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ABSTRACT

There is growing interest in automating designing good neural network architec-
tures. The NAS methods proposed recently have significantly reduced architecture
search cost by sharing parameters, but there is still a challenging problem of design-
ing search space. We consider search space is typically defined with its shape and
a set of operations and propose a channel-level architecture search (CNAS) method
using only a fixed type of operation. The resulting architecture is sparse in terms
of channel and has different topology at different cell. The experimental results for
CIFAR-10 and ImageNet show that a fine-granular and sparse model searched by
CNAS achieves very competitive performance with dense models searched by the
existing methods.

1 INTRODUCTION

Nowadays, deep neural networks (DNNs) are used extensively and successfully in many fields
and applications such as computer vision, speech recognition, machine translation, and automated
vehicles. Designing DNNs often requires significant architecture engineering, a large amount of
trial and error by experts. Although transfer learning is widely used to save the efforts required for
designing good architectures of DNNs from scratch, it is not always possible to use.

Recently, there is growing interest in automating designing good neural network architectures (30; 31;
20; 24; 21; 15; 3; 28; 14; 2; 22; 7; 27; 4; 29; 10). Most of them can be categorized into reinforcement
learning-based (RL) methods, evolutionary algorithm-based (EV) methods, hypernetwork-based (HY)
methods, and gradient-based (GR) methods, in terms of the search algorithm.

RL methods (30; 31; 20; 24) use a controller model that enumerates a bunch of candidate models,
which are trained for a fixed number of epochs from scratch, and then, is updated using the validation
accuracies of the candidate models evaluated on a validation set. To reduce the search space of
candidate models, some of them (31; 20) assume each model is composed of multiple convolutional
layers called cells having the same architecture and focuses on searching for the best cell architecture.
For example, in NASNet (31), a cell is composed of five blocks, and each block composed of two
operations, which are selected among a set of various convolution and pooling operations by the
controller model. To reduce the search space, NASNet also transfers the learned architecture for a
small dataset (e.g., CIFAR-10) to a large dataset (e.g., ImageNet). To optimize an architecture with
less amount of computation, ENAS (20) exploits parameter (weight) sharing, which avoids training
each candidate model from scratch by sharing the weights of candidate models. It constructs a large
computational graph, where each subgraph represents the architecture of a candidate model, and the
controller model is trained to search for a subgraph corresponding to a good candidate model.

EV methods (23; 1; 12; 17; 26; 21; 15) also have been extensively studied. AmoebaNet (21) uses the
same search space with NASNet, but searches a good cell architecture based on evolutionary algorithm
instead of RL controller. The population is initialized with models with random architectures, and
some models are sampled from the population. The model with the highest validation fitness within
the samples is selected as the parent (i.e., exploitation), and a child having a mutation in terms
of operations and skip connections is constructed from the parent (i.e., exploration). Hierarchical
NAS (15) uses hierarchical representation for cell architecture where smaller graph motifs are used as
building blocks to form larger motifs, instead of flat representation. Unfortunately, most of RL and
EV methods, except ENAS, require an enormous amount of computing power for training thousands
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of child models. They usually need hundreds or thousands of GPU days for architecture search,
which is almost impossible for a typical machine learning practitioner.

HY methods and GR methods avoid such a large cost of architecture search by sharing parameters
as in ENAS (20). HY methods (3; 28) bypass fully training candidate models by instead training an
auxiliary model, a HyperNet (8), to dynamically and directly generate the weights of a candidate
model. SMASH (3) generates an architecture of an entire network (i.e., macro search) in terms of the
hyperparameters of filters (e.g., number, size) with fixing the type of operation in the HyperNet space,
while GHN (28) generates an architecture of a cell (i.e., micro search) in terms of operations in the
NAS search space.

GR methods (22; 7; 27; 4; 29; 10) do not rely on controllers, evolutionary algorithm, and hypernet-
works, but exploit gradient descent on network architectures, which can significantly improve the
speed of NAS. They basically relax the search space to be continuous, so that the architecture can
be optimized with respect to its validation set performance by gradient descent. Here, search space
corresponds to a parent network, and a child network (subgraph) can be derived from the parent
network by gradient descent. Most of GR methods focus on searching a good cell architecture in
terms of operations and repeating the same architecture as in NASNet. After architecture search, they
should usually re-train the candidate architecture snapshot from scratch using the training set due to
inconsistency between the performance of derived child networks and converged parent networks.

