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ABSTRACT

Recent work has described neural-network-based agents that are trained to exe-
cute language-like commands in simulated worlds, as a step towards an intelligent
agent or robot that can be instructed by human users. However, the instructions
that such agents are trained to follow are typically generated from templates (by
an environment simulator), and do not reflect the varied or ambiguous expressions
used by real people. We address this issue by integrating language encoders that
are pretrained on large text corpora into a situated, instruction-following agent.
In a procedurally-randomized first-person 3D world, we first train agents to fol-
low synthetic instructions requiring the identification, manipulation and relative
positioning of visually-realistic object models. We then show how these abilities
can transfer to a context where humans provide instructions in natural language,
but only when agents are endowed with language encoding components that were
pretrained on text-data. We explore techniques for integrating text-trained and
environment-trained components into an agent, observing clear advantages for
the fully-contextual phrase representations computed by the well-known BERT
model, and additional gains by integrating a self-attention operation optimized to
adapt BERT’s representations for the agent’s tasks and environment. These results
bridge the gap between two successful strands of recent AI research: agent-centric
behavior optimization and text-based representation learning.

1 INTRODUCTION

Developing machines that can follow natural human commands, particularly those pertaining to an
environment shared by both machine and human, is a long-standing and elusive goal of AI (Wino-
grad, 1972). Recent work has applied end-to-end, representation-learning-based methods to this
challenge, where a neural-network-based agent is optimized to process language input, perceive its
surroundings and execute appropriate movements jointly (Oh et al., 2017; Hermann et al., 2017;
Chaplot et al., 2018). End-to-end learning promises a way to deal flexibly with the complexity of
the physical, visual and linguistic world without relying on (potentially brittle) hand-crafted fea-
tures, rules or policies. Nevertheless, the cost of this flexibility is the large number of environment
interactions (samples) required for a randomly-initialized network to learn behaviour policies from
raw experience. To make the approach feasible, many studies thus employ a synthetic language
that is generated on demand from templates by the environment simulator (Chevalier-Boisvert et al.,
2018; Jiang et al., 2019; Yu et al., 2018b;a). The studies that do combine both end-to-end learning
with natural-language data do so in less realistic grid-like environments (Misra et al., 2017) or grant
agents access to privileged global observations to make learning more tractable (Misra et al., 2018).

Here, we take a different learning-based approach to instruction-following that is robust to human
commands. We train agent policies to respond to synthetic, template-based language but also endow
them with powerful language encoders that are pretrained on natural language text. The synthetic
instructions that our agents are trained to follow require mastery of 26 fine-grained motor actions in
order to identify and manipulate visually-realistic models from the ShapeNet dataset (Chang et al.,
2015) in a 3D room. The visual realism of the world makes it possible to elicit diverse natural human
ways of instructing and/or referring to things, and to study the agents’ robustness to this diversity.
Unsurprisingly, we find that agents that are trained on template-based commands do not cope well
with the diversity and variation of natural keyboard-typed language. In contrast, when powerful
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Figure 1: An episode of the putting task, seen from above (left) and from the agent’s perspec-
tive (right). In each episode of training or evaluation, there are three randomly-coloured moveable
objects, plus a pink bed and a white tray. Initial positions of all objects, doors, windows and the
agent are random. To succeed in an evaluation trial, the agent must process an instruction given by
a human (e.g. ”Put the musical keyboard on the bed”, or ”Drop A Casio on the bed”), identify the
intended object of reference, move towards it and lift it, rotating if necessary, and then lower it into
the specified location. Our best-performing agent succeeds at this evaluation with 72% accuracy.

Pixel Memory and Object Object Visual Natural
observations partial obs. interaction manipulation realism language

Oh et al. (2017)
Hermann et al. (2017)
Chaplot et al. (2018)
Misra et al. (2018)
Wu et al. (2018)
Jiang et al. (2019)
This work

Table 1: Recent work on instruction-following in 3D environments (not exhaustive). By transfer-
learning from simulation, our best-performing agents overcome unique combination of policy-
optimization challenges (partial observability, memory, raw perception, object manipulation and
relations) and can also interpret natural human commands.

pretrained language encoders are integrated into our agent, we find that agents can satisfy human
instructions with substantially above-chance accuracy.

To better analyze the generalization that supports this robustness, we probe trained agents with
specific modifications to their training instructions. We find that methods based on conventional
(context-free) word embeddings support generalization that is driven by lexical similarity (executing
lift a vehicle when trained to lift a car), but capture phrasal equivalence less well (failing
at put a plate on the container when trained to put the dish on the tray). In con-
trast, methods that integrate contextual word representations support both types of generalization.
We also find that robustness to synonyms can often be improved when pretrained encoders are com-
bined with an additional (cross-modal) self-attention tuned to the agent’s environmental objectives.
Ablation experiments highlight the role that WordPiece tokenization (Schuster & Nakajima, 2012)
plays in robustness to human instructions. This motivates the addition of typo noise to our training
pipeline, which further improves the accuracy of the agent’s responses.

Overall, our principal contributions are the following:

• We train an agent that can both interpret human language commands and overcome a similar
range of behavioural and environmental challenges to state-of-the-art policy-learning approaches
(Table 1).

