Under review as a conference paper at ICLR 2020

COORDINATED EXPLORATION VIA INTRINSIC RE-
WARDS FOR MULTI-AGENT REINFORCEMENT LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving tasks with sparse rewards is one of the most important challenges in rein-
forcement learning. In the single-agent setting, this challenge has been addressed
by introducing intrinsic rewards that motivate agents to explore unseen regions
of their state spaces. Applying these techniques naively to the multi-agent set-
ting results in agents exploring independently, without any coordination among
themselves. We argue that learning in cooperative multi-agent settings can be
accelerated and improved if agents coordinate with respect to what they have ex-
plored. In this paper we propose an approach for learning how to dynamically
select between different types of intrinsic rewards which consider not just what
an individual agent has explored, but all agents, such that the agents can coordi-
nate their exploration and maximize extrinsic returns. Concretely, we formulate
the approach as a hierarchical policy where a high-level controller selects among
sets of policies trained on different types of intrinsic rewards and the low-level
controllers learn the action policies of all agents under these specific rewards. We
demonstrate the effectiveness of the proposed approach in a multi-agent gridworld
domain with sparse rewards, and then show that our method scales up to more
complex settings by evaluating on the VizDoom (Kempka et al.,|2016) platform.

1 INTRODUCTION

Recent work in deep reinforcement learning effectively tackles challenging problems including the
board game Go (Silver et al., [2016), Atari video games (Mnih et al., [2015)), and simulated robotic
continuous control (Lillicrap et al., [2016); however, these successful approaches often rely on fre-
quent feedback indicating whether the learning agent is performing well, otherwise known as dense
rewards. In many tasks, dense rewards can be difficult to specify without inducing locally optimal
but globally sub-optimal behavior. As such, it is frequently desirable to specify only a sparse reward
that simply signals whether an agent has attained success or failure on a given task. Despite their
desirability, sparse rewards introduce their own set of challenges.

When rewards are sparse, determining which of an agent’s actions led to a reward becomes more
difficult, a phenomenon known in reinforcement learning as the credit-assignment problem. Further-
more, if rewards cannot be obtained by random actions, an agent will never receive a signal through
which it can begin learning. As such, researchers have devised methods which attempt to provide
agents with additional reward signals, known as intrinsic rewards, through which they can learn
meaningful behavior (Oudeyer & Kaplan, 2009). A large subset of these works focus on learning
intrinsic rewards that encourage exploration of the state space (Pathak et al.,|2017; |Houthooft et al.,
20165 Burda et al., 2019; Ostrovski et al., 2017; [Tang et al.,[2017)).

Exploring the state space provides a useful inductive bias for many sparse reward problems where
the challenge lies in ’finding” rewards that may only be obtained in parts of the state space that are
hard to reach by random exploration. These exploration-focused approaches frequently formulate
their intrinsic rewards to measure the “novelty” of a state, such that agents are rewarded for taking
actions that lead to novel states. Our work approaches the question of how to apply novelty-based
intrinsic motivation in the cooperative multi-agent setting.

Under review as a conference paper at ICLR 2020

Directly applying novelty-based intrinsic motivation to the multi-agent setting results in agents each
exploring their shared state space independently from one another. In many cases, independent
exploration may not be the most efficient method. For example, consider a task where multiple
agents are placed in a maze and their goal is to collectively reach all of the landmarks that are spread
out through the maze. It would be inefficient for the agents to explore the same areas redundantly.
Instead, it would be much more sensible for agents to “divide-and-conquer,” or avoid redundant
exploration. Thus, an ideal intrinsic reward for this task would encourage such behavior; however,
the same behavior would not be ideal for other tasks. For example, take the same maze but change
the task such that all agents need to reach the same landmark. Divide-and-conquer would no longer
be an optimal exploration strategy since agents only need to find one landmark and they all need
to reach the same one. Cooperative multi-agent reinforcement learning can benefit from sharing
information about exploration across agents; however, the question of what to do with that shared
information depends on the task at hand.

