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ABSTRACT

Dramatic advances in generative models have resulted in near photographic qual-
ity for artificially rendered faces, animals and other objects in the natural world.
In spite of such advances, a higher level understanding of vision and imagery does
not arise from exhaustively modeling an object, but instead identifying higher-
level attributes that best summarize the aspects of an object. In this work we
attempt to model the drawing process of fonts by building sequential genera-
tive models of vector graphics. This model has the benefit of providing a scale-
invariant representation for imagery whose latent representation may be system-
atically manipulated and exploited to perform style propagation. We demonstrate
these results on a large dataset of fonts and highlight how such a model captures
the statistical dependencies and richness of this dataset. We envision that our
model can find use as a tool for designers to facilitate font design.

1 INTRODUCTION
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Figure 1: Learning fonts in a native command space. (left) Unlike pixels, scalable vector graphics
(SVG) are scale-invariant representations whose parameterizations may be systematically adjusted

to convey different styles. (right) We learn a latent representation of the SVG specification (Fer-
raiolo, 2001) that enables such manipulations. All images are samples from this generative model.
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The last few years have witnessed dramatic advances in generative models of images that produce
near photographic quality imagery of human faces, animals, and natural objects (Radford et al.,
2015} |Goodfellow et al., [2014; Brock et al., [2018; Karras et al.| 2018} [Kingma & Dhariwal, [2018).
These models provide an exhaustive characterization of natural image statistics (Simoncell1 & Ol-
shausen, 2001)) and represent a significant advance in this domain. However, these advances in
image synthesis ignore an important facet of how humans interpret raw visual information (Reis-
berg & Snavely, [2010), namely that humans seem to exploit structured representations of visual
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concepts (Lake et al., 2017 [Hofstadter, |1995). Structured representations may be readily employed
to aid generalization and efficient learning by identifying higher level primitives for conveying vi-
sual information (Lake et al.,|2015) or provide building blocks for creative exploration (Hofstadter,
1995}, Hofstadter & McGrawl [1993). This may be best seen in human drawing, where techniques
such as gesture drawing emphasize parsimony for capturing higher level semantics and actions with
minimal graphical content (Stanchfield, [2007).

In this work, we focus on an subset of this domain where we think we can make progress and
improve the generality of the approach. Font generation represents a 30 year old problem posited as
a constrained but diverse domain for understanding high level perception and creativity (Hofstadter,
1995). Early research attempted to heuristically systematize the creation of fonts for expressing
the identity of characters (e.g. a, 2) as well as stylistic elements constituting the “spirit” of a font
(Hofstadter & McGraw, [1993). Despite providing great inspiration, the results were limited by a
reliance on heuristics and a lack of a learned, structured representation (Rehling| [2001)). Subsequent
work for learning font representations focused on models with simple parameterizations (Lau},|2009),
template matching (Suveeranont & Igarashi, 2010), example-based hints (Zongker et al., [2000), or
more recently, learning manifolds for geometric annotations (Campbell & Kautzl 2014)).

We instead frame the problem of generating fonts by specifying it with Scalable Vector Graphics
(SVG) — a common file format for fonts, human drawings, designs and illustrations (Ferraiolo}
2001). SVGs are a compact, scale-invariant representation that may be rendered on most web
browsers. SVGs specify an illustration as a sequence of a higher-level commands paired with
numerical arguments (Figure [I] top). We take inspiration from the literature on generative mod-
els of images in rasterized pixel space (Graves, 2013} |Van den Oord et al., [2016). Such models
provide powerful auto-regressive formulations for discrete, sequential data (Hochreiter & Schmid-
huber}, |1997; |Graves| 2013}, [Van den Oord et al[2016) and may be applied to rasterized renderings
of drawings (Ha & Eck} |2017). We extend these approaches to the generation of sequences of SVG
commands for the inference of individual font characters. The goal of this work is to build a tool
to learn a representation for font characters and style that may be extended to other artistic domains
(Clouatre & Demers} 2019; [Sangkloy et al.l [2016; |Ha & Eckl |[2017), or exploited as an intelligent
assistant for font creation (Carter & Nielsen, 2017).