2



Under review as a conference paper at ICLR 2020

• We develop the techniques of transfer-learning from a text representation-learning model to an
embodied agent. Note that this is very different from transfer between language classification
tasks (Collobert & Weston, 2008; Devlin et al., 2018); in our evaluations the agent must interpret
unfamiliar instructions zero-shot (i.e. without additional learning steps), and must realize complex
language-conditional behaviours (decoding ≈ 50 appropriate actions) in spite of this uncertainty.

1.1 HIGH-LEVEL APPROACH

We experiment in a simulated room in the Unity1 game engine (Fig 1). Importantly, the realism of
the visual assets in this room enable human observers to recognize the objects (and hence refer to
them in natural ways). Our experimental pipeline then involves the following steps:

1. Define a (language-dependent) task, including initial conditions for the simulated room, a
template-based process for generating synthetic language instructions and a reward func-
tion for checking game states and exposing reward if the agent succeeds.

2. Train agents with different language encoders to solve the task when conditioned on the
synthetic language produced by the environment generator.

3. Evaluate the trained agent on 1000 episodes of the task with the synthetic instructions
replaced with synonyms or free-form commands typed by human annotators.

2 ARCHITECTURES FOR INSTRUCTION-FOLLOWING AGENTS

Since the object of our study is instruction-following, we consider an agent architecture that is
as conventional as possible in aspects not related to language processing. It consists of standard
components for computing visual representations of pixels, embedding text strings and predicting
actions contingent on these and memory of past inputs.2

Visual processing The visual observations received by the agent at each timestep are 96× 72× 3
real-valued tensors, which are processed by a 3-layer residual convnet.

Memory core The output of the visual processing is combined with language information accord-
ing to a particular encoding strategy, as described below. In all conditions, some combination of
vision and language input at each timestep passes into a LSTM memory core with hidden dim. 128.

Action and value prediction The state of the memory core at each timestep is passed through a
linear layer and softmax to compute a distribution over 26 actions. Independently, the memory state
is passed to a linear layer to yield a scalar value prediction.

Training algorithm The agent is trained using an importance-weighted actor-critic algorithm with
a central learner and distributed actors (Espeholt et al., 2018).

2.1 LANGUAGE ENCODING

The agent must process both string observations in the simulated environment, during training, and
human instructions, also encoded as strings, during evaluation. Its representations of language must
be combined with visual information to make decisions about how to act. We compare various
different ways of achieving this encoding. For methods that transfer knowledge from unsupervised
text-based learning, we take weights from the well-known BERT model (Devlin et al., 2018), specif-
ically the uncased BERTBASE model made available by the authors.3

BERT + mean pool For a given input of w words, BERTBASE returns w context-dependent (sub)-
word representations of 768 units. In this condition, a mean pooling operation is applied over the
w dimension to yield a single representation of dimension 768, which is concatenated with the
flattened output of the visual processing module. This multi-modal representation is passed through
a single layer MLP with tanh activation and output dimension 128 before entering the memory
core of the agent. We apply the standard BERTBASE WordPiece vocabulary (of size 30,000). Note

1Unity. http://unity3d.com.
2See Appendix C for details not included here.
3Available at https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1
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that WordPiece encodes language in terms of subwords (a mix of characters, common word chunks,
morphemes and words) rather than the word-level vocabulary applied in more traditional neural
language models.

BERT + self-attention layer When applying BERT to text classification, performance can some-
times be improved by fine-tuning the weights in the BERT encoder to suit the task. Because of the
large number of gradient updates required to learn a complex behaviour policy, fine-tuning the BERT
weights in this way would cause substantial overfitting to the synthetic environment language. We
therefore keep the BERT weights frozen, but experiment with an additional learned self-attention
layer (Vaswani et al., 2017) to create a language encoder whose bottom layers are pretrained and
whose final layer optimizes these representations to the present environment or tasks. This addi-
tional layer has 4 attention heads, and uses 64 dimensional key and value embeddings.

BERT+ cross-modal self-attention We also consider a cross-modal self-attention layer of the type
suggested by e.g. Tsai et al. (2019); Lu et al. (2019), which in our application provides an explicit
pathway for the agent to bind visual experience to specific (contextual) word representations. In this
case, we treat each of the output channels of the visual processing network as word-like entities, by
passing them through a linear layer of output size 768 to match the BERT output. The embeddings
for all words and the visual channels are then processed with a single self-attention layer, whose
parameters are again learned with all other agent parameters.

Pretrained (sub)-word embeddings Language classification experiments with BERT show the
value of highly context-dependent (sub)-word representations, but transfer in that context is also pos-
sible with more conventional (context-independent) word embeddings (Collobert & Weston, 2008).
To measure the effect of this distinction, we consider a simpler encoder based on the (context in-
dependent) input (sub-)word embeddings from BERT, which are also of dimension 768.4 Taking
a mean of these context-independent vectors would yield a word-order-invariant representation of
language. We therefore process them with single-layer transformer with 4 attention heads. As in
BERT + mean pool, this output is averaged, reduced by a single-layer MLP (from 768 to 128 units)
and passed to the agent’s core memory.

Typo noise Finally, in one condition we introduce typo noise (each key character was replaced with
that of an adjacent character on a standard keyboard, with a probability of 0.01) to the synthetic
language strings produced by the environment, allowing the agent to learn to compensate during
training. No modifications were made to the evaluation stimuli. Much previous work applies typing
noise for language classifier robustness; see e.g. (Pruthi et al., 2019) for a recent survey.

We compare to various baselines designed to isolate specific components of these encoders.

