
Under review as a conference paper at ICLR 2019

REINFORCED IMITATION LEARNING FROM OBSERVA-
TIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Imitation learning is an effective alternative approach to learn a policy when the
reward function is sparse. In this paper, we consider a challenging setting where an
agent has access to a sparse reward function and state-only expert observations.
We propose a method which gradually balances between the imitation learning
cost and the reinforcement learning objective. Built upon an existing imitation
learning method, our approach works with state-only observations. We show,
through navigation scenarios, that (i) an agent is able to efficiently leverage sparse
rewards to outperform standard state-only imitation learning, (ii) it can learn a
policy even when learner’s actions are different from the expert, and (iii) the per-
formance of the agent is not bounded by that of the expert due to the optimized
usage of sparse rewards.

1 INTRODUCTION

Learning by imitating is one of the most fundamental forms of learning in nature (McFarland, 1999;
Jones, 2009). Its critical role in cognitive development is also supported by the fact that human
brains have special structures, such as the mirror neurons, which are presumed to support this abil-
ity (Heyes, 2010). Due to this significance, it has also played a key role in machine learning and
robotics (Pomerleau, 1989; Ratliff et al., 2007), especially for the problems where reinforcement
learning (RL) can easily be inefficient, e.g., due to the sparsity of the reward signals.

Imagine an infant (the learner) observing a caregiver (the expert) who is performing a task, e.g.,
opening a door. From this example, we can derive the following observations on imitation learning
(IL). First, unlike the typical imitation learning in machine learning, the true action labels (motor
command) executed by the expert is not available to the learner. Although in some cases such as
autonomous cars, it may be possible to have access to the internal action labels by deploying special
equipment, it is still expensive in general and in many applications not possible at all. Second, the
actions that can be executed by the expert and the learner are different because of the differences in
body development. This challenge can also easily be raised in real world applications. For instance,
we may have a new version of a home robot that needs to learn from demonstrations of the old
version which supports only a naive set of actions, e.g., only a subset of the new version. Third, it
may be reasonable and realistic to augment imitation learning with sparse reward signals. Even if
having access to the labels to every action is unrealistic, in many cases the sparse rewards, e.g., the
completion of a task signaled by language or facial expression, can easily and cheaply be obtained.
These challenges together with the inherent difficulties of reinforcement learning such as the sparsity
of the reward signal and sensitivity to hyperparameter tuning, are required to be dealt with in order
to make imitation learning applicable to real and complex challenges.

In this paper, we propose a method for Reinforced Imitation Learning from Observations (RILO)
to tackle the aforementioned challenges. Following the above observations, the proposed method
aims to work efficiently in a setting where (i) labels for expert actions are not available, (ii) a reward
signal is only sparsely provided, and (iii) the expert and learner operate in different action spaces.
To achieve this, we extend generative adversarial imitation learning (GAIL) (Ho & Ermon, 2016)
to improve efficiency for the cases where the expert actions are not available and different from the
learner actions. The proposed approach can automatically balance learning between imitation and
environment rewards. This makes our method learn as fast as imitation learning but also potentially
converge to a better policy than the one demonstrated. This is done by gradually, but automatically,

1

Under review as a conference paper at ICLR 2019

releasing the reliance on the imitation reward and then by learning more from the environment
rewards.

Through a series of experiments in simple navigation scenarios (both fully and partially observable),
we show that an agent is able to combine both the state observations from an expert and the sparse
rewards to achieve better performance than either pure RL or IL with state-only observations. The
main contribution of the paper is as follows. By leveraging environment sparse rewards, we propose
a method that outperforms standard IL from observations and validate it through a series of system-
atic experiments. We provide an algorithm that can be applied when expert and learner do not share
the same action space. The performance of the learner is not bounded by that of the expert due to
suitable use of the environment sparse rewards.

2 RELATED WORK

Imitation learning (IL) is a common approach to learn a policy from expert demonstrations, i.e.
sequences of state-action pairs. IL includes two main categories: (i) behavioural cloning (Bain
& Sammut, 1995; Pomerleau, 1989) and (ii) inverse reinforcement learning (Abbeel & Ng, 2004;
Ng & Russell, 2000). Behavioral cloning directly learns the mapping from a state to an action by
using the true action-labels from demonstrations and thus is a supervised learning method. Inverse
reinforcement learning derives a reward function from demonstrations that may be then used to train
a policy using the learned reward function.

Recently, Ho & Ermon (2016) proposed GAIL, a method that uses demonstration data by forcing
the learner to match state-transition occupancy distribution of the expert using an approach similar
to GANs (Goodfellow et al., 2014). Although GAIL is very effective and has attracted research
attention (Stadie et al., 2017; Li et al., 2017), it requires expert state-action pairs which are expensive
to obtain in many applications.