As described above, one of the major trends in NAS is exploiting the concept of parameter sharing
through hypernetwork or gradient descent in order to reduce the cost (i.e., GPU days) of NAS. By
parameter sharing, HY and GR methods can automatically optimize an architecture that can achieve
the state-of-the-art performance on CIFAR-10 and ImageNet just within a few days (as summarized
in Table 4). However, there is still a challenging problem in the above architecture search methods:
designing search space. In principle, the search space should be large and expressive enough to
capture a diverse set of promising candidate models, and at the same time, should be small enough to
train with the limited amount of resources and time (2). Some methods (24; 15; 22) addressed that
defining search space is extremely important for the performance of neural architecture search. The
problem about designing search space may not be solved at once. The search space of the existing
NAS methods is typically defined with a shape of the overall network and a set of operations such as
identity, normal convolution, separable convolution, average pooling, and max pooling. Many of them
follow the NASNet search space for the shape of the network (i.e., stacking cells) and define their
own set of operations. Since the number of possible types of operations for search space is limited
due to the search cost, the set of operations used itself may have a large impact on the performance of
architecture search.

In this paper, we investigate the possibility of achieving competitive performance with the state-of-the-
art architecture search methods with using a fixed type of operation. To achieve such a performance,
we focus on the sparsity of a model. A candidate model in the existing methods has multiple types
of operations connected with each other via skip connections, and each operation takes the entire
feature maps (called channel) of certain previous nodes or cells as input and returns its entire resulting
channels as output. Thus, the candidate model can be regarded as a dense model in term of input and
output channels of the operations. We propose a channel-level neural architecture search (CNAS)
method that regards channels as vertices and a single fixed operation as edges and searches for a good
architecture by gradient descent. The resulting model is sparse in terms of channels. CNAS uses
the existing shape of search space (e.g., NASNet), but performs macro search. Thus, the resulting
architecture has different topology at different cells. In CNAS, the final sparse architecture can be
searched quickly due to its simplicity, and at the same time, can compensate for the disadvantage of
using homogeneous operation due to its sparsity. For CIFAR-10, CNAS searches for the architecture
in 1.1 GPU days, which achieves 2.28% test error with 4.6 million parameters and autoaugment.

The rest of the paper is organized as follows. Section 2 explains our method CNAS. Section 3 shows
the experimental results, and Section 4 summarizes the characteristics of related methods. Section 5
concludes this paper.
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Figure 1: Diagram of search space of CNAS. (a) Shape of search space. We usually set N = 6.
(b) Structure of an example cell of the model. The small white squares indicate channels. Both
{ai} and {bi} are the input channels of the cell. {ci} are the output channels of the cell. The solid
edges are fixed operations, and the dotted edges can be removed depending on the existence of
the input channels {xi}. The thick edges indicate a series of operations, batch normalization (BN),
depthwise separable 3x3 convolution (Conv), and Relu, while the thin edges simple operations such as
concatenation and add. (c) Structure of an example node in the cell. Each node has two operations (of
the same type). {xi} are input channels of the node, while {yi} are intermediate output channels.
The red input channels and red thick dotted edges are removed, while the blue input channels and
blue thick dotted edges remain as a part of the final sparse model.

2 CNAS METHOD

Since we focus on investigating the possibility of architecture search relying on sparsity instead of
the combination of operations in this paper, we mainly use the structure of NASNet for the shape of
search space, which is composed of normal cells and reduction cells, and each cell is again composed
of submodules called nodes (blocks in NASNet). In Section 3, we will show the result of CNAS using
different shape of search space, in particular, the structure of DenseNet. Figure 1 shows the diagram
of the search space of CNAS.