In order to improve exploration in cooperative multi-agent reinforcement learning, we must first
identify what kinds inductive biases can potentially be useful for multi-agent tasks and then devise
intrinsic reward functions that incorporate those biases. Then, we must find a way to allow our
agents to adapt their exploration to the given task, rather than committing to one type of intrinsic
reward function. In this work, we first introduce a candidate set of intrinsic rewards for multi-
agent exploration which hold differing properties with regards to how they explore the state space.
Subsequently, we present a hierarchical method for simultaneously learning policies trained on dif-
ferent intrinsic rewards and selecting the policies which maximize extrinsic returns. Importantly,
all policies are trained using a shared replay buffer, drastically improving the sample efficiency and
effectiveness of learning in cooperative multi-agent tasks with sparse rewards.

2 RELATED WORK

Single-Agent Exploration In order to solve sparse reward problems, researchers have long
worked on improving exploration in reinforcement learning. To achieve these means, prior works
commonly propose reward bonuses that encourage agents to reach novel states. In tabular domains,
reward bonuses based on the inverse state-action count have been shown to be effective in speeding
up learning (Strehl & Littmanl |2008)). In order to scale count-based approaches to large state spaces,
many recent works have focused on devising pseudo state counts to use as reward bonuses (Belle-
mare et al.,[2016} Ostrovski et al.,2017; Tang et al.,|2017). Alternatively, some work has focused on
defining intrinsic rewards for exploration based on inspiration from psychology (Oudeyer & Kaplan,
2009; [Schmidhuber, [2010). These works use various measures of novelty as intrinsic rewards in-
cluding: transition dynamics prediction error (Pathak et al.,|2017)), information gain with respect to
a learned dynamics model (Houthooft et al.||2016), and random state embedding network distillation
error (Burda et al.| 2019).

Multi-Agent Reinforcement Learning (MARL) Multi-agent reinforcement learning introduces
several unique challenges that recent work has attempted to address. These challenges include:
multi-agent credit assignment in cooperative tasks with shared rewards (Sunehag et al.,|2018}|Rashid
et al., 2018} [Foerster et al.,2018]), non-stationarity of the environment in the presence of other learn-
ing agents (Lowe et al., [2017} |Foerster et al., 2018} Igbal & Sha, 2019), and learning of communi-
cation protocols between cooperative agents (Foerster et al., | 2016} [Sukhbaatar et al., 2016} Jiang &
Lul[2018).

Exploration in MARL While the fields of exploration in RL and multi-agent RL are popular, rel-
atively little work has been done at the intersection of both. |Carmel & Markovitch|(1997)) consider
exploration with respect to opponent strategies in competitive games, and |Verbeeck et al.| (2005)
consider exploration of a large joint action space in a load balancing problem. Jaques et al.|(2018)
define an intrinsic reward function for multi-agent reinforcement learning that encourages agents to
take actions which have the biggest effect on other agents’ behavior, otherwise referred to as “’social
influence.” |Agogino & Tumer|(2008)) Define metrics for evaluating the efficacy of reward functions
in multi-agent domains. These works, while important, do not address the problem of exploring a
large state space, and whether this exploration can be improved in multi-agent systems. A recent
approach to collaborative evolutionary reinforcement learning (Khadka et al., |2019) shares some
similarities with our approach. As in our work, the authors devise a method for learning a pop-
ulation of diverse policies with a shared replay buffer and dynamically selecting the best learner;

Under review as a conference paper at ICLR 2020

however, their work is focused on single-agent tasks and does not incorporate any notion of intrinsic
rewards. As such, this work is not applicable to sparse reward problems in MARL.

3 BACKGROUND

Dec-POMDPs In this work, we consider the setting of decentralized POMDPs (Oliehoek et al.}
2016), which are used to describe cooperative multi-agent tasks. A decentralized POMDP (Dec-
POMDP) is defined by a tuple: (S, A, T', O, O, R,n,~). In this setting we have n total agents. S is
the set of global states in the environment, while O = ®;¢(1...,) O; is the set of joint observations
for each agent and A = ®;¢(1...,) A, is the set of possible joint actions for each agent. A specific
joint action at one time step is denoted as a = {a1,...,a,} € A and a joint observation is 0 =
{01,...,0,} € O. T is the state transition function which defines the probability P(s’|s,a), and O
is the observation function which defines the probability P(o|a, s’). R is the reward function which
maps the combination of state and joint actions to a single scalar reward. Importantly, this reward
is shared between all agents, so Dec-POMDPs always describe cooperative problems. Finally, v
is the discount factor which determines how much the agents should favor immediate reward over
long-term gain.