For this reason, we focus on an IL scenario in which an agent does not use the expensive true action
labels from an expert, but uses only the state observations. Following the previous literature, we
call this imitation learning from observation (ILO). Among few existing works that focus on this
problem (Torabi et al., 2018a; Kimura et al., 2018; Stadie et al., 2017; Aytar et al., 2018; Liu et al.,
2017), there are two that we find to be the closest to our method (Merel et al., 2017; Torabi et al.,
2018b). While both methods are built on top of GAIL, unlike GAIL, they target the case where
the state-only observations are provided. Contrary to our approach, these methods work under the
pure IL setting, i.e. they do not take advantage of the potential availability of sparse rewards. Some
other line of works consider state-only expert observations during training but also require expert
observations at test time (Pathak et al., 2018; Duan et al., 2017; Borsa et al., 2017).

Another related line of works is to use demonstrations to improve the exploration efficiency of RL
under sparse reward settings (Nair et al., 2017; Hester et al., 2017; Vecerı́k et al., 2017). Unlike us,
these works however use the expensive state-action paired demonstrations, and treat them as self-
generated. They also consider the optimal demonstrations only. While Kang et al. (2018) and Zhu
et al. (2018) do not rely on these assumptions, they still use state-action demonstrations and assume
both expert and learners share the same action space. Also, they used the full reward by combining
the environment reward and imitation reward as a convex combination whose weights are manually
set as a hyperparameter. Our method can, however, automatically adapt the balance.

The last two works that we would like to mention are (Gupta et al., 2017; Gao et al., 2018). The
former considers agents that may be morphologically distinct, however their approach assumes that
time alignment is trivial which does not hold in our experimental setup. The latter works on im-
perfect demonstrations which makes the work related to our (considering different actions spaces
implies dealing with imperfect demonstrations), however their approach assumes the access to the
demonstrations (including expert actions).

3 METHOD

Our method is based on the recently proposed GAIL (Ho & Ermon, 2016). This method suggests
an adversarial training approach as a way to make the distribution of state-action pairs of the learner
as indistinguishable as possible from that of the expert. Although it achieves good performances,

2

Under review as a conference paper at ICLR 2019

st

at

\{s^l_i,s^l_j\}_0^{N_l}
\{s^e_i,s^e_j\}_0^{N_e}

Env.

Expert

D�

⇡✓(at|st)

{rt}
{renv

t }
{rimt

t }

{(sl
1, ..., s

l
m)}

{(se
1, ..., s

e
n)}

Figure 1: A representation of RILO framework. An agent (learner) with a policy πθ interact with an envi-
ronment producing a trajectory of states and a sparse reward. Imitation rewards are acquired by comparing
state-only observations from the learner and the expert. The policy is updated with a combination of both
rewards.

GAIL relies on two strong assumptions, which we want to overcome in our method: (i) the learner
has access to the actions of the expert and (ii) the expert and the learner possess the same action
space.

Our setting differs from the standard GAIL approach in three ways. First, we assume that state-
only expert observations are provided as a dataset of trajectories Te = {(si1, ..., sini)}Ni=1. These
trajectories consist of observations derived by executing an expert policy on a (possibly partially
observable) Markov decision process with state space S, action space A, a transition probability
p(st+1|st, at), a reward function r, and discount factor γ. In our setting, an expert policy πe(at|st)
performs actions in Ae ⊂ A. Second, we also consider the learner to have actions in Al ⊂ A,
potentially different from Ae. Note that both the expert and the learner operate on the same state
space S and we assume the same transition probability defined on the superset of agents’ action
spaces, i.e Ae ∪ Al ⊆ A.

Since the expert and the learner can perform different actions, the two agents may have different
optimal policies. In this case, pure imitation learning methods would end up with a learner hav-
ing a sub-optimal policy. We propose self-exploration method to utilize the availability of sparse
environment rewards to escape from the sub-optimal policy (see Subsection 3.3).

3.1 OVERVIEW

Our approach is composed of two different components (see Figure 1). A policy πθ : S → Al
outputs an action given its current state. A discriminator Dφ : S × S → [0, 1] is responsible for
identifying the agent (either expert or learner) that has generated a given pair of states.

Our goal is to optimize the following minimax objective:

min
θ

max
φ

Eπθ [log(1−Dφ(si, sj))] + ETe [log(Dφ(si, sj))] , (1)

where (si, sj) is a tuple of states generated by the policy πθ or πφ. Similar to Zhu et al. (2018),
the policy is trained to maximize the discounted sum of the final reward rt, which is the sum of the
environment reward renvt and the imitation reward rimtt given by the discriminator:

rt = renvt + λ · rimtt , λ > 0 . (2)

In the next subsection, we describe how we define the imitation reward rimtt . The reward rt from
Equation 2 encourages the learned policy to visit similar paths as the expert, while obtaining high
environment reward by achieving the goal. In all our experiment we always used λ = 1.