2.1 SEARCH SPACE

The CNAS method consists of the following three steps: (1) Train the one-shot (i.e., full-edges) model
in a fixed number of epochs to make it predictive of the validation accuracies of sparse models. (2)
Search the most promising sparse model satisfying a given sparsity based on a criteria (e.g., Taylor)
by zeroing out less important channels. (3) Re-train the most promising model from scratch (called
CNAS-R) or fine-tune it (called CNAS-W) and then evaluate the final model on the test dataset.

In CNAS, a vertex in a cell or a node is a single channel, and an edge is an operation. In Figure 1(b)
and (c), the thick edges are non-trivial operations involving convolution, where the solid thick ones
are for pre-processing as in other methods, and the dotted solid thick ones are the part that can be
changed by architecture search. The type of operation used in CNAS is fixed as a specific one,
depthwise separable 3x3 convolution since operations are not the target of architecture search. In
contrast, the number of types of operations in the existing NAS methods is at least several, and the
types of operations are designed differently depending on the method.
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In Figure 1(c), zeroing out less important channels of red squares also removes their outgoing edges
to the next layer {yi}, i.e., does not apply the operation BN(Conv(ReLU(·))) to the red squares.
In terms of low-level implementation, CNAS performs partial matrix operations between {y1, y2}
and {x3, x4} and between {y3, y4} and {x5}. Since the red edges do not need to be calculated, the
corresponding convolution kernels are also not necessary. Thus, the number of weight parameters
between {xi} and {yi} is reduced by 3

8 in Node 1. That is, channel-level architecture search makes
the model sparse. If {x1, x2, x3, x4} all are removed, then {y1, y2} are also removed, and only
{y3, y4} is added to {z1, z2}. In general, the input channels of nodes (i.e., dotted squares) are
removed differently depending on whether the cell is close to input data or close to the output layer.
Thus, after architecture search, each cell in CNAS has different architecture in terms of the topology
of vertices and edges.

2.2 SEARCHING THE MOST PROMISING SPARSE MODEL

We search for the most promising sparse model satisfying a given sparsity ρ by zeroing out less
important channels. Here, ρ indicates |W

∗|
|W | , where |W | is the number of weight parameters of the

one-shot model, and |W ∗| that of the final sparse model (0.0 ≤ ρ ≤ 1.0). As the criteria for evaluating
the importance of channels, we adopt Taylor expansion (18). Algorithm 1 shows the outline of the
evaluation. We denote the vector of entire input channels {xi} in the one-shot model as X and the
length ofX as |X|. Likewise, we denote the vector of entire gradients ofX after a single minibatch as
∆X = {δxi}. When calculating gradients, we use the current sparse model W ′, which is initially the
same with W , and the parameters of W ′ are not updated. X ′ and ∆X ′ are the vector of entire input
channels and their gradients in the current sparse model, respectively. The saliency vector S has the
same length with |X ′| and is initialized with zeros. We consider m minibatches for the input dataset
D. Then, we get X ′ and ∆X ′ in each minibatch and calculate Taylor expansion using element-wise
multiplication between both. The smaller xi

⊙
δxi is, the larger the value 1

xi
⊙
δxi

is. The dimension
of the value is reduced to a single value, which is again accumulated to the corresponding saliency
value in S. Then, we normalize S by applying layer-wise L2-normalization.

Algorithm 1: Calculation of Taylor expansion for CNAS

1 for each Dk ∈ [D1, · · · , Dm] do
2 X ′,∆X ′ ←ForwardAndBackpropagation(Dk,W

′)

3 S ← S + DimensionReduction( 1
X′

⊙
∆X′ , |X

′|)
4 S ← Normalization(S)

After calculating the saliency vector S, we gradually zero out the input channels {xi} having the
largest values, i.e., least important channels, among the remaining input channels. We let the ratio of
zeroing out γ (0 < γ < 1). We typically use γ = 0.1, which means removing 10% input channels
of the remaining input channels at each iteration. Thus, the number of input channels becomes
0.9|X| after the first iteration and 0.81|X| after the second iteration. We perform fine-tuning of a
single epoch for the current sparse model W ′ between iterations. As the iteration goes on, the model
becomes sparser and sparser. We stop the iterations when the sparsity of W ′ reaches the given ρ.
After finding the final sparse model W ∗, we can initialize the parameters of W ∗ and re-train the
model (called CNAS-R), or just fine-tune the parameters of W ∗ (called CNAS-W).