Soft Actor-Critic Our approach uses Soft Actor-Critic (SAC) (Haarnoja et al.,[2018)) as its under-
lying algorithm. SAC incorporates an entropy term in the loss functions for both the actor and critic,
in order to encourage exploration and prevent premature convergence to a sub-optimal deterministic
policy. The policy gradient with an entropy term is computed as follows:

(- gy -ww)|

where D is a replay buffer that stores past environment transitions, ¢ are the parameters of the
learned critic, b(s) is a state dependent baseline (e.g. the state value function V'(s)), and « is a
reward scale parameter determining the amount of entropy in an optimal policy. The critic is learned
with the following loss function:

LQW) = E(s,a,r,s’)wD [(QUJ(S7 a’) - y)Z] (2)
log(ma(]") o
«

VoJ(m9) = EsD amor [V@ log 7y (als)

Y= 7"(8, a) + ’YEa’N'rr(s’) de(s/, a/) -

where 1) are the parameters of the target critic which is an exponential moving average of the past
critics, updated as: ¢ < (1 — 7)9 + 7%, and 7 is a hyperparameter that controls the update rate.

Centralized Training with Decentralized Execution A number of works in deep multi-agent
reinforcement learning have followed the paradigm of centralized training with decentralized exe-
cution (Lowe et al.l 2017} [Foerster et al., 2018 [Sunehag et al., 2018; |[Rashid et al., 2018; |Igbal &
Sha), 2019). This paradigm allows for agents to train while sharing information (or incorporating
information that is unavailable at test time) but act using only local information, without requiring
communication which may be costly at execution time. Since most reinforcement learning appli-
cations use simulation for training, communication between agents during the training phase has a
relatively lower cost.

4 INTRINSIC REWARD FUNCTIONS FOR MULTI-AGENT EXPLORATION

In this section we present a set of intrinsic reward functions for exploration that incorporate infor-
mation about what other agents have explored. These rewards assume that each agent (indexed by
1) has a novelty function f; that determines how novel an observation is to it, based on its past expe-
rience. This function can be an inverse state visit count in discrete domains, or, in large/continuous
domains, it can be represented by recent approaches for developing novelty-based intrinsic rewards
in complex domains, such as random network distillation (Burda et al.,|2019). Note that we assume
that all agents share the same observation space so that each agent’s novelty function can operate on
all other agents’ observations.

Under review as a conference paper at ICLR 2020

Table 1: Multi-agent intrinsic rewards for agent i, with u(0;) = + 3 ; 1i(0i)

INDEPENDENT MINIMUM COVERING BURROWING LEADER-FOLLOWER

fi(oi) - min fi(0i) fi(o)[fi(0i) > p(oi)] fi(oi)L[fi(0i) < pu(o:)] See text
je{l...n}

In Table [1| we define the intrinsic rewards that we use in our experiments. INDEPENDENT rewards
are analagous to single-agent approaches to exploration which define the intrinsic reward for an
agent as the novelty of their new and own observation that occurs as a result of an action. The
remainder of intrinsic reward functions that we consider use the novelty functions of other agents,
in addition to their own, to further inform their exploration.

MINIMUM rewards consider how novel all agents find a specific agent’s observation and rewards that
agent based on the minimum of these novelties. This method leads to agents only being rewarded for
exploring areas that no other agent has explored, which could be advantageous in scenarios where
redundancy in exploration is not useful or even harmful. COVERING rewards agents for exploring
areas that it considers more novel than the average agent. This reward results in agents shifting
around the state space, only exploring regions as long as they are more novel to them than their
average teammate. BURROWING rewards do the opposite, only rewarding agents for exploring areas
that it considers less novel than the average agent. While seemingly counterintuitive, these rewards
encourage agents to further explore areas they have already explored with the hope that they will
discover new regions that few or no other agents have seen, which they will then consider less novel
than average and continue to explore. As such, these rewards result in agents continuing to explore
until they exhaust all possible intrinsic rewards from a given region (i.e. hit a dead end), somewhat
akin to a depth-first search. LEADER-FOLLOWER uses burrowing rewards for the first agent, and
covering rewards for the rest of the agents. This leads to an agent exploring a space thoroughly, and
the rest of the agents following along and trying to cover that space.

Note that these are not meant to be a comprehensive set of intrinsic reward functions applicable to
all cooperative multi-agent tasks but rather a set of examples of how exploration can be centralized
in order to take other agents into account. Our approach, described in the following sections, is
agnostic to the type of intrinsic rewards used and, as such, can incorporate other reward types not
described here, as long as they can be computed off-policy.