Random mean pool As a direct baseline for BERT mean pool, we consider an identical architecture
but in which the contextual BERT embeddings are replaced by fixed random (subword-specific)
vectors (also of dimension 768). The weights in the rest of the agent network are trained as in other
conditions. We note that random sentence vectors are a competitive baseline on many language
classification tasks (Wieting & Kiela, 2019).

Word-level and WordPiece transformers In addition to pre-trained weights, a potentially impor-
tant aspect of encoders based on BERT is WordPiece tokenization, which can afford greater ability
to make sense of typos or rare words with familiar morphemes than in a more conventional word-
level encoder. To isolate the effect of tokenization from that of pretrained weights, we compared
two further encoders. In one, we split all input strings by whitespace and hash each word string to
a unique index representing an input to a single-layer transformer with 4 attention heads and em-
bedding size 768 (chosen to match BERTBASE), the output of which is processed identically to the
Random mean pool condition. We contrast this with an otherwise identical condition in which the
WordPiece tokenization from BERT is applied rather than splitting on white space.

3 EXPERIMENTS

We experiment with a lifting task, which focuses on object identification, and a putting task which
focuses on object relations and manipulation. In both tasks the locations of all objects and the

4These embeddings capture lexical similarity much like conventional word embeddings; a cosine metric
produces a Spearman correlation of 0.49 with human ratings from the Simlex-999 dataset (Hill et al., 2015).
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initial position and orientation of the agent are chosen at random on floating point scales, so it
is highly unlikely that any two episodes are spatially identical (whether during training or eval-
uation). The action set consists of movements (move-{forward,back,left,right}), turns
(turn-{up,down,left,right}), and object pick-up and manipulation with 4 DoF. The place-
ment of objects is assisted by a visible vertical line. See Appendix C a full description.

3.1 LIFTING WITH HUMAN INSTRUCTIONS

In an episode of the lifting task, the environment selects two movable objects at random from a
global object set, and generates a language instruction of the form Lift a X, where X is the correct
name for (exactly) one of those objects. To achieve reward, the agent must locate the X, lift it more
than 1m above the ground and keep it there for 5 time steps. If the reward function in the environment
determines that these conditions are met, a positive reward of +1 is emitted and the episode ends. If
a lifting takes place with the incorrect object, the episode also ends with reward 0. For a global set of
recognisable objects, we use the ShapeNet dataset (Chang et al., 2015), which contains over 12,000
3D rendered models. For performance reasons we discard models with more than 8,000 vertices
or an OBJ file size greater than 1 MB and consider only those tagged into a synset in the WordNet
taxonomy. We use the name of the first lemma of that synset as a proxy for the name of the object.
From these names, we selected 80 to for the environment, each referring to a set of object models
with a minimum of 12 exemplars. See appendix D for more details.

Template lang. Natural
(training) Synonym referring expression

Lift a flag Lift a
Lift the indian flag
Lift a flag

banner Lift the flag.

Lift a pillow Lift a
Lift a pillows
Lift a cushion

cushion Lift a paper

Table 2: Example training (left) and test instruc-
tions in the lifting task.

For all language encoding strategies described
above, the agent was able to learn the task,
and a well-trained policy completed episodes
in an average of ≈ 20 timesteps with accuracy
around 90%. The failure of agents to reach per-
fect performance on the training set is unim-
portant for the present study; we suspect that
the agent’s comparatively small convolutional
network fails to perceive important distinctions
between the more intricate ShapeNet models.

Template lang. D.O. I.O. D.O. & I.O.
(training) synonym synonym synonym Natural instruction
Put a mug Put a cup Put a mug Put a cup place mug in the basket
on the tray on the tray on the box on the box Keep the cup in atub

place the mug in a container
put the coffee mug in the box

Put a train Put a locomotive Put a train on Put a locomotive Put the tractor on the bed
on the bed on the bed the bunk on the bunk Move the train toy onto the bed

Place a toyvehicle on the bed
place the rail on tthe bed

Table 3: Example training (left) and test instructions in the putting task. Underlined words are
examples of synonyms, italics indicate entire phrases provided by human annotators.

We consider two evaluation settings. In the synonym evaluation, we ran the environment for 1,000
episodes with the noun in the environment template instruction replaced by a synonym (Lift a X
becomes Lift a X∗ where X ≈ X∗). The synonyms were provided by native English speaking
subjects. In the natural referring expression evaluation, we gave 40 annotators access to a room
containing a single ShapeNet model via a crowd-sourcing platform. We asked them to write down
what they found in the room and then hit a button that restarted the environment with a new object
in the room.5 As illustrated in Table 2, unlike the synonyms, the natural referring expressions
involve variation in articles as well as nouns (a pencil might become the pen), may include spelling
mistakes or typos, can refer entirely incorrectly to the intended object (if the subject fails to recognize
the ShapeNet model), but may also match the training instruction exactly. Moreover, unlike the
synonym test, there are 30− 40 natural referring expressions for each of the 80 environment nouns,
from which we sample randomly when evaluating the agent (again on 1,000 evaluation espisodes).

