (I)), we define Lyapunov function of LAQ as:

D D
V(6") = £(6") — F(0) + 30D Lot 3 (16)

d=1 j=d

The design of Lyapunov function V(8) is coupled with the communication rule (7a) that contains
parameter difference term. Intuitively, if no communication is being skipped at current iteration, LAQ
behaves like GD that decreases the objective residual in V(0); if certain uploads are skipped, LAQ’s
rule guarantees the error of using stale gradients comparable to the parameter difference in V(8)
to ensure its descending. The following lemma captures the progress of the Lyapunov function.

Lemma 3. Under Assumpn(ms!and E] if the stepsize o and the parameters {&4}5 4 are selected as
(withany 0 < p1 < 1 and p2 > 0

—p 1
Zfd <mln{ A0+ ) 2(1+p;1)} (17a)

2 2
agmln{L< 1+p2 dzlfd>’[,< 2(14p3") ;f‘l)} (17b)

then the Lyapunov function follows

V(O ) <av(e) + B[l 13+ Y- (llehll3 + llen )] (1)
meMk

where constants 0 < o1 < 1 and B > 0 depend on o and {£q}; see details in supplementary materials.

For the tight analysis, (T7) appear to be involved, but it admits simple choices For example when
we choose p1 = 1/2 and ps = 1, respectively, then & = & = ---&p = 35 and o = ¢ satisfy (I7).

If the quantization error in (I8) is null, Lemma [3|readily implies that the Lyapunov functlon enjoys a
linear convergence rate. In the following, we will demonstrate that under certain conditions, the LAQ
algorithm can still guarantee linear convergence even if we consider the the quantization error.
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Figure 4: Convergence of the loss function (logistic regression)
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Figure 5: Convergence of gradient norm (neural network)

Theorem 1. Under the same assumptions and the parameters in Lemma (3] Lyapunov function and
the quantization error converge at a linear rate; that is, there exists a constant oy € (0, 1) such that

V(6*) < o5 P; (19a)
ek |12 < 205 P, ¥m € M. (19b)

where P is a constant depending on the parameters in (I7); see details in supplementary materials.

From the definition of Lyapunov function, it is clear that f(6*) — f(8*) < V(8*) < o5V° — the risk
error f(8%)— £(@*) converges linearly. The L-smoothness results in ||V £(8%)||3 < 2L[f(8" — f(8%)] <
2LokV° — the gradient norm ||V £(6%)||% converges linearly. Similarly, the u-strong convexity implies

16" — 6|13 < 2[f(6" — f(8")] < 205V — ||0* — 67||3 also converges linearly.

Compared to the previous analysis for LAG [6], the analysis for LAQ is more involved, since
it needs to deal with not only outdated but also quantized (inexact) gradients. This modi-
fication deteriorates the monotonic property of the Lyapunov function in (I8), which is the
building block of analysis in [6]. We tackle this issue by i) considering the outdated gradi-
ent in the quantization @); and, ii) incorporating quantization error in the new selection cri-
terion (]ZI) As a result, Theorem |I| demonstrates that LAQ is able to keep the linear con-
vergence rate even with the presence of the quantization error. This is because the properly
controlled quantization error also converges at a linear rate; see the illustration in Figure [3]

Proposition 1. Under Assumption|l] if we choose the constants
{€4}5 1 satisfying &1 > &2 > --- > £p and define d.n,, m € M as:

I1v£651
dm = max {d|L}, < €4/(3¢°M?D), d € {1,2,--- ,D}}  (20)

d Bound of Q@Y
then, worker m has at most k/(d. + 1) communications with the
server until the k-th iteration.