5 LEARNING POLICIES FOR MULTI-AGENT EXPLORATION

For many tasks, it is impossible to know a priori which intrinsic rewards will be the most helpful
one. Furthermore, the type of reward that is most helpful could change over the course of training if
the task is sufficiently complex. In this section we present our approach for simultaneously learning
policies trained with different types of intrinsic rewards and dynamically selecting the best one.

Simultaneous Policy Learning In order to learn policies for various types of intrinsic rewards in
parallel, we utilize a shared replay buffer and off-policy learning to maximize sample efficiency. In
other words, we learn policies and value functions for all intrinsic reward types from all collected
data, regardless of which policies it was collected by. This parallel learning is made possible by the
fact that we can compute our novelty functions off-policy, given the observations for each agent after
each environment transition, which are saved in a replay buffer. For each type of reward, we learn
a different “head” for our policies and critics. In other words, we learn a single network for each
agent’s set of policies that shares early layers and branches out into different heads for each reward
type. For critics, we learn a single network across all agents that shares early layers and branches
out into separate heads for each agent and reward type. We learn separate heads for intrinsic and
extrinsic rewards, as in [Burda et al.|(2019). We provide a diagram of our model architecture in

Figure[]
We index agents by ¢ € {1...n} and intrinsic reward types by j € {1...m} where m is the total
number of intrinsic reward types that we are considering. The policy for agent 7, trained using reward

J (in addition to extrinsic rewards), is represented by 77 . It takes as input agent i’s observation, o;,
and outputs a distribution from which we can sample the action a;. The parameters of this policy

Under review as a conference paper at ICLR 2020

ie{l...n}

je{l...m}

= shared across agents and reward types

= shared across reward types

B

= specific to each agent and reward combination

Critics Policies

Figure 1: Diagram of our model architecture, showing how parameters for actors and critics are shared. i
indexes agents, while j indexes reward types.

are ©) = {97}, where 65" is a shared base/input (for agent i) in a neural network and 6/ is
a head/output specific to this reward type.

The extrinsic critic for policy head 7717 is represented by Q7";. It takes as input the global state s
and the actions of all other agents a,;, and it outputs the expected returns under policy] for each
possible action that agent ¢ can take, given all other agents’ actions. The parameters of this critic
are U9, = {apshare (e 1} where /""" is a shared base across all agents and reward types A critic
with 81m11ar structure exists for predicting the intrinsic returns of actions taken by 7], represented
by QI ';» which uses the parameters: \Ill’ ;= {apshare, b]}. Note that the intrinsic critics share the
same base parameters /"%,

We remove the symbols representing the parameters of the policies (©) and the critics (V) for read-
ability. In our notation we use the absence of a subscript or superscript to refer to a group. For
example 77, refers to all agents’ policies trained on intrinsic reward j. We train our critics with the
following loss function, adapted from soft actor-critic:

Lo¥) = Eoarvorn |3 D (@5 (s a) =) + @ls) =i @
j=11i=1
_ 10 /O
yfz; = ’["eX(S, a) + ’Y]Ea,f\ﬂ_l'j(o’) [Q:fj(sl’ a/) w] (5)
in lo ! 0;
y'lt7] = Z]()—i—’}/Ea/NﬂJ(O,) [Q (Sl,a/) W] (6)

where () refers to the target Q-function, an exponential weighted average of the past Q-functions,
used for stability, and 7 are similarly updated target policies. The intrinsic rewards laid out in
Table I are represented as a function of the observations that results from the action taken, 77", ".(o})
where) specifies the type of reward. Importantly, we can calculate these loss functions for expected
intrinsic and extrinsic returns for all policies given a single environment transition, allowing us to
learn multiple policies for each agent in parallel. We train each policy head with the following

Under review as a conference paper at ICLR 2020

gradient:

v@j J(ﬂ-g) = E(S,O)ND,aNﬂ'J

i

. I (a:los .
Vs log ! (ailog) (W v Az<s,a>>] @

Al(s,a) = Q9y(s,2) + BQY(s,a) — V/ (s) (8)
Vi(s) = wl(aifon)(Q(s, {aj, a\i}) + BQY; (s, {aj, a\:}) ©)
al€A;

where ﬂ is a scalar that determines the weight of the intrinsic rewards, relative to extrinsic rewards,
and AZ is a multi-agent advantage function (Foerster et al., 2018 [Igbal & Sha, [2019), used for
helping with multi-agent credit assignment.