We incorporate spatial dropout (25) at training the one-shot model or the final sparse model in order
to make that the model more robust. We do not use path dropout used in ENAS (20) and One-Shot (2)
since it is too coarse to incorporate for our channel-level search. We also do not use conventional
drouout (9) since it is too fine-grained to apply. Although One-Shot (2) consider the co-adaptation
issue in which zeroing out operations from the one-shot model can cause the quality of the model’s
prediction to degrade severely, we do not need to consider it since the final sparse model is obtained
through gradually zeroing out by the ratio γ.

We check the correlation between the one-shot model and the final sparse model in terms of perfor-
mance (test error). We generate 27 pairs of one-shot models of three cells and five nodes per cell with
different initialization and train them for 150 epochs. Then, we search a single final sparse model
from each one-shot model and train them for 310 epochs. Figure 2(a) shows a strong correlation
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Figure 2: Results of sparse models. (a) Correlation between the one-shot and the final sparse model
in terms of test error. (b) Comparison among no-pruning, randomly pruning, and our pruning (all
have the same number of parameters of 0.15 M).

between the one-shot and the final sparse model in terms of test error. We let E(·) a test error. X-axis
means E(W1) − E(W2) where W1 and W2 are a pair of one-shot models s.t. E(W1) > E(W2).
Y-axis means E(W ∗1 ) − E(W ∗2 ) where W ∗1 and W ∗2 are the final sparse models of W1 and W2,
respectively. There are 27 points in the figure, and only two points are located below 0.0 at Y-axis.
For the remaining 25 points, if W1 is better than W2, then W ∗1 is also better than W ∗2 . The test error
of the one-shot model is computed before architecture search. There is no fine-tuning for the one-shot
model. The test error of the optimal model is computed after fine-tuning. The correlation coefficient
between X-axis and Y-axis is about 0.83. It means the way of searching the final sparse model is
stable.

2.3 TOPOLOGICAL PROPERTIES OF THE FINAL SPARSE MODEL

We describe the topological properties of the final sparse model W ∗ after channel-level architecture
search. Table 1 shows the statistics of W ∗ compared with those of the one-shot model for CIFAR-10.
Due to the space limit, we show only the top three cells, the bottom three cells and two reduction
cells among 20 cells. From the statistics, we address two properties. First, the input channels in
reduction cells are not removed as much as in other top and bottom cells. For example, in Cell 18,
|X∗| is smaller than one-fifth of |X|. In contrast, in Cell 14, |X∗| = 5, 233 is almost the same with
|X| = 5, 760 In reduction cells, the height and width of a channel is reduced by half, while the
number of channels is increased by two times. As a result, the amount of information is reduced
by half. Keeping input channels at reduction cells seems to be due to compensating the loss of
information to achieve the lower error. Second, |z → x| is extremely low compared with |d→ x| in
the top cells, whereas |z → x| is similar with |d → x| in the bottom cells. The former means that
there is almost no edge among the nodes in the top cells and so the nodes are located horizontally,
each of which is doing its own task. The latter means that there are a lot of edges among the nodes
in the bottom cells and so the nodes are located vertically and horizontally as in Figure 1 with the
necessity of aggressive abstraction.