Our main contributions are: 1) Build a generative model for scalable vector graphics (SVG) images
and apply this to a large-scale dataset of 14 M font characters. 2) Demonstrate that the generative
model provides a latent representation of font styles that captures a large amount of diversity and is
consistent across individual characters. 3) Exploit the latent representation from the model to infer
complete SVG fontsets from a single character. 4) Identify semantically meaningful directions in
the latent representation to globally manipulate font style.

2 METHODS

We compiled a font dataset composed of 14 M examples across 62 characters (i.e. 0-9, a-z, A-
7), which we term SVG-Fonts. The dataset consists of fonts in a common font format (SFDf]
converted to SVG, excluding examples where the unicode ID does not match the targeted 62 char-
acter set specified above. In spite of the filtering, label noise exists across the roughly 220K fonts
examined.

The proposed model consists of a variational autoencoder (VAE) (Kingma & Welling, [2013; [Ha
& Eckl [2017) and an autoregressive SVG decoder implemented in Tensor2Tensor (Vaswani et al.,
2018). Briefly, the VAE is a convolutional encoder and decoder paired with instance normaliza-
tion conditioned on the label (e.g. a, 2, etc.) (Dumoulin et al.l 2017 Perez et al., |2018). The
VAE is trained as an class-conditioned autoencoder resulting in a latent code z that is largely class-
independent (Kingma et al.l |2014). The latent z is composed of p and o: the mean and standard
deviation of a multivariate Gaussian. The SVG decoder consists of 4 stacked LSTMs (Hochreiter &
Schmidhuber, [1997) trained with dropout (Srivastava et al., 2014; Zaremba et al., [2014; [Semeniuta
et al, |2016) and a Mixture Density Network (MDN) at its final layer. The LSTM receives as input
the previous sampled MDN output, concatenated with the discrete class label and the latent style

"https://fontforge.github.io



Published as a workshop paper at ICLR 2019

0123456785 0 123(4/5 6789 aBcaEF

ASCDEFGHIJKLMNOPGRSTUVWXYZ  0123456789ARBCDEF

r 1

e ey EvYWEY= 012345678 9AlBCOEF

ABCDEFGHTJKLNNOPORSTUVWXYY 012345678B9ABCIDEF

e e as Y 0123456789ABCDEF

ABCDEFGHI JKLMNOPQRSTUVvwWXYZ [0/123456789AB8CDEF

abcdefaghiiklLmnoparstuvwxyz 01234E]6/89ABCDEF
11238 40678%8

AR LD EECE TR LNN O TNy 0 102/3 456789 ABCDET

Ah(dﬂfdll(\)i;;‘ﬂ;ﬂﬂ[}ul.\[u\\l\\‘z 0L2345E7[B]9HBCDEF
567809

ABCDEFGHI JKLMNOPAQRSTUVWXY?Z O1234567839ABCDEF

abcdefahiiklmnorPrarsTuvwxyz 01254@67BQQBCDEF

Figure 2: Exploiting the latent representation of style. (left) Examples generated by sampling
a random latent representation z and running the SVG decoder by conditioning on z and all class
labels. The learned z is class-agnostic and covers a wide range of font styles. (right) Examples
generated by computing z from a single character (purple box) and generating SVG images for all
other characters in a font. A single character may provide sufficient information for reconstructing
the rest of a font set. Each character is selected as the best of 10 samples.

representation z. The SVG decoder’s loss is composed of a softmax cross-entropy loss between
over one-hot SVG commands plus the MDN loss applied to the real-valued arguments.

In principle, the model may be trained end-to-end, but we found it simpler to train the two parts of
the model separately. Note that both the VAE and MDN are probabilistic models that maybe sampled
many times during evaluation. The results shown here are the selected best out of 10 samples.

3 RESULTS

We compiled the SVG-Font s dataset wherein individual SFD font characters were normalized and
converted into SVG format for training and evaluation. We trained a VAE and SVG decoder over
3 epochs of the data and evaluated the results on a hold-out test split. Over the course of training,
we find that the model does indeed improve in terms of likelihood and plateaus in performance,
while not overfitting on the training set (Figure [1| top left). Yet, we note a small but systematic
spread in average likelihood across classes (Figure |1} bottom left). What follows is an analysis of
the representational ability of the model to learn and generate SVG specified fonts.