Dynamic Policy Selection Now that we have established a method for simultaneously learning
policies using different intrinsic reward types, we must devise a means of selecting between these
policies. In order to select policies to use for environment rollouts, we must consider which policies
maximize extrinsic returns, while taking into account the fact that there may still be “unknown un-
knowns,” or regions that the agents have not seen yet where they may be able to further increase their
extrinsic returns. As such, we must learn a meta-policy that, at the beginning of each episode, selects
between the different sets of policies trained on different intrinsic rewards and maximizes extrinsic
returns without collapsing to a single set of policies too early. We parameterized the selector policy
II with a vector, ¢, that contains an entry for every reward type. The probability of sampling head
jis: TI(j) o exp(¢[j]). Unlike the action policies, this high-level policy does not take any inputs,
a we simply want to learn which set of policies trained on the individual intrinsic reward functions
has the highest expected extrinsic returns from the beginning of the episode.

The most sensible metric for selecting policies is the expected extrinsic returns given by each policy
head. We can use policy gradients to train the policy selector, II, to maximize this value using the
returns received when performing rollouts in the environment. We use the following gradient to train
II:

log IT(h
Vo (II) = Epop [w log I1(h) <—°gn<) + R — bn)] (10)
T m
Ry = Z7trex(st,at)\a ~ 7o), bg= ZH(h'),uh/ (11)
t=0 1%

where pp, is a running mean of the returns received by head & in the past, and 7 is a parameter
similar to « for the low-level policies, which promotes entropy in the selector policy. Entropy in the
policy selector is important in order to prevent it from collapsing onto a single exploration type that
does well at first but does not continue to explore as effectively as others. As such, we can learn a
diverse set of behaviors based on various multi-agent intrinsic reward functions and select the one
that maximizes performance on the task at hand at any point during training, while continuing to
consider other policies that may lead to greater rewards.

6 EXPERIMENTS

We begin by describing our evaluation domains and then present experimental results which demon-
strate the effectiveness of our approach. We provide additional details in the appendix and will share
code for both the model and environments.

We use a maximum of four agents in gridworld and two agents in VizDoom. We encode several
tasks in both domains related to collecting the items (displayed in yellow in Figure [2) which each
require different types of exploration: TASK 1 Agents must cooperatively collect all treasure on
the map in order to complete the task; TASK 2 Agents must all collect the same treasure. The first
agent to collect a treasure during an episode determines the goal for the rest of the agents. TASK
3 Agents must all collect the specific treasure that is assigned to them. The two agent version of
each task uses agents 1-2 and treasure A-B, while the three agent versions use 1-3, A-C, and the
four agent versions use 1-4, A-D. Agents receive a negative time penalty towards extrinsic rewards

Under review as a conference paper at ICLR 2020

(b) (©

Figure 2: (Left) Rendering of our gridworld domain. Agents start each episode in the central room and must
complete various tasks related to collecting the yellow treasures placed around the map. (Center) Top-Down
view of VizDoom "My Way Home” map, modified for multi-agent experiments (Right) Egocentric view in
VizDoom used for agents’ observations

at each step, so they are motivated to complete the task as quickly as possible. The only positive
extrinsic reward comes from any agent collecting a treasure that is allowed by the specific task, and
rewards are shared between all agents. The optimal strategy in TASK 1 is for agents to spread out
and explore separate portions of the map, while in TASK 2 they should explore the same areas, and
in TASK 3 they should explore independently.

6.1 GRIDWORLD DOMAIN

We first test our approach using a multi-agent gridworld domain (pictured in Fig. [24), which allows
us to design environments where the primary challenge lies in a combination of exploring the state
space efficiently and coordinating behaviors.

The environment includes two sources of stochasticity: random transitions and black holes. At each
step there is a 10% chance of an agent’s action being replaced by a random one. Furthermore, there
are several “black holes” placed around the map which have a probability of opening at each time
step. This probability changes at each step using a biased random walk such that it moves toward
one, until the hole opens and it resets to zero. If an agent steps into a black hole when it is open, they
will be sent back to their starting position. The spaces colored as black are holes that are currently
open, while the gray spaces are holes that have the possibility of opening at the next step (the darker
they are, the higher the probability). We set the rate of black holes dropping out to be higher in
TASK 1 than the other 2 tasks, in order to balance the difficulty.