3 EXPERIMENTS

We use CIFAR-10 (13) and ImageNet (6) for our experiments. For training the one-shot model of
CIFAR-10, we use 150 epochs with the Nesterov momentum (19) 0.9. We used a cosine learning rate
schedule (16) with the initial learning rate lmax = 0.05, the minimum learning rate lmin = 0.0001,
the initial number of epochs T0 = 10, and the multiplication factor Tmul = 2 and `2 weight decay of
2× 10−4. We train the final sparse model by using the same setting with the one-shot model, except
the number of epochs, which is set to 630. For ImageNet, we use the same final sparse model for
CIFAR-10 only after adding two more stem convolution layers and modifying the fully connected
layer to handle the different number of outputs. We use 250 epochs for training the modified sparse
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one-shot model final sparse model (ρ = 0.46)
cell |x| |y| # params |x∗| # params |d→ x| |z → x|
20 5,760 1,440 1,088,640 795 328,995 791 4
19 5,760 1,440 1,088,640 646 306,198 644 2
18 5,760 1,440 1,088,640 1,010 361,890 969 41
14 5,760 1,440 984,960 5,233 904,329 2,537 2,696
7 2,880 720 259,200 2,244 207,684 1,258 986
3 1,440 360 77,760 284 25,740 170 114
2 1,440 360 75,168 653 39,753 367 286
1 1,440 360 72,576 905 48,501 531 374

Total 69,120 17,280 9,880,704 26,038 4,548,078 17,322 8,716

Table 1: Statistics of the one-shot model and the final sparse model in CNAS for CIFAR-10. The
number of cells is 20, and the number of nodes per cell is five. |X| and |Y | are the numbers of input
channels and output channels in all nodes of the one-shot model, respectively. |X∗| is the number
of input channels of the final sparse model. z means the output channels of nodes, and d the input
channels of cells after being preprocessed as in Figure 1(b). Cell 7 and cell 14 are reduction cells,
and other cells are all normal cells. |d→ x| and |z → x| are the numbers of the edges from {di} to
{xj} and from {zi} to {xj} in Figure 1, respectively.
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Figure 3: Test error of CNAS with different settings. (a) Varying the number of nodes per cell. The
number of parameters of all models is 1.1 M regardless of the number of nodes. (b) Varying the
number of operations per node. The number of parameters of all models is 0.15 M regardless of the
number of operations.

model with the Nesterov momentum 0.9 and the learning rate 0.05, which is decayed by a factor 0.98
after each epoch. All test errors in the result are the mean values of three evaluations.

3.1 EVALUATION OF CNAS VARYING THE NUMBER OF NODES AND OPERATIONS

We check the performance of CNAS models having the same number of parameters while varying the
number of nodes per cell or varying the number of operations per node. We use the one-shot model
of two normal cells and one reduction cell. Figure 3(a) shows the result of CNAS models, which all
have 1.1 M parameters, but different number of nodes per cell. The test error tends to be decreased as
the number of nodes per cell increases (i.e., model becomes sparser), but slightly increases when the
number of nodes is ten (i.e., too sparse). Figure 3(b) shows the result of CNAS models, which all
have 0.15 M parameters, but different number of operations (of the same type) per cell. Although we
use two operations per cell to follow the convention of NASNet, the difference in test error among
three settings is quite small. This is mainly due to using a single type of operation (edge).
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3.2 COMPARISON AMONG DIFFERENT PRUNING METHODS FOR CNAS

In this section, we evaluate the performance of no-pruning, randomly pruning, and our pruning (in
Section 2.2). Here, no-pruning means making a small one-shot model of 0.15 M parameters and
training the model without the pruning step. Randomly pruning means pruning each cell randomly
with a given sparsity (e.g., 0.9, 0.5, 0.4, 0.3) and making the final model all have the number of
parameters of 0.15 M. Thus, this setting does not have different topology at each cell, but rather has
similar topology. Our pruning also has the 0.15 M parameters, but different topology at each cell
as in Table 1. We use CIFAR-10 for comparison. Figure 2(b) shows the results of three settings.
Among them, no-pruning shows the worst performance, while our pruning of CNAS shows the best
performance. It means that a sparse model in terms of channel improves the performance compared
with a dense model, and at the same time, different topology at each cell is important to achieve the
better performance. Just for reference, we add the results of MNASNet (24) and ENAS (20) having
the same number of parameters of 0.15 M. Both No-prune and ENAS are dense models in terms of
channel, but ENAS shows a better performance than No-prune due to its various operations in search
space. MNASNet (24) shows slightly worse performance than No-prune since its architecture is the
one optimized for ImageNet.