3.1 EXPLOITING THE LATENT REPRESENTATION FOR STYLE PROPAGATION

We first ask whether the proposed model may learn a latent representation of font style that captures
a large amount of diversity. We demonstrate this by generating SVG characters using the SVG
decoder, while conditioning on a randomly sampled z. In Figure 2] (left) we see that the decodings
represent a wide array of font styles.

Because the VAE is conditioned on the class label, we expect that the latent representation z would
only encode the font style with minimal class information (Kingma et al., 2014)). We wish to exploit
this model structure to perform style propagation across fonts. In particular, we ask whether a single
character from a font set is sufficient to infer the rest of the font set in a visually plausible manner
(Rehling, 2001; [Hofstadter & McGraw, [1993)).

To perform this task, we calculate the latent representation z for a single character and condition the
SVG decoder on z as well as the label for all other font characters (i.e. 0-9, a-z, A-Z). Figure E]
(right) shows the results of this experiment. For each row, z is calculated from the character in the
red box. The other characters in that row are generated from the SVG decoder conditioned on z.

We observe a perceptually-similar style consistently within each row. Note that there was no re-
quirement during training that the same point in latent space would correspond to a perceptually
similar character across labels — that is, the consistency across class labels was learned in an unsu-
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Figure 3: Building style analogies with the learned representation. Semantically meaningful
directions may be identified for globally altering font attributes. For instance, bold (blue) and non-
bold (red) examples of a concept provide a vector direction in the latent space (left) that may be
added to arbitrary points (yellow) for decreasing or increasing the strength of the attribute.

pervised manner (Rehling, 2001} [Hofstadter & McGraw, [1993). Thus, a single value of z seems to
correspond to a perceptually-similar set of characters that resembles a plausible fontset.

Additionally, we observe a large amount of style variety across rows (i.e. different z) in Figure 2]
(right). The variety indicates that the latent space z is able to learn and capture a large diversity of
styles observed in the training set. Finally, we also note that for a given column the decoded glyph
does indeed belong to the class that was supplied to the SVG decoder. These results indicate that z
encodes style information consistently across different character labels, and that the proposed model
largely disentangles class label from style.

3.2 BUILDING STYLE ANALOGIES WITH THE LEARNED REPRESENTATION

Given that the latent style is perceptually smooth and aligned across class labels, we next ask if we
may find semantically meaningful directions in this latent space. In particular, we ask whether these
semantically meaningful directions may permit global manipulations of font style.

Inspired by the work on word vectors (Mikolov et all 2013), we ask whether one may identify
analogies for organizing the space of font styles (Figure[3] top). To address this question, we select
positive and negative examples for semantic concepts of organizing fonts (e.g. bold) and identify
regions in latent space corresponding to the presence or absence of this concept (blue and red points).
We compute the average 2.4 and zp;,¢, and define the concept direction ¢ = 2pjye — Zred-

We test if these directions are meaningful by taking an example font style z* from the dataset (Figure
[ right, yellow), and adding (or subtracting) the concept vector ¢ scaled by some parameter cv.
Finally, we compute the SVG decodings for z* + ac across a range of a.

Figure [3] shows the resulting fonts. Note that across the three properties examined, we observe a
smooth interpolation in the direction of the concept modeled (e.g.: first row v becomes increasingly
bold from left to right). We take these results to indicate that one may interpret semantically mean-
ingful directions in the latent space. Additionally, these results indicate that one may find directions
in the latent space to globally manipulate font style.

4 DISCUSSION

In the work we presented a generative model for vector graphics. This model has the benefit of
providing a scale-invariant representation for imagery whose latent representation may be system-
atically manipulated and exploited to perform style propagation. We demonstrate these results on a
large dataset of fonts and highlight the limitations of a sequential, stochastic model for capturing the
statistical dependencies and richness of this dataset. Even in its present form, the current model may
be employed as an assistive agent for helping humans design fonts in a more time-efficient manner
(Carter & Nielsen, 2017; Rehling, [2001]).
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