Each policy iteration consists of the following steps: (i) collect observations with the current learner
policy, (ii) compute the discriminator scores for pairs of states where each pair is from either the
expert or the learner, and update the discriminator, and (iii) compute the final rewards {rt} and
update the policy. To update the policy, we used the A2C algorithm, a synchronous variant of
A3C (Mnih et al., 2016). See Figure 1 for the illustration of this procedure.

For the rest of this section, we describe the two main contributions that we found to be fundamental
to make an agent learn to complete a task in the RILO setting: different new imitation rewards and
a method to efficiently combine state-only observations and sparse rewards.

3

Under review as a conference paper at ICLR 2019

Table 1: Comparison of different imitation rewards. Each method assumes a different input for the discrim-
inator. GAIL considers action-state pairs and is shown only for reference. The following methods assume,
respectively, consecutive pairs of states, a single state only, a pair with a given state and random previous state,
and all possible pairs of states containing a given state. Each method is responsible for an imitation reward. In
RTGD, ρ(t) returns a random integer smaller than t. In ATD, D∗ is a clamped version of D that never returns
a value smaller than the average of all states.

GAIL CSD SSD RTGD ATD

Input (at, st) (st−1, st) (st, 0) (sρ(t), st) {(si, st)|i 6= t}

Score µt 1−D(at, st)
1−D(st−1,st)

0.5
1−D(st)

0.5

1−D(sρ(t),st)

0.5

∑
i6=t(1−D

∗(si,st))

0.5·(T−1)

Reward rimtt − logµt

3.2 IMITATION REWARDS

As mentioned above, contrary to GAIL, we do not take into account state-action pairs but focus
solely on state observations. Torabi et al. (2018b) used pairs of consecutive transition states as a
proxy to encode unobserved actions from expert. As we shall show in the experiment section, this
strategy fails when two agents have different action spaces. In this case, the discriminator can easily
discriminate between the expert and the learner, because short-term state transitions provide strong
information about the agents’ actions. We call this approach Consecutive States Discrimination
(CSD).

Other approaches (Merel et al., 2017; Zhu et al., 2018) provide only the current state, simply ignoring
the action at used in the original GAIL approach. The main limitation of this method is that the
discriminator is not aware of the dynamics of the agent move trajectory. As we show later, this
approach requires a large amount of expert observations to provide a reasonable performance. We
dub this method Single State Discrimination (SSD).

We consider CSD and SSD as our baseline methods and propose two alternatives for the input to the
discriminator to circumvent the aforementioned issues.

We call our first method Random Time Gap Discrimination (RTGD). In RTGD, a pair of states is
chosen with random time gap. This simple and effective method retains the information about the
agent’s trajectory dynamics as is in CSD, but avoids the limitation of CSD by not limiting to very
short-term transitions, resulting in state-pairs not trivial to the discriminator. Furthermore, we can
limit the minimum gap between the pairs so that the possibility of having short-term transition pairs
is completely excluded.

Another solution would be to consider all state pairs instead of a single one. In this case, the final
reward at time t is based on the discriminator scores of all pairs containing state st. However, that
would still give the discriminator many short-term transitions. A naive way would be to exclude
them using a threshold parameter, as done in the RTGD.

Our second method, Averaged per Time Discrimination (ATD), makes a better use of these scores
to improve discrimination. First, we compute the mean of the scores of all pairs. Then, the lowest
discrimination scores (that is, the pairs in which the discriminator is more confident that it comes
from the learner) are clampled with the mean value. As a result, ATD does not rely on any hyperpa-
rameters. We assume that the pairs that are easily identified by the discriminator are scored low due
to the different action spaces, rather than a bad long-term strategy1.

The imitation reward rimtt , which measures the similarity between the learner and the expert policies,
depends on the method used for constructing the input. The full comparison of the imitation rewards
is shown in Table 1. In all cases, we consider a scaling constant 0.5, which makes the rewards
positive when discriminator prediction is higher than 0.5, meaning the discriminator is fooled. In
practice, the rewards are clipped to be not larger than 10 to avoid numerical instabilities.

1We indeed observe this in our experiment. Short-term transitions are much more likely to obtain a low
score when action spaces for the learner and the expert differs.