5See Appendix B for the full list of synonyms and annotator instructions.
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3.2 PUTTING OBJECTS ON OTHER OBJECTS WITH HUMAN INSTRUCTIONS

The strength of models like BERT is their ability to combine lexical representations into phrasal or
sentence representations. To study this capacity in the context of instruction-following, we devised
a putting task involving the verb ‘to put’, which, in the imperative (put the cup on the tray)
takes two arguments, the direct object (D.O.) cup and the indirect object (I.O.) tray. In terms
of the behaviours required, the putting task focuses on manipulation and object relations rather
than object identification or reference. The environment was configured to begin each episode with
three randomly-chosen moveable objects and two larger immovable objects (a bed and a tray), each
randomly positioned in the room. In each episode of this task, the agent receives an instruction Put
a D.O. on the I.O., where D.O. is any of the three moveable objects (chosen from a global set
of ten) and I.O. is either bed or tray. The environment checks whether an instance of D.O. is at
rest (and not held by the agent) on top of the I.O., returning a positive reward+1 if so and ending
the episode. If the object D.O. is placed on something other than a I.O., or if another movable
object is placed on the bed or the tray then again the episode ends immediately with reward 0.6

As before, we first trained all agents on the putting task with synthetic environment language instruc-
tions. Training a policy on this task with reinforcement learning required a bespoke task curriculum
(see Appendix C for details); a well-trained policy completes each episode in an average of ≈ 50
actions/timesteps. To gather the evaluation stimuli, we again crowd-sourced humans to provide both
natural synonyms for each of the 12 objects in the global set for this task and, in this case, entirely
free-form natural human instructions. To obtain natural instructions, we instantiated an environment
with only one of the global set of moveable objects, coloured red, and one of either the bed or the
tray, coloured white, and asked subjects to ask somebody to place the red object on top of the white
object without mentioning their color. From these instructions, we defined four evaluations, illus-
trated in Table 3: D.O. synonym, I.O. synonym and D.O. & I.O. synonym, in which particular
parts of the original template command were replaced with synonyms, and Natural instruction, the
fully free-form human instruction, which can include orthographic errors and misidentified objects.

3.3 DISCUSSION OF RESULTS

Template language Natural referring
Model (training) Synonym expression
Random ‘lifting’ act 0.5 0.50 0.50
Random-embedding + MP 0.86 0.49 0.48
Word-level Transf. 0.91 0.58 0.61
WordPiece Transf. 0.89 0.57 0.66
Word-level Transf. + TN 0.86 0.62 0.70
WordPiece Transf. + TN 0.86 0.64 0.69
Word embeddings + Transf. 0.89 0.62 0.64
BERT + MP 0.93 0.77 0.76
BERT + SA 0.91 0.70 0.70
BERT + CMSA 0.88 0.68 0.67
BERT + CMSA + TN 0.89 0.74 0.73
Multitask BERT + CMSA + TN 0.87 0.74 0.73

Table 4: Accuracy of different models on training instructions, the synonym evaluation and the
natural referring expression evaluation. MP: mean pool, SA: self-attention layer, CMSA: cross-
modal self-attention layer, TN: typo-noise. Multitask: single agent trained on both ’lifting’ and
’putting’ tasks. Scores show mean across 1,000 episodes (with instructions randomly chosen by the
environment generator).

The accuracies for both lifting tasks are presented in Table 4 and for putting tasks in Table 5. The
results reveal the following main effects of language encoding on model performance:

Substantial transfer from text requires contextual encoders Agents with weights that are pre-
trained on text data exhibit substantially higher accuracy on both the lifting and the putting tasks.
This effect is greatest in the more focused synonym evaluations, but also holds for the the free-
form human instructions. A small transfer effect can be seen by comparing the word embeddings
+ Transformer condition (62% accuracy on the synonym evaluation, lifting task and 57% accuracy

6We found that ending the episode in such cases made learning much faster.
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Template lang D.O. I.O. D.O. & I.O. Natural
Model (training) synonym synonym synonym instruction
Random ‘putting’ act 0.17 0.17 0.17 0.17 0.17
Random-embedding + MP 0.99 0.59 0.22 0.15 0.39
Word-level Transf. 0.99 0.48 0.09 0.03 0.36
WordPiece Transf. 0.98 0.30 0.24 0.10 0.42
Word-level Transf. + TN 0.97 0.61 0.27 0.17 0.45
WordPiece Transf. + TN 0.97 0.36 0.36 0.13 0.56
Word embeddings + Transf. 0.99 0.57 0.47 0.36 0.55
BERT + MP 0.99 0.94 0.74 0.57 0.49
BERT + SA 0.99 0.96 0.69 0.56 0.54
BERT + CMSA 0.99 0.93 0.67 0.47 0.43
BERT + CMSA + TN 0.98 0.88 0.79 0.70 0.70
Multitask BERT + CMSA + TN 0.98 0.96 0.75 0.68 0.66

Table 5: Accuracy of different models on the putting task when different parts of instructions of the
form "Put a [D.O.] on the [I.O.]" are replaced with synonyms. Underlined words in model
names indicate pre-trained weights from text-based training. MP: mean pool, SA: self-attention
layer, CMSA: cross-modal self-attention layer, TN: typo-noise. Multitask: single agent trained on
both ’lifting’ and ’putting’ tasks. The evaluation task covers episodes in which [I.O.] is either
‘bed’ or ‘tray’. Scores show mean across 1,000 random episodes.

on the D.O. synonym evaluation, putting task) with the WordPiece Transformer (57% and 20%).
However, overall the transfer effect is much stronger in the case of the full context-dependent BERT
representations. On the same two evaluations, BERT + mean pool achieves 77% and 94% accuracy
respectively. The gains from transferring via BERT representations vs. just (sub)word embeddings
are greatest for the (longer) putting instructions than for the lifting instructions, and greatest of all
in the D.O & I.O. synonym evaluation. These are cases where one would expect the marginal value
of powerful sentential (rather than just lexical) representations should be greatest.