3.3 COMPARISON WITH OTHER METHODS

In this section, we present the comparison result with the state-of-the-art methods for CIFAR-10 and
ImageNet. Table 2 shows the model size, test errors and GPU days (for architecture search methods)
for CIFAR-10. For CNAS, we measure the first two steps, i.e., training the one-shot model and
searching the final sparse model, as the GPU days for architecture search. The CNAS model used
in the comparison is the same as the final sparse model in Table 1. Overall, CNAS achieves very
competitive performance with only 1.1 GPU days and a moderate number of parameters (4.6 M)
among all the methods compared. CNAS with autoaugment (5) can further improve the performance
up to 2.28% test error.

Table 3 shows the comparison result for ImageNet. The model size of CNAS slightly increases
to 5.7 M due to adding two stem convolution layers to and modifying the fully connected layer of
the final sparse model in Table 1. We denote this model just as CNAS. Overall, CNAS achieves
comparable performance with other methods but does not show very competitive performance as in
CIFAR-10. It is probably because we use the same final sparse model obtained from CIFAR-10 for
ImageNet due to the limit of evaluation time. Searching and training an inherent final sparse model
from ImageNet may further improve the performance with spending more GPU days for architecture
search.

3.4 USING DENSENET-LIKE SEARCH SPACE FOR CNAS

In this section, we apply CNAS to a different shape of search space. In particular, we use DenseNet-
BC (11) search space instead of NASNet search space. Figure 4 shows the diagram of the search
space for CNAS. In Figure 4(a), each dense block consists of the 19 bottleneck layers, and there
are transition layers between dense blocks. In each bottleneck layer in Figure 4(b), zeroing out less
important channels in red squares also removes their outgoing edges to the next layer {yi}. x are
concatenated to z in output to make skip connection. The number of x increases as the bottleneck
layer number increases as in DenseNet. In Table 2, CNAS-R (DenseNet-BC) outperforms the original
DenseNet-BC with the same number of parameters of 0.8 M. This means our CNAS method is
effective in not only NASNet search space, but also different shapes of search space.

We note that the performance of CNAS-R (DenseNet-BC) with 4.6 M parameters is worse than that
of CNAS-R using NASNet search space in Table 2. This means the shape of the search space of
NASNet itself is superior to that of DenseNet.

4 RELATED WORK

We have briefly explained the recently proposed NAS methods according to the search algorithm in
Section 1. Table 4 summarizes their characteristics in terms of not only search algorithm, but also
search space, search range and how to generate candidate parameters.
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Methods # params (×106) GPU days for
architecture search Test error (%)

SMASH (3) 16.0 1.5 4.03
NAS (30) 37.4 16,800 3.65

Hierarchical NAS (15) 61.3 300 3.63
Progressive NAS (14) 3.2 150 3.63

One-shot Top (F=64) (2) 10.4±1.0 3.3+α 4.1±0.2
One-shot Small (F=64) (2) 5.0±0.2 3.3+α 4.0±0.1

NASNet-A (31) 3.3 1,350 3.41
ENAS macro (20) 38.0 0.45 3.87
ENAS micro (20) 4.6 0.45 3.54

GDAS (7) 3.4 0.21 3.87
GDAS (FRC) (7) 2.5 0.17 3.75

DARTS + cutout (22) 2.9 1.5 2.94
DARTS + cutout (22) 3.4 4 2.83±0.06

AmoebaNet-A + cutout (21) 3.2 3150 3.3±0.06
AmoebaNet-B + cutout (21) 2.8 3150 2.55±0.06
Petridish cell + cutout (10) 3.2 5 2.75

SNAS (mild constraint) + cutout (27) 2.9 1.5 2.98
GHN Top-Best + cutout (28) 5.7 0.84 2.84±0.07

DSO-NAS-share + cutout (29) 3.0 1 2.84±0.07
DenseNet-BC (11) 0.8 - 4.51

CNAS-R (DenseNet-BC) 0.8 0.18 4.28
CNAS-R (DenseNet-BC) 4.6 0.67 3.97

CNAS-R 4.6 1.1 3.49
CNAS-W 4.6 1.1 3.40

CNAS-R + cutout 4.6 1.1 2.94
CNAS-W + cutout 4.6 1.1 2.77

CNAS-R + autoaugmented (5) 4.6 1.1 2.39
CNAS-W + autoaugmented (5) 4.6 1.1 2.28

Table 2: Comparison results among the state-of-the-art architecture search methods for CIFAR-10.