The novelty function for each agent f;, which is used for calculating the intrinsic rewards in Table[T]
is defined as ﬁ, where N is the number of times that the agent has visited its current cell and (is
a decay rate selected as a hyperparameter (we find that ¢ = 0.7 works well for our purposes).

6.2 VizDooM DOMAIN

In order to test our method’s ability to scale to more complex environments with similarly chal-
lenging exploration tasks, we implement tasks analogous to those in our gridworld environment (i.e.
extrinsic rewards are defined identically) in the VizDoom framework (Kempka et all [2016). We
use the "My Way Home” map, which has been used as a test bed for single agent exploration tech-
niques (Pathak et all 2017), and modify it for multi-agent tasks (pictured in Figure [2b). Since the
agents are moved to a central location closer to their rewards than in the original map, we lower the
action repeat from 4 to 2, in order to force agents to take twice as many steps in order to explore the
same areas, maintaining the challenging nature of exploration in the original task.

As in the gridworld setting, we use count-based intrinsic rewards for VizDoom; however, since
VizDoom is not a discrete domain, we separate agents’ (x,y) positions into discrete bins and use
the counts for these bins. We again find that { = 0.7 to work well in our experiments.

7

Under review as a conference paper at ICLR 2020

2.00 Variant /

—— Multi
Independent
1.50 Multi (Uniform Meta-Policy)
—— Multi (All Independent)

Variant
Multi
Independent

Centralized

100 —— Multi (No Entropy) B e G0 AV WA

025 \/\A/V\/Wf\/‘/\-/

0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
Step Step

(a) (b)

Minimum
Covering
Burrowing

Mean Treasures Found
Mean Treasures Found

|1

Leader-Follower

Figure 3: (Left) Mean number of trasures found per episode on TASK 1 with 2 agents in the gridworld domain.
Shaded region is a 68% confidence interval across 6 runs of the running mean over the past 100 episodes. Our
approach (MULTI-EXPLORATION) is competitive with the best individual intrinsic reward function, using the
same number of environment samples without any prior knowledge provided. (Right) Ablations of our model in
the same setting. We show that both aspects of our approach (the meta-policy selector and the diverse intrinsic
reward functions) are crucial for successful completion of exploration tasks requiring coordination.

6.3 MAIN RESULTS

Figure [3a]demonstrates the results of our approach over the course of training on the 2 agent version
of TASK 1 in gridworld, and the final results on each task/agent/domain combination can be found
in Table 2} The full training curves for all settings can be found in the appendix (Section [A.4). We
train a team of agents using each of the multi-agent intrinsic reward functions defined in Table [I]
individually, and then test our dynamic policy selection approach. We find that our approach is
competitive with, or outperforms the best performing individual exploration method in nearly all
tasks. This performance is exciting since our method receives no prior information about which type
of exploration would work best, while each type carries its own inductive bias. Notably our learned
policy selector learns to select the policies trained on intrinsic rewards that do well individually
on the tasks. For instance, on TASK 1 with 2 agents, we find that our policy selector consistently
selects BURROWING and MINIMUM rewards, the two best performing reward functions on that task.
Furthermore, we find that our results on the more complex VizDoom domain mirror those in the
gridworld, indicating that our methods are not limited to discrete domains, assuming that a reliable
way for measuring the novelty of observations exists.

Interestingly, our approach is sometimes able to significantly surpass the performance of the best
individual reward function on TASK 3. This task requires agents to collect the specific reward as-
signed to them, so we expect independent exploration to be the most effective; however, exploration
types that perform “divide-and-conquer” type behavior such as BURROWING and MINIMUM have
the potential to drastically speed up the exploration process if they happen to divide the space cor-
rectly, leading to a stark success-failure contrast in runs of these types. Since our method MULTI
can select policies trained on these rewards, and otherwise fall back on INDEPENDENT policies if
they are not working, we find that our method is able to surpass all individual reward types.

We find that our approach is unable to match the performance of the best individual method on
TASK 2 in some settings (gridworld with 3 agents and VizDoom). This lack of success may be
an indication that these particular settings require commitment to a specific exploration strategy
early on in training, highlighting a limitation of our approach. Our method requires testing out all
policies until we find one that reaches high extrinsic rewards, which can dilute the effectiveness of
exploration early on.