Figure 2: Self-attention layers learn to pull-apart both
training nouns and their synonyms as the agent learns
the putting task with synthetic environment language.

Tuning via self-attention layers (with typo
noise) helps Interestingly, we find that tuned
self-attention layers do not improve generaliza-
tion performance over using BERT and mean
pooling. This may be simply because the addi-
tional layers cause a degree of overfitting to the
template environment language during training.
However, typo noise mitigates this issue, so
that the strongest evaluation performance on the
putting tasks overall is observed with a com-
bination of a tuned cross-modal self-attention
layer and typo-noise training.7 Indeed, the
value of typo noise as a regularizer can be seen
by the fact that it improves the robustness of
agents with tuned self-attention layers even in
the synonym evaluations (for both lifting and
putting), which do not involve any typos. Thus, the BERT + CMSA + TN model performs bet-
ter than all others on two of the three synonym evaluations in the putting task.

One way in which the appropriately-tuned self-attention layer might make the agent more robust
to synonyms in this case is by spreading out task-relevant object-nouns in the agent’s language
representation space (leaving those words closer to synonyms than to potential confounding words).
The degree to which this happens when the object-nouns and their synonymns in our environments
are passed first through BERT and then through a (BERT + SA) agent-tuned self-attention layer
(compared to passing through the same layer but with random weights) is shown in Fig 2.

WordPiece tokenization adds robustness In the two evaluations involving natural language in-
structions from humans, a comparison of Word-level Transformer and WordPiece Transformer
shows that some robustness is obtained simply from WordPiece encoding, which in turn must play

7See Appendix A to compare BERT-based architectures with and without typo-noise.
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some part in all BERT-based conditions (e.g. improving from 61% to 66% in the natural refer-
ring expression evaluation and from 36% to 42% in the natural instruction putting evaluation). As
mentioned above, BERT-based agents with WordPiece encoding are particularly robust to human
instructions when trained with typo noise, and this is most effective when combined with tuned
self-attention layers. This makes intuitive sense, as a learnable self-attention layer should provide
the agent with more flexibility to learn to correct for typos during training. Indeed, on the natural
instruction evaluation of the putting task, where typos or spelling errors are most common, the cross-
modal attention agent trained with typo noise achieves 70% accuracy. Note that 100% accuracy on
this evaluation may be impossible, even for humans, because visual ambiguity or human error mean
that instructions can sometimes refer in entirely mistaken ways to the objects in the room.

Multitask learning is possible The performance of an agent trained on both the putting and lifting
tasks is not substantially lower than agents that are specialized to each of the tasks individually.

4 RELATED WORK

Most closely related to our work is an experiment by Chan et al. (2019), who showed how an agent
trained with InferLite sentence representations (Kiros & Chan, 2018) can be robust to synonym re-
placements in template instructions. The task itself involves object identification in the VizDoom
environment (Kempka et al., 2016), which requires only 3 motor actions. Our work develops this
insight substantially, applying a similar approach to a visually-realistic environment requiring fine-
grained object manipulation, integrating context-dependent pre-trained models with subword tok-
enization (BERT), analysing architectures and training strategies for integrating such models and
extending from synonym replacements to free-form instructions typed by humans.

Much recent work applies deep learning and policy optimization in end-to-end approaches to learn-
ing instruction following (Chaplot et al., 2018; Oh et al., 2017; Bahdanau et al., 2018; Chevalier-
Boisvert et al., 2018; Yu et al., 2018b;a; Jiang et al., 2019). As noted in the introduction, these studies
do not typically involve natural language. Our work differs from studies that do (Misra et al., 2017;
2018) in several ways. First, we consider generalization and robustness (rather than performance
when trained on a set of natural language commands). Second, we apply our method to learn much
more complex policies requiring object manipulation and positioning and mastery of fine-grained
action sets. Our approach makes learning such policies possible because we combine (potentially
infinite) template-based RL training with text-based pretraining and transfer.

A limitation of all studies above is the reliance on simulation. Both object identification and manip-
ulation are likely far harder in reality, and it remains to be seen whether our methods scale to robot
language understanding (Tellex et al., 2011; 2012; Walter et al., 2014). See also (Anderson et al.,
2018; Wang et al., 2019) for recent improvements to visual realism in simulated environments.

Finally, there is a long history of building in knowledge about the structure of language and/or
its environment into instruction-following systems rather than learning it end-to-end. In Winograd
(1972)’s SHRDLU, syntactic modules parsed the language input into a logical form, and hand-
written rules were applied to connect such forms to the environment. More recent pipeline-based
approaches use learning algorithms to map language to a program that can then interface with a
planner (Chen & Mooney, 2011; Matuszek et al., 2013; Wang et al., 2016), and/or a controller, both
of which may have priviledged information about how the world connects to the program. It is likely
that pretrained language encoders could add robustness to parts of these approaches, much as they do
here. Our focus on end-to-end learning, however, is motivated by the intuition that it may eventually
scale or adapt more flexibly to arbitrary environments or problems than pipeline approaches.