Iterations

This proposition implies that the smoothness of the local loss func-
tion determines the communication intensity of the local worker. ~ Figure 3: Gradient norm decay
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Figure 6: Test accuracies on three different datasets

4 Numerical tests and conclusions

To validate our performance analysis and verify its communication savings in practical machine
learning problems, we evaluate the performance of the algorithm for the regularized logistic regression
which is strongly convex, and the neural network which is nonconvex. The dataset we use is
MNIST [14], which are uniformly distributed across M = 10 workers. In the experiments, we set
D=10,& =& =---,£p =0.8/D, t = 100; see the detailed setup in the supplementary materials.
To benchmark LAQ, we compare it with two classes of algorithms, gradient-based algorithms and
minibatch stochastic gradient-based algorithms — corresponding to the following two tests.
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Figure 7: Convergence of loss function (logistic regression)

Gradient-based tests. We consider GD, QGD [18] and lazily aggregated gradient (LAG) [6].
The number of bits per coordinate is set as b = 3 for logistic regression and 8 for neural network,
respectively. Stepsize is set as o = 0.02 for both algorithms. Figure[d]shows the objective convergence
for the logistic regression task. Clearly, Figure[d(a) verifies Theorem [I] e.g., the linear convergence
rate under strongly convex loss function. As shown in Figure [#[b), LAQ requires fewer number
of communication rounds than GD and QGD thanks to our selection rule, but more rounds than
LAG due to the gradient quantization. Nevertheless, the total number of transmitted bits of LAQ is
significantly smaller than that of LAG, as demonstrated in Figure @(c). For neural network model,
Figure 3] reports the convergence of gradient norm, where LAQ also shows competitive performance

Algorithm [[ Tteration # | Communication # | Bit # [ Accuracy
LAQ logistic 2673 620 1.95 x 107 0.9082
neural network 8000 31845 4.05 x 10" | 0.9433
GD logistic 2820 28200 7.08 x 10° 0.9082
neural network 8000 80000 4.07 x 10™F 0.9433
QGD logistic 2805 28050 8.81 x 108 0.9082
neural network 8000 80000 1.02 x 10™ 0.9433
LAG logistic 2659 2382 5.98 x 108 0.9082
neural network 8000 29916 1.52 x 10" 0.9433

Table 2: Comparison of gradient-based algorithms. For logistic regression, all algorithms terminate
when loss residual reaches 10~%; for neural network, all algorithms run a fixed number of iterations.

8
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Figure 8: Convergence of loss function (neural network)

for nonconvex problem. Similar to the results for logistic model, LAQ requires the fewest number of
bits. Table [2]summarizes the number of iterations, uploads and bits needed to reach a given accuracy.

Figure 6] exhibits the test accuracy of above compared algorithms on three commonly used datasets,

MNIST, ijennl and covtype. Applied to all these datasets, LAQ saves transmitted bits and meanwhile
maintains the same accuracy.

Stochastic gradient-based tests. We test stochastic gradient descent (SGD), quantized stochastic
gradient descent (QSGD) [2]], sparsified stochastic gradient descent (SSGD) [30], and the stochastic
version of LAQ abbreviated as SLAQ. The mini-batch size is 500 , a = 0.008, and the number of bits
per coordinate is set as b = 3 for logistic regression and 8 for neural network. As shown in Figures
and 8} SLAQ incurs the lowest number of communication rounds and bits. In this stochastic gradient
test, although the communication reduction of SLAQ is not as significant as LAQ compared with
gradient based algorithms, SLAQ still outperforms the state-of-the-art algorithms, e.g., QSGD and
SSGD. The results are summarized in Table Bl More results under different number of bits and the
level of heterogeneity are reported in the supplementary materials.

Algorithm [ Tteration # | Communication # | Bit # [ Accuracy
SLAQ logistic 1000 8255 1.94 x 10° | 0.9018
neural network 1500 11192 1.42 x 10™ | 0.9107
SGD logistic 1000 10000 2.51 x 10° 0.9021
neural network 1500 15000 7.63 x 10™ 0.9100
QSGD logistic 1000 10000 7.51 x 10% 0.9021
neural network 1500 15000 2.03 x 10™ 0.9100
SSGD logistic 1000 10000 1.26 x 10° 0.9013
neural network 1500 15000 3.82 x 10™ 0.9104

Table 3: Performance comparison of mini-batch stochastic gradient-based algorithms.

This paper studied the communication-efficient distributed learning problem, and proposed LAQ that
simultaneously quantizes and skips the communication based on gradient innovation. Compared to
the original GD method, linear convergence rate is still maintained for strongly convex loss function.
This is remarkable since LAQ saves both communication bits and rounds significantly. Numerical
tests using (strongly convex) regularized logistic regression and (nonconvex) neural network models
demonstrate the advantages of LAQ over existing popular approaches.
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