4

Under review as a conference paper at ICLR 2019

Algorithm 1: RILO training procedure
input : Set of expert trajectories Te and the coefficient λ > 0,

Initial policy and discriminator parameters θ0 and φ0.
output: Policy πθK .
Initialize a success rate estimate υ0 to be 0.
for k ← 1 to K do

Sample τk ∼ Bernoulli(p = 1− υk−1).
Get observations l = (sl0, ..., s

l
m) ∼ πθk−1(τk) and environment rewards renv = (renv1 , ..., renvm).

Update success rate estimate υk.
if τk = 1 then

Sample expert trajectory e = (se0, s
e
1, ..., s

e
n) ∼ Te.

Compute discriminator scores for expert and learner pairs of states:
De = {dei,j = Dφk−1(s

e
i , s

e
j) : i 6= j} and Dl = {dli,j = Dφk−1(s

l
i, s

l
j) : i 6= j}.

Update Dφk to minimize BCE(De, 1) +BCE(Dl, 0).
Build imitation rewards rimt = (rimt1 , ..., rimtm), using Dl.
Construct the final rewards r = renc + λrimt.

else
Use environment rewards as the final rewards r = renv .

Update πθk with final rewards r and any RL-algorithm.

3.3 SELF-EXPLORATION

Since the action spaces between the two agents are not necessarily the same, it is unlikely that an
optimal policy for the learner is the same as that for the expert. For example, imagine a situation
in which expert action space is a subset of the learner action space, i.e. Ae ⊂ Al (e.g., grid world
in which the learner can move to all eight adjacent directions while the expert can only move on
the four perpendicular directions). In this case, the learner can be penalized by the discriminator for
performing actions inAl\Ae (diagonal moves in the example) because it can easily be distinguished
by the discriminator, even though those actions are optimal.

To resolve this issue, we propose to give the learner the possibility to explore the environment by
being free from imitating expert’s behaviour. As a result, the final form of Equation 2 becomes:

rt = renvt + λ · τk · rimtt , and τk ∼ Bernoulli(p = 1− υk−1), (3)

where υk−1 is estimated success rate. That is, the self-exploration parameter τk is a binary random
variable controlling whether to consider rimtt or not.

We set υk to be the estimate of the current learner policy success rate2 and thus make the imitation
reward guide the learning while the policy is not matured yet, i.e. during the early stage. As the
behaviour of the learner becomes close to the expert trajectory, the success rate will increase accord-
ingly and thus the policy can learn more with the guidance of environment rewards only. In other
words, we want our agent to become independent of and not limited by the expert’s supervision that
may, as argued before, become harmful at some point during training. We empirically show that
allowing the learner to interact with the environment without imitating leads to better results and the
learner is more likely to use actions from Al \ Ae. Importantly, the agent is aware of the value τk,
when it performs its actions which is realized by adding the binary feature to the learner input.

See the Algorithm 1 for the details of the training procedure.

4 EXPERIMENTS

In this section, we show that our approach performs favorably in the RILO setting. Our experiments
aim to show that the agent can combine sparse, unshaped environmental reward with information
from state-only observations (from the expert) to succeed in a navigation task. The specific ques-
tions we address are as follow. (1) Can we leverage sparse reward to improve over state-only IL
methods? (2) How does the performance change when the action space of the expert and the learner
are different? (3) Can the learner improves over the expert?

2In our experiments, we used a moving average to compute the success rate υk.

5

Under review as a conference paper at ICLR 2019

(a) P grid world (b) F grid world

(b) 4-way (c) 8-way-king

(d) 8-way-knight (e) 16-way(a) Example of grid world

(c) 4-way
(b) 4-way (c) 8-way-king

(d) 8-way-knight (e) 16-way(a) Example of grid world

(d) king(b) 4-way (c) 8-way-king

(d) 8-way-knight (e) 16-way(a) Example of grid world
(e) knight

(b) 4-way (c) 8-way-king

(d) 8-way-knight (e) 16-way(a) Example of grid world
(f) 16-way

Figure 2: (a-b) Example of an initial state of the environment with blue and red squares representing the goal
and the agent, respectively. For P grid world (a) the 5×5 visible area around the agent is highlighted. (c-f) Set
of actions for different agents considered in our experiments. Green squares represent the possible locations
after the move.

Due to limited space, we defer implementation details to Appendix A. Source code will be released
upon acceptance.

4.1 EXPERIMENTAL SETUP

We conduct our experiment in two grid world environments: a fully observable grid world (we call
it F grid world) and a partially observable one (P grid world). We consider the same set of simple
navigation problems on both grid world environments. Both settings are designed in a way that a
standard RL agent can succeed the tasks when the reward is dense and always fails when the reward
is sparse.