5 CONCLUSIONS

In this work, we have developed an agent that can follow natural human instructions requiring the
identification, manipulation and positioning of visually-realistic assets. Our method relies on zero-
shot transfer from template language instructions to those given by human annotators when asked
to refer and instruct in natural ways. The results show that, with powerful pretrained language en-
coders, this transfer effect is sufficiently strong to permit decoding of complex language-dependent
motor behaviours, despite the shift in distribution of the agent’s input. More generally, we hope
that this contribution serves to bring research on text-based and situated language learning closer
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together. To facilitate research in this direction, we provide our dataset of natural instructions and
referring expressions aligned to ShapeNet models.

We have explored only a tiny fraction of the many possible ways to transfer knowledge from a
text corpus to a situated environment. For instance, our approach involves freezing rather than
fine-tuning the BERT encoder weights to our desired behaviour policy, to avoid overfitting, but
techniques such as knowledge distillation (Hinton et al., 2015) could point to more elegant ways to
learn jointly from text and environmental experiences. Moreover, we have focused on BERT, but
improvements may be possible by applying alternative general-purpose language encoders, such as
GPT-2 (Radford et al., 2019), Roberta (Liu et al., 2019) and Transformer XL (Dai et al., 2019).
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A FULL EXPERIMENTAL RESULTS

The results presented in charts here are those shown in the tables in the paper, with two additional
conditions involving typo noise.

Figure 3: Lifting task, synonym evaluation. Left: accuracy of different agents over 1,000 episodes
when no change is made to the environment template instruction. Right: accuracy of different agents
when a synonym is introduced. Dotted line indicates score of an agent that carries out the correct
behaviour but with random objects from the room.

Figure 4: Lifting task, natural referring expression evaluation. Performance of agents on 1,000
evaluation episodes when part of the environment template lifting instruction is replaced by a natural
referring expression from human annotators. Dotted line indicates score of an agent that carries out
the correct behaviour but with random objects from the room.
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Figure 5: Putting task, synonym evaluation. Performance of agents on 1,000 evaluation episodes
when (left) no change is made to the template environment instruction and (rightmost three) different
parts of the template environment instruction are replaced with synonyms. Dotted line indicates
score of an agent that carries out the correct behaviour but with random objects from the room.

Figure 6: Putting task, natural instruction evaluation. Performance of agents on 1,000 evaluation
episodes when the full environment template putting instruction is replaced by a natural instruction
from human annotators. Dotted line indicates score of an agent that carries out the correct behaviour
but with random objects from the room.
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B INSTRUCTIONS TO HUMAN ANNOTATORS

Human annotators use a keyboard and mouse to control a player in the environment simulator, as is
standard in first-person video games. The annotators were given the following instructions as part
of the each annotation task.

B.1 NATURAL REFERRING EXPRESSIONS

This is a task called Name The Object. You will find yourself in a room containing a single object.
Please move around the room to get a good view of the object. When you know what the object is:

1. Hit Enter

2. Type the name of the object

3. Hit Enter again

Examples of good responses:

1. A kettle

2. Some trousers

3. A pair of scissors

4. A tennis ball

Please don’t describe the object. Just write down what you see, with an article like ‘a’ or ‘some’ if
appropriate.

Example of bad responses

1. A brown ball

2. A large piano with long black legs

3. A small thing with lumps on the side

You should not need more than 4-5 different words, and most objects will require just 1 or 2 words
to name.

Sometimes, you might be unsure what the object is. If that’s the case, just make your best guess.

B.2 FULL HUMAN INSTRUCTIONS

This is a task called Ask to put. You will find yourself in a room. Your job is to imagine giving
an instruction to somebody else so that that person puts the red object on to the white object. Move
around the room to get a good look at what the two objects are. When you are ready to give your
instruction:

1. Hit Enter

2. Type your instruction

3. Hit Enter again

Examples of good instructions:

1. Place the cup onto the table

2. Put the ball on the plate

3. Move the pencil onto the box
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Words to avoid Your instruction must not contain words for colours or other properties of the
object. Please do not use the words red, white, scarlet, dark, large etc. in your instruction. Instead,
refer to objects by their name as you recognise them. If you don’t recognise what an object is, just
make your best guess.

Examples of bad instructions:

1. Put the red thing on the table
2. Put the large object on the small object
3. Put the small round thing on the chest

Keep your language varied. Try to use various ways to express your instruction in different episodes
to keep things interesting.

C AGENT ARCHITECTURE AND TRAINING DETAILS

To process visual input, the agent uses a residual convolutional network with 64, 64, 32 channels in
the first, second and third layers respectively and 2 residual blocks in each layer.

As the agent learns, actors carry replicas of the latest learner network, interact with the environment
independently and send trajectories (observations and agent actions) back to a central learner. The
learning algorithm (Espeholt et al., 2018) modifies the learner weights to optimize an actor-critic
objective, with updates importance-weighted to correct for differences between the actor policy and
the current state of the learner policy. We used a learning rate of 0.0005, a learner batch size of 32,
an agent unroll length of 50, a discounting factor of 0.99, an epsilon (epsilon-greedy policy) of 1e−6

and an entropy cost of 0.0003 (Mnih et al., 2016). We use an Adam optimizer (Kingma & Ba, 2014)
with β1 = 0.90 and β2 = 0.95.