6.4 ANALYSIS

Characteristics of Different Intrinsic Rewards In order to better understand how each reward
type encourages agents to explore the state space, we visualize their exploration in videos, viewable
at the anonymized link belowﬂ INDEPENDENT rewards, as expected, result in agents exploring the
whole state space without taking other agents into consideration. As a result, on TASK 1, which

'https://sites.google.com/view/multi-exploration-iclr2020/home

https://sites.google.com/view/multi-exploration-iclr2020/home

Under review as a conference paper at ICLR 2020

Table 2: # of treasures found with standard deviation across 6 runs. Scores
where the best mean score falls within one standard deviation of the score
distribution are bolded.

GRIDWORLD

Intrinsic reward type (fixed or adaptive as in our approach MULTI)

Task n INDEPENDENT MINIMUM COVERING BURROWING LEAD-FOLLOW MULTI

1 2 0.14+0.05 1.62£0.59 0.13+£0.12 1.98 £ 0.06 0.18 £ 0.24 2.00 + 0.00
3 1.16+0.11 149 £0.76 0.00 £0.00 2.06 £ 1.05 0.34 £0.45 2.23 +0.73
4 084+£029 178 £ 0.44 0.00£0.00 1.90 £ 0.49 1.17 £ 0.39 2.04 + 0.61

2 2 2.00 +0.00 092+0.10 1.11+0.99 0098 £0.05 1.73 £ 0.66 1.83 £ 0.41
3 2.66 +0.80 1.11 £0.29 0.54+0.80 1.80+0.29 3.00 £ 0.00 1.80 £ 0.71
4 183 £1.08 093+0.13 022+0.18 1.99 £ 0.67 2.66 + 2.06 2.54+1.21

3 2 1.39+0.94 0.67+1.03 029+037 0.67+1.03 0.83 £ 0.67 2.00 + 0.00
3 1.68+0.70 0.60£0.73 0.09+0.08 1.35+1.16 1.59 £+ 0.83 2.21 £091
4 1.12+£047 1.36 £0.71 0.05+0.05 2.14 +1.49 0.68 £ 0.53 1.73 £ 0.47

VizDoom

1 2 094+054 1.57+£0.74 0.16+£0.17 1.94+0.10 0.61 £0.43 1.98 £ 0.03

2 1.52 £ 0.75 153 £0.74 0.70£1.00 0.63 £ 0.04 1.93 £ 0.10 1.23 +0.65

3 0.18 £ 0.19 0.64 +1.05 045+046 0.29+0.25 0.20 £ 0.17 1.64 £ 0.63

requires coordination between agents to spread out and explore different areas, INDEPENDENT re-
wards struggle; however, on TASK 3, where agents receive individualized goals, independent explo-
ration usually performs better, relative to the other methods. TASK 2 also requires coordination, but
the rate of black holes dropping out in the gridworld version is lower on that task, making explo-
ration easier. As a result, INDEPENDENT rewards perform well on TASK 2; however, we find that
LEADER-FOLLOWER also performs well on this task, expecially when more agents are involved,
indicating that these rewards do a good job of biasing agents toward exploring similar regions of the
environment.

MIMIMUM rewards prevent agents from exploring the same regions redundantly but can lead to
situations where one of the agents is the first to explore all regions that provide sparse extrinsic
rewards. In these cases, other agents are not aware of the extrinsic rewards and are also not motivated
to explore for them since another agent has already done so. COVERING rewards, as expected, lead to
behavior where agents are constantly switching up the regions that they explore. While this behavior
does not prove to be useful in the tasks we test since the switching slows down overall exploration
progress, it may be useful in scenarios where agents are required to spread out. Finally, BURROWING
rewards cause agents to each explore different subregions and continue to explore those regions until
they exhaust their options. This behavior is particularly effective on TASK 1, where agents are best
served by spreading out and exploring the whole map in a mutually exclusive fashion.

Ablations We compare to a baseline meta-policy which simply selects the action policies uni-
formly at random. We find that our approach is significantly superior to this baseline (see Figure [3b|
Multi (Uniform Meta-Policy)). Furthermore, we test a version of our method where all policies
(with different random initializations) are trained on independent rewards (Multi (All Independent)).
The purpose of this ablation is to test the degree to which the specific multi-agent intrinsic reward
functions are helpful, as opposed to simply providing multiple options at each episode. Again, we
find that our method outperforms the baseline, indicating that both aspects of our approach (diverse
intrinsic reward functions which share information across agents, and a meta-policy selector that
maximizes extrinsic rewards) are crucial for success in multi-agent exploration tasks.