Environment We consider two grid worlds with traps on the border (see Figure 2 (a-b)). At the
beginning of each episode the goal is randomly (uniformly) located (for P map we restrict the target
location to be one of the 4 corners). The agent’s initial location depends on both the goal and the
map. For the P environment, the agent is always placed in different room, and for F map the agent
is placed in one of the locations covered by a triangle made out of the three left corners (a total of
30 possible initial locations per goal position – dashed lines on Figure 2 (b)). On F map each of the
squares (not taken by the goal or the agent) has 15% chances of being a trap (gray squares on figure)
while for P grid world traps are fixed to create 4 rooms (although the passages are randomly placed
for each episode). If any agent steps on a trap, the episode is terminated with a final reward of −1.
The episode is also terminated, if the agent performs its 51th (or 26th for F map) action. All other
rewards are zero unless the agent steps on the goal which gives reward of +1 and also terminates
the game. In all experiments, we use discount factor γ = 0.9 and exploration rate ε = 0.05. Note
that the maps are different for each episode.

Action spaces Even though the grid environments are designed to show variability, the agents
used on both maps have the same action spaces, which allows the simple comparison of results.
In our setup, the action space of the agent is isomorphic to the set of its moves. We consider four
move styles (as illustrated in Figure 2 (c-f)): 4-way (up, down, left, right), king (like king in the
chess game), knight (like knight in chess) and 16-way (has to move by 2 in one direction (horizontal
or vertical), and 0, 1 or 2 in another one)3. Note that the action space of 4-way and king agents
(always move to adjacent locations) are disjoint from the other two agents (never move to adjacent
squares). Also, the actions spaces of 4-way and knight are subsets of king and 16-way action spaces,
respectively.

Experts We consider two different types of rewards, that we call sparse and dense. The sparse
version was described before and provides a signal at the termination of each episode only, giving
either a reward +1 or −1 in case of success or failure of the task, respectively. As purposely
designed, no agent is able to achieve the goal using the sparse reward function. We engineered the
dense rewards such that all agents are able to succeed in this task and the four experts are trained in
this way for each map.

3Knight and 16-way are able to “jump” over traps in F map.

6

Under review as a conference paper at ICLR 2019

Fully observable grid world

(a) Expert: 4-way (b) Expert: king (c) Expert: knight (d) Expert: 16-way

Partially observable grid world

(e) Expert: 4-way (f) Expert: king (g) Expert: knight (h) Expert: 16-way

Figure 3: Comparison of RILO experiments with different imitation rewards and the effect of self-exploration
on different expert-learner pairs. In the first row results for F map are presented (a-d) while results for P grid
world are shown in the second row (e-h). Each chart represents how a given expert aids each learner, i.e. learner
move styles vary while expert is fixed. We show results in which agents use self-exploration (right, dark) or not
(left, bright). Additionally, the relation between the learner and the expert is coded using one of four symbols:
the same action spaces (=), disjoint action spaces (D), superior learner (L), or superior expert (E).

Experiments For each map we consider all possible expert-learner agent combinations, resulting
in a total of 16 pairs. For each pair, we compare all methods proposed in Section 3. Each experiment
is executed five times (with different seeds) and results are shown with their mean and standard
deviation over all trials. We consider thousands of observations (expert trajectories) for P map,
and ten thousands of them for F grid world. This number is about three order of magnitude lower
than the number of trails required to train the expert agents with dense reward. We note that maps
are randomly built for each episode and hence, just a fraction of maps have the expert observation
performed on them.

4.2 EXPERIMENTAL RESULTS AND DISCUSSIONS

We compare methods with different imitation reward strategies. Figure 3 shows results for all pos-
sible 16 expert-learner pairs considering three different imitation rewards: SSD, CSD and ATD. We
consider the first two: CSD (a method similar to Torabi et al. (2018b)), and SSD (similar to Merel
et al. (2017)), as baseline methods. To disentangle the effect of the self-exploration mode, we also
show results where learners are trained with self-exploration (right, dark bar on the figure), dubbed
SSD-SE, CSD-SE and ATD-SE, or not (left, bright bar on the figure).

We notice that self-exploration significantly helps in the RILO setting. The learner policy is consis-
tently better when given the opportunity to explore the environment without expert supervision. In
very simple cases (for example the same action spaces for the expert and the learner), the effect of
self-exploration usually reduces to a few percent points, although it still helps significantly.