In order to train the agent on the putting task, it was necessary to combine episodes of the task
itself with episodes of simpler tasks, in a form of curriculum (although learning in parallel on all
tasks). In particular, we trained it concurrently on a lifting task that involved the same moveable
objects as the putting task (so that the agent could receive signal about their names without relying
on a complete act of putting). We also found it beneficial to add a put-near task to the curriculum,
where the instructions were of the form Put a cup near the tray rather than Put a cup on
the tray, and a reward was emitted if the agent moved the cup a short distance from the tray and
placed it on the ground.

In the lifting task, training the agent requires approximately 200 million frames of experience (ap-
proximately 7 million episodes), which takes about 24 hours with 250 actors on GPU. In the putting
task, training in each condition was stopped after 30 million episodes, approximately three days of
training.

Body movement actions Movement and grip actions Object manipulation
NOOP GRAB GRAB + SPIN OBJECT RIGHT
MOVE FORWARD GRAB + MOVE FORWARD GRAB + SPIN OBJECT LEFT
MOVE BACKWARD GRAB + MOVE BACKWARD GRAB + SPIN OBJECT UP
MOVE RIGHT GRAB + MOVE RIGHT GRAB + SPIN OBJECT DOWN
MOVE LEFT GRAB + MOVE LEFT GRAB + SPIN OBJECT FORWARD
LOOK RIGHT GRAB + LOOK RIGHT GRAB + SPIN OBJECT BACKWARD
LOOK LEFT GRAB + LOOK LEFT GRAB + PUSH OBJECT AWAY
LOOK UP GRAB + LOOK UP GRAB + PULL OBJECT CLOSE
LOOK DOWN GRAB + LOOK DOWN

D FURTHER ENVIRONMENT DETAILS

For all experiments, the environment is a Unity room of dimension 4m x 4m. The walls, floor and
ceiling are always the same color, but we add a window and door (positioned randomly per episode)
to give some sense of absolute location to the agent.
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When importing ShapeNet models, we use the scaling provided in the metadata, unless it it is very
small (less than 0.000001), in which case we interpret the coordinates in the OBJ file as meters. All
objects have rigid bodies with collision meshes generated using Unity’s built in MeshCollider, with
convex set to true. The masses of all movable objects are set to 1 kg, so that our avatar has enough
strength to pick all of them up (except for beds and trays, which are made kinetic).

When selecting ShapeNet models, for performance reasons we discarded all models with a vertex
count higher than 8000, and an OBJ file size greater than 1 MB. The native ShapeNet category
names are often not natural everyday names (for instance, they can be highly specific, like ”dual
shock analog controller”). To mitigate this, we used ShapeNet’s WordNet tags, grouping models
into categories according to WordNet synsets and assigning the name of the first synset lemma to
the category.

Because depth-perception is challenging without binocular vision, the agent is assisted in manip-
ulation by a visual guide (bottom-right) that highlights objects within grasping range and drops a
vertical line from held objects.