Methods # params (×106) GPU days for
architecture search Top-1 Top-5

NASNet-A (31) 5.3 1,350 74 91.3
DARTS (22) 4.9 4 73.1 91

MNASNet-92 (24) 4.4 1666 74.8 92.1
One-shot Top (F=24) (2) 6.8±0.9 3.3+α 73.8±0.4 -

One-shot small (F=32) (2) 5.1±1.5 3.3+α 74.2±0.3 -
AmoebaNet-A (21) 5.1 3150 74.5 92
AmoebaNet-C (21) 6.4 3150 75.7 92.4

GDAS (7) 5.3 0.21 74 91.5
GDAS (FRC) (7) 4.4 0.17 72.5 90.9
Petridish cell (10) 4.8 5 73.7 -

SNAS + mild constraint (27) 4.3 1.5 72.7 90.8
GHN Top-Best (28) 6.1 0.84 73 91.3

DSO-NAS (29) 4.7 1 73.8 91.4
DSO-NAS-share (29) 4.8 6 74.6 91.6

CNAS-R 5.7 1.1 74 91.9

Table 3: Comparison results among the state-of-the-art architecture search methods for ImageNet.
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Figure 4: Diagram of DenseNet-like search space for CNAS. The meaning of boxes and edges is the
same in Figure 1.

Model Search
space

Search
algorithm

Search
range

Candidate
parameters

Search cost
(GPU days)

NAS (30) OS RL Macro Independent 16800
NASNet (31) OS RL Micro Independent 1350
ENAS (20) OS RL Micro,Macro Shared 0.45,0.32

MNASNet (24) OS RL Macro Independent 1666*
AmoebaNet (21) OS EV Micro Independent 3150

Hierarchical NAS (15) OS EV Micro Independent 300
SMASH (3) HS HY Macro Dynamic 1.5
GHN (28) OS HY Micro Dynamic 0.84

Progressive NAS (14) OS PD Micro Independent 225
One-shot (2) OS RS Micro Shared 3.3+a
DARTS (22) OS GR Micro Shared 1.5
GDAS (7) OS GR Micro Shared 0.17
SNAS (27) OS GR Micro Shared 1.5

ProxylessNAS (4) OS GR,RL Macro Shared 8.3*
DSO-NAS (29) OS GR Micro,Macro Shared 1,6*
Petridish (10) OS GR Micro,Macro Shared 5,5

CNAS CS GR Macro Shared 1.1

Table 4: Characteristics of recently proposed NAS methods. Search space: OS (Operations and
skip connections), HS (Hyperparameters of filters and skip connections) and CS (Channels and skip
connections). Search algorithm: PD (Performance prediction) and RS (Random Search). Search range:
Micro (Cell-level search and repeating the structure), Macro (Network-level search), Both (Cell- and
Network-level search). Candidate parameters: Independent (generating parameters Independently),
Shared (exploiting Shared parameters) and Dynamic (generating parameters dynamically). Search
cost (GPU-days): All numbers except (*) are the costs of searching for CIFAR-10. (*) mean the costs
for ImageNet due to no numbers for CIFAR-10 (i.e., no proxy) in the corresponding papers.

5 CONCLUSIONS

In this paper, we proposed a channel-level neural architecture search (CNAS) method that considers
channels instead of operations for search space of NAS. It only uses a single fixed type of operation
and instead focuses on searching for a good sparse architecture in terms of channel. The resulting
sparse model has different topology at different cell. In particular, the nodes in the bottom cells are
located vertically and horizontally with the necessity of aggressive abstraction, but the ones in the top
cells are located horizontally for doing their own tasks. For CIFAR-10, CNAS achieves 2.28% test
error with 4.6 million parameters using the architecture searched for only 1.1 GPU days. We also
showed that CNAS is effective in not only NASNet search space, but also different shapes of search
space.
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