Same action spaces When the move styles are the same for the learner and the expert, Ae = Al
(code (=) on Fig. 3), the performance of CSD and ATD (and their counterparts with self-exploration)
are similar. It means that using the consecutive states works well when the learner and expert share
the same action space. SSD, the second baseline, works well in same action spaces cases on P map,

7

Under review as a conference paper at ICLR 2019

Fully observable grid world

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

(a) Learner: 4-way
0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

(b) Learner: king
0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

(c) Learner: knight
0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

CSD
SSD
ATD-SE
RTGD-SE
expert
learner

(d) Learner: 16-way

Partially observable grid world

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

(e) Learner: 4-way
0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

(f) Learner: king
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

(g) Learner: knight
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

CSD
SSD
ATD-SE
RTGD-SE
expert
learner

(h) Learner: 16-way

Figure 4: Performance of algorithms (success rate) with respect to the number of iterations (in millions),
assuming different learners. In all cases, the expert is the 4-way agent. See text for details and Appendix B for
higher resolution figures or other experts results.

but it is significantly worse on F map. However, the difference tends to diminish when the agent is
trained in self-exploration mode (SSD-SE).

Disjoint action spaces Consecutive states should not be used when learner and expert have dis-
joint actions spaces, Ae ∩ Al = ∅ (code (D) on Figure 3). In all these cases (eight of them for each
environment), CTD is not able to solve the task and the final success rate never exceeds 5%. Even
self-exploration is not able to give any improvement due to the small success rate. On the other
hand, with the use of self-exploration, SSD-SE and ATD-SE perform very well in disjoint cases,
obtaining the best success rates.

Superior learner Next, we analyze the scenario where the learner has superior set of actions, i.e.
Ae (Al (code (L) on Figure 3). It is, of course, not disjoint case and then all methods perform
well. However, SSD and SSD-SE perform significantly worse on F map. Note that the superior
learner can always imitate the expert (and limit itself to smaller number of actions) so discriminator
is not able to observe that different actions may be performed. We noticed, however, that the self-
exploration agents achieve the goal faster (in terms of number of steps) in this scenario. Hence, the
learner is more likely to use actions that cannot be used by the expert but lead to better solution
(note that due to the discount factor the solutions using less steps are preferable). In these four (two
per environment) learner-expert scenarios, the learner achieve the goal in about 15% less steps when
trained with self-exploration (when CSD-SE or ATD-SE used).

Further comparison to baselines Figure 4 compares the methods when 4-way expert is used
along with all different learners (for both F grid world and P grid world). Results for other experts
can be found in the Appendix B. We present agents ATD-SE and RTGD-SE (our methods) and the
baseline methods (CSD and SSD). We also included the performance of both agents trained with
dense reward. We noticed in our preliminary experiments that RTGD with minimal gap set to three
tends to work the best and hence we fix that hyper-parameter for all our experiments.

As shown in Figure 4, when expert and learner actions are disjoint (c-d, g-h) our methods usually
reach significantly better performance and converge much faster. In these cases for F environment,
our methods are able to outperform the expert, approaching the upper bound of the learner trained
with dense reward. Again, the CSD performs well only when the learner actions are the same or are
superset of expert actions (a-b, e-f). We can also see the signs of overfitting for SSD strategy trained
on F map.

Observation limit The same set of 16 experiments were performed with smaller amount of expert
observation trajectories. When 500 trajectories are used for P environment (originally 1000 obser-
vations) the results just slightly deteriorate. When this number is further limited to 100 trajectories
only, the positive effect of self-exploration is even more apparent. However, this reduction makes

8

Under review as a conference paper at ICLR 2019

our problem much more challenging and only 12 out of 16 methods remain solved (by at least one
approach). Using 50 trajectories is enough for only a few expert-learner pairs.

We also checked how different observation limits influence results on F map (originally ten thousand
of observations). We considered only one thousand of expert observations. This reduction turns
out to make our problem very challenging. Baseline methods (CSD and SSD) never bypass 50%
success rate, and usually score around 20%. ATG and RTGD perform significantly better: a success
rate above 50% in 8 out of 16 expert-learner pairs (but achieves more than 90% only in three cases).
When self-exploration used, both methods (ATG-SE and RTGD-SE) achieve success rate above
90% in 8 out of the 16 setups. We note that with smaller number of observations RTGD performs
slightly better than ATD, probably due to the fact that is is harder to overfit discriminator when the
inputted pairs are random.

At the first glance, it may be surprising that fully observable grid world requires more observations
(and also the agents usually perform better in P map as compared to F map). However, the access to
the full map and stochasticity of the maps make it much easier for discriminator to remember maps
and discriminate based on that. Hence, we believe that while fully observability makes the problem
easier for the agent, the discriminator “benefits” more and that makes the training procedure loop
more challenging.