Full lists of objects and synonyms are on the following pages.
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name synonym unique models example shapenet model id wordnet synset
chest of drawers cupboard 241 793aa6d322f1e31d9c75eb4326997fae n3018908
table desk 199 db80fbb9728e5df343f47bfd2fc426f7 n4386330
chair seat 167 6bcabd23a81dd790e386ecf78eadd61c n3005231
sofa couch 158 11d5e99e8faa10ff3564590844406360 n4263630
television receiver aerial 147 cebb35bd663c82d3554a13580615ae1 n4413042
lamp light 138 62ab9c2f7b826fbcb910025244eec99a n3641940
desk bench 98 a2c81b5c0ce9231245bc5a3234295587 n3184367
box tin 81 15b5c54a8ddc84353a5acb1c5cbd19ff n2886585
vase flute 78 415a96bfbb45b3ee35836c728d324152 n4529463
bed bunk 73 bbd23cc1e56a24204e649bb31ff339dd n2821967
floor lamp lamp 73 54017ba00148a652846fa729d90e125 n3371905
cabinet cupboard 68 f5024636f3514eb51d0662c550f8f994 n2936496
book magazine 67 c8691c86e110318ef2bc9da1ba799c60 n6422547
pencil pen 67 839923a17af633dfb29a5ca18b250f3b n3914323
laptop computer 66 20d42e934260b59c53c0c910fd6231ef n3648120
monitor screen 58 4d11b3c781f36fb3675041302508f0e1 n3787723
coffee table table 53 e21cadab660eb1c5c71d82cf1efbe60a n3067971
picture image 52 2c31ea08641b076d6ab1a912a88dca35 n3937282
bench chair 52 c6706e8a2b4efef5133db57650fae9d9 n2832068
painting portrait 51 6e51501eee677f7f73b3b0e3e8724599 n3882197
rug carpet 44 b49fda0f6fc828e8c2b8c5618e94c762 n4125115
shelf surface 43 482f328d1a777c4bd810b14a81e12eca n4197095
switch flower 42 7f20daa4952b5f5a61e2803817d42718 n4379457
plant shrub 42 94a36139281d1837465e08d496c0420f n17402
stool seat 41 1b0626e5a8bf92b3945a77b945b7b70f n4334034
bottle jug 40 a429f8eb0c3e6a1e6ea2d79f658bbae7 n2879899
loudspeaker speaker 37 82b9111b3232904eec3b2e05ce8fd39b n3696785
electric refrigerator fridge 36 392f9b7a08c8ba8718c6f74ea0d202aa n3278824
toilet urinal 34 5d567a0b5b57d8ab8b6558e44187a06e n4453655
dining table table 29 82a1545cc0b3227ede650492e45fb14f n3205892
poster picture 28 de74ab90cc9f46af9703672f184b66db n6806283
wall clock clock 28 1e2ea05e566e315c35836c728d324152 n4555566
cellular telephone mobile 26 85a94f368a791343985b19765176f4ab n2995984
person human 25 2c3dbe3bd247b1ddb19d42104c111188 n5224944
cup mug 24 542235fc88d22e1e3406473757712946 n3152175
stapler clipper 24 376eb047b40ef4f6a480e3d8fdbd4a92 n4310635
mirror reflector 24 36d2cb436ef75bc7fae7b9efb5c3bbd1 n3778568
toilet tissue toilet paper 24 6658857ea89df65ea35a7666f0cfa5bb n15099708
desktop computer pc 24 102a6b7809f4e51813842bc8ef6fe18 n3184677
table lamp desk light 23 85b52753cc7e7207cf004563556ddb36 n4387620
flag banner 22 ac50bd1ed53b7cb9cec8a10ad1c084eb n3359749
armchair settee 21 806bce1a95268006ecd7cae46ee113ea n2741540
cupboard wardrobe 21 3bb80aa0267a12bed00bff798ed59ff5 n3152990
pen pencil 20 628e5c83b1762320873ca101f05858b9 n3913116
bag sack 20 b2c9ac70c58c90fa6dd2d391b72f2211 n2776843
soda can drink 20 16526d147e837c386829bf9ee210f5e7 n4262696
sword knife 20 555c17f73cd6d530603c267665ac68a6 n4380981
bookshelf shelf 20 586356e8809b6a678d44b95ca8abc7b2 n2874800
fireplace burner 19 df1bd1065e7f7cde5e29ce2c9d37b952 n3351301
curtain drape 19 6f3da555075ec7f9e17e45953c2e0371 n3155743
battery cell 18 62733b55e76a3b718c9d9ab13336021b n2813606
bookcase bookshelf 18 bc80335bbfda741df1783a44a88d6274 n2874241
pizza pie 18 caca4c8d409cddc66b04c0f74e5b376e n7889783
hammer mallet 17 a49a6c15dcef467bc84c00e08b1e25d7 n3486255
microwave oven 16 b3bf04a02a596b139220647403cfb896 n3766619
cereal box oatmeal 16 dc394c7fdea7e07887e775fad2c0bf27 n3001610
food meal 16 d92f30d9e38cf61ce69bbdea737daae6 n21445
screen monitor 16 4d7fb62f0ed368a18f62bdf4e9082924 n4159912
glass beaker 16 89cf9af7513ecd0947bdf66811027e14 n3443167
wine bottle magnum 15 e101cc44ead036294bc79c881a0e818b n4599016
lamppost streetlight 15 9cf4a30ab7e41c85c671a0255ba06fe5 n3642472
oven cooker 15 69c57dd0f6abdab7ac51268fdb437a9e n3868196
camera polaroid 14 48e26e789524c158e1e4b7162e96446c n2946154
globe world 14 3e97d91fda31a1c56ab57877a8c22e14 n3445436
cd player stereo 14 fe90d87deaa5a8a5336d4ad4cfab5bfe n2991759
wardrobe cupboard 14 cb48ec828b688a78d747fd5e045d7490 n4557470
bible text 14 6ad85ddb5a110664e632c30f54a9aa37 n6434286
pillow cushion 13 8b0c10a775c4c4edc1ebca21882cca5d n3944520
mug cup 13 ea33ad442b032208d778b73d04298f62 n3802912
chandelier light 13 37d81dd3c640a6e2b3087a7528d1dd6a n3008889
chessboard checkers 13 ec6e09bca187c688a4166ee2938aa8ff n3017971
calculator computer 13 387e59aec6f5fdc04b836f408176a54c n2942270
dishwasher washing machine 12 ff421b871c104dabf37a318b55c6a3c n3212662
mattress mat 12 f30cb7b1b9a4184eb32a756399014da6 n3736655
basket bag 12 91b15dd98a6320afc26651d9d35b77ca n2805104
pencil sharpener sharpener 12 287b8f5f679b8e8ecf01bc59d215f0 n3914833
candle lantern 12 cf1b637d9c8c30da1c637e821f12a67 n2951508
bowl dish 12 594b22f21daf33ce6aea2f18ee404fd5 n2884435
clock watch 12 299832be465f4037485059ffe7a2f9c7 n3050242
coat hanger hanger 12 5aa1d74d04065fd98a7103092f8e8a33 n3061905

Table 6: The 80 ShapeNet category names and their sizes, corresponding WordNet synsets and an
example model id for a category exemplar used in the lifting task. In the extra materials we provide
a full list of ShapeNet model ids in each category.
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Environment word Synonym
Immovable objects tray box

bed mattress

Movable objects

boat ship
hairdryer dryer
racket bat
bus coach
rocket spaceship
car automobile
plane aeroplane
mug cup
robot android
train locomotive
keyboard piano
helicopter airplane
candle lamp

Table 7: The two immovable and ten movable objects in the putting experiment. To begin each
episode, both immovable objects and three randomly-selected movable objects are randomly posi-
tioned in the room.
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