Coherence of results Results on both maps are coherent and justify the importance of self-
exploration. The only significant difference in results is that the gap between SSD-SE and ATD-SE
(or RTGD-SE) is smaller for P grid world. We hypothesize that this is due to the fact that the dis-
criminator is more prone to overfitting (remember all expert trajectories) when given the full map
(not just a small part as in P environment) and that problem is more severe when only a single state
is given, not a random pair of states. To validate this hypothesis we train the models assuming un-
limited observations from the expert for F map. In this case, the performance of SSD-SE approaches
that of ATD-SE and RTGD-SE. It means that when given the massive amount of expert data, simply
having the distribution of states is enough to infer the policy.

Comparison to pure IL We also checked how the presented strategies work in a pure IL setting,
i.e. when the sparse environment reward is not given. Not surprisingly, the performance of all
method deteriorate. Our methods (RTGD and ATD) again perform better than the baseline methods.
However, in pure IL setup the self-exploration cannot be applied and then the differences are smaller.

5 CONCLUSION

In this paper, we show that by leveraging unshaped rewards from the environment, an agent is able
to outperform standard state-only imitation learning. Our proposed method efficiently combines the
sparse environment rewards with the standard imitation learning objective. We show experimentally
that this approach achieves good performance over baselines in the RILO setting. Our method is
especially well-suited when the actions of the trained agent differ from those of the expert. We also
show that an agent trained with our approach can outperform the expert by using the sparse rewards
in an optimized way.

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In ICML, 2004.

Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine, Ziyu Wang, and Nando de Freitas. Playing hard
exploration games by watching youtube. arXiv preprint arXiv:1805.11592, 2018.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence, 1995.

Diana Borsa, Bilal Piot, Rémi Munos, and Olivier Pietquin. Observational learning by reinforcement learning.
arXiv preprint arXiv:1706.06617, 2017.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya Sutskever, Pieter
Abbeel, and Wojciech Zaremba. One-shot imitation learning. In NIPS, 2017.

Yang Gao, Ji Lin, Fisher Yu, Sergey Levine, Trevor Darrell, et al. Reinforcement learning from imperfect
demonstrations. arXiv preprint arXiv:1802.05313, 2018.

9

Under review as a conference paper at ICLR 2019

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant feature
spaces to transfer skills with reinforcement learning. arXiv preprint arXiv:1703.02949, 2017.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan,
Andrew Sendonaris, Gabriel Dulac-Arnold, et al. Deep q-learning from demonstrations. arXiv preprint
arXiv:1704.03732, 2017.

Cecilia Heyes. Where do mirror neurons come from? Neuroscience & Biobehavioral Reviews, 2010.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In NIPS, 2016.

Susan S Jones. The development of imitation in infancy. Philosophical Transactions of the Royal Society of
London B: Biological Sciences, 2009.

Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy optimization with demonstrations. In ICML, 2018.

Daiki Kimura, Subhajit Chaudhury, Ryuki Tachibana, and Sakyasingha Dasgupta. Internal model from obser-
vations for reward shaping. arXiv preprint arXiv:1806.01267, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2014.

Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual demon-
strations. In NIPS, 2017.

YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation: Learning to
imitate behaviors from raw video via context translation. arXiv preprint arXiv:1707.03374, 2017.

David McFarland. Animal Behaviour: Psychobiology, Ethology and Evolution. 1999.

Josh Merel, Yuval Tassa, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg Wayne, and Nicolas Heess. Learn-
ing human behaviors from motion capture by adversarial imitation. arXiv preprint arXiv:1707.02201, 2017.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim Harley, Timothy P. Lillicrap,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In ICML,
2016.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcoming explo-
ration in reinforcement learning with demonstrations. arXiv preprint arXiv:1709.10089, 2017.

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In ICML, 2000.

Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan Shelhamer,
Jitendra Malik, Alexei A Efros, and Trevor Darrell. Zero-shot visual imitation. In ICLR, 2018.

Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In NIPS, 1989.

Nathan D. Ratliff, James A. Bagnell, and Siddhartha S. Srinivasa. Imitation learning for locomotion and
manipulation. In Humanoids, 2007.

Bradly C Stadie, Pieter Abbeel, and Ilya Sutskever. Third-person imitation learning. arXiv preprint
arXiv:1703.01703, 2017.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation. arXiv
preprint arXiv:1807.06158, 2018b.

Matej Vecerı́k, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess, Thomas
Rothörl, Thomas Lampe, and Martin A Riedmiller. Leveraging demonstrations for deep reinforcement
learning on robotics problems with sparse rewards. CoRR, abs/1707.08817, 2017.

Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi, Saran Tunyasuvunakool, János
Kramár, Raia Hadsell, Nando de Freitas, et al. Reinforcement and imitation learning for diverse visuomotor
skills. arXiv preprint arXiv:1802.09564, 2018.

10

Under review as a conference paper at ICLR 2019

APPENDIX

A IMPLEMENTATION DETAILS

As mentioned in Subsection 3.1, our method is composed of two trainable components, a policy
network πθ : S → Al and a discriminator Dφ : S × S → [0, 1]. Both functions are parameterized
by neural networks, having a state encoder that has identical architectures but with different set of
weights. All weights are optimized using Adam (Kingma & Ba, 2014) with a learning rate of 10−4.
The training procedure is terminated after one million of episodes without significant performance
improvement (defined to be 1% average success rate increase).

State encoder The encoder receives as input the grid world encoded as a matrix (for P map only
a 5 × 5 subgrid around the agent is taken while the full 13 × 13 grid is visible in F environment)
with 4 possible values: 3 for a goal, 2 for an agent, −1 for all traps and walls and 0 otherwise) and
a few additional features4. The map is processed by 5-layer CNN with kernel size 3 and residual
connections. Then, it is flattened and concatenated with additional features which constitutes the
final state encoding.

Policy network We use (synchronous) advantage actor-critic (A2C) algorithm (Mnih et al., 2016)
to optmize the policy. The policy network encodes the state and then the final transformation is
applied to obtain (k + 1) dimensional vector (k possible actions, modeled as a probability with
softmax, and one dimension to represent the value-function). The type of the final transformation
depends on the environment. It is fully connected (with ReLU) for fully observable grid world and
LSTM for partially observable grid world (since the memory is needed to perform the task well).

Discriminator The discriminator encodes both input states separately (using the same state en-
coder) that are next separately inputted to 2-layer MLP with 256 hidden units (both layers) and ReLU
activation function. The difference of the two encoded states are then fed to two fully-connected lay-
ers, with outputs sized 256 and 1, respectively. The final output is transformed into a probability
with a sigmoid function.

Note that the computation time for the final state tuple is negligible compared to the computation for
state encoding. As a result, ATD does not carries a heavy computation burden in case of relatively
small trajectories. In case of very long trajectories, however, a fixed number of random pairs should
be considered.

B ADDITIONAL PLOTS

Similar to Figure 4, we show performance of all algorithms with respect to the number of iterations
on Figures 5-8. Each plot assumes different expert (see caption) and presents result for all four
learners.

4These features are two floats (x, y) ∈ (0, 1)2 encoding agent position. Additionally, as described before,
the learner trained with self-exploration is given a binary variable indicating the nature of the reward that will
be used.

11

Under review as a conference paper at ICLR 2019

Fully observable grid world

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Learner: 4-way
0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Learner: king

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Learner: knight
0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

CSD
SSD
ATD-SE
RTGD-SE
expert
learner

Learner: 16-way

Partially observable grid world

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Learner: 4-way
0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

Learner: king

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Learner: knight
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

CSD
SSD
ATD-SE
RTGD-SE
expert
learner

Learner: 16-way

Figure 5: Expert: 4-way

12

Under review as a conference paper at ICLR 2019

Fully observable grid world

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Learner: 4-way
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Learner: king

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Learner: knight
0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

CSD
SSD
ATD-SE
RTGD-SE
expert
learner

Learner: 16-way

Partially observable grid world

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.2

0.4

0.6

0.8

1.0

Learner: 4-way
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.0

0.2

0.4

0.6

0.8

1.0

Learner: king

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Learner: knight
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

CSD
SSD
ATD-SE
RTGD-SE
expert
learner

Learner: 16-way

Figure 6: Expert: king

13

Under review as a conference paper at ICLR 2019

Fully observable grid world

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Learner: 4-way
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

1.0

Learner: king

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Learner: knight
0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

CSD
SSD
ATD-SE
RTGD-SE
expert
learner

Learner: 16-way

Partially observable grid world

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Learner: 4-way
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Learner: king

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Learner: knight
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

CSD
SSD
ATD-SE
RTGD-SE
expert
learner

Learner: 16-way

Figure 7: Expert: knight

14

Under review as a conference paper at ICLR 2019

Fully observable grid world

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.2

0.4

0.6

0.8

1.0

Learner: 4-way
0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Learner: king

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Learner: knight
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

1.0

CSD
SSD
ATD-SE
RTGD-SE
expert
learner

Learner: 16-way

Partially observable grid world

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Learner: 4-way
0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

Learner: king

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Learner: knight
0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

CSD
SSD
ATD-SE
RTGD-SE
expert
learner

Learner: 16-way

Figure 8: Expert: 16-way

15

	Introduction
	Related Work
	Method
	Overview
	Imitation Rewards
	Self-Exploration

	Experiments
	Experimental Setup
	Experimental Results and Discussions

	Conclusion
	Implementation Details
	Additional plots