We perform two further ablations/comparisons. Results on task 1 with 2 agents in GridWorld are
viewable in Figure [3b] and results on tasks 2 and 3 with 2 agents are viewable in the Appendix
(A.3). In the first (Centralized) we compute intrinsic rewards under the assumption that all agents
are treated as one agent. In other words, we use the inverse count of the number of times that all
agents have jointly taken up their combined positions, rather than considering agents independently.
While this reward function will ensure that the global state space is thoroughly searched, it lacks the
inductive biases toward spatial coordination that our reward functions incorporate. As such, it does

Under review as a conference paper at ICLR 2020

not learn as efficiently as our method. In the second (Multi (No Entropy)) we remove the entropy
term from the head selector loss function in order to test its importance. We find that this ablation
is unable to match the performance of the full method, indicating that entropy is crucial in making
sure that our method does not converge early to a suboptimal policy selector.

7 CONCLUSION

We propose a set of multi-agent intrinsic reward functions with differing properties, and compare
them both qualitatively (through videos) and quantitatively on several multi-agent exploration tasks
in both a gridworld domain as well as in VizDoom. Overall, we can see that cooperative multi-agent
tasks can, in many cases, benefit from intrinsic rewards that take into account what other agents have
explored, but there are various ways to incorporate that information, each with differing properties.
As such, we propose a method for learning policies for all intrinsic reward types simultaneously
while dynamically selecting the most effective ones. We show that our method is capable of match-
ing or surpassing the performance of the best performing intrinsic reward type on various tasks while
using the same number of samples collected from the environment. In future work we hope to intro-
duce methods for directly learning the multi-agent intrinsic reward functions, rather than selecting
from a set.

REFERENCES

Adrian K Agogino and Kagan Tumer. Analyzing and visualizing multiagent rewards in dynamic
and stochastic domains. Autonomous Agents and Multi-Agent Systems, 17(2):320-338, 2008.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pp. 1471-1479, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=H11JJnR5Ym.

David Carmel and Shaul Markovitch. Exploration and adaptation in multiagent systems: A model-
based approach. In IJCAI (1), pp. 606-611, 1997.

Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In Advances in Neural Information
Processing Systems, pp. 2137-2145, 2016.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In AAAI Conference on Artificial Intelligence, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 1861-1870, Stockholmsmssan, Stockholm Sweden, 10-15 Jul 2018.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In Advances in Neural Information Processing
Systems, pp. 1109-1117, 2016.

Shariq Igbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2961-2970,
Long Beach, California, USA, 09-15 Jun 2019. PMLR. URL http://proceedings.mlr.
press/v97/igball9a.htmll

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro A Ortega, D J
Strouse, Joel Z Leibo, and Nando de Freitas. Social influence as intrinsic motivation for Multi-
Agent deep reinforcement learning. arXiv preprint arXiv:1810.08647, October 2018.

Jiechuan Jiang and Zongqing Lu. Learning attentional communication for multi-agent cooperation.
arXiv preprint arXiv:1805.07733, 2018.

10

https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
http://proceedings.mlr.press/v97/iqbal19a.html
http://proceedings.mlr.press/v97/iqbal19a.html

Under review as a conference paper at ICLR 2020

Michat Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaskowski. ViZ-
Doom: A Doom-based Al research platform for visual reinforcement learning. In IEEE Confer-
ence on Computational Intelligence and Games, pp. 341-348, Santorini, Greece, Sep 2016. IEEE.
URL http://arxiv.org/abs/1605.02097, The best paper award.

Shauharda Khadka, Somdeb Majumdar, Santiago Miret, Evren Tumer, Tarek Nassar, Zach Dwiel,
Yinyin Liu, and Kagan Tumer. Collaborative evolutionary reinforcement learning. arXiv preprint
arXiv:1905.00976, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2014.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on Learning Representations, 2016.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in Neural Information
Processing Systems, pp. 6382—6393, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

Georg Ostrovski, Marc G Bellemare, Adron van den Oord, and Rémi Munos. Count-based ex-
ploration with neural density models. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2721-2730. JIMLR. org, 2017.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in neurorobotics, 1:6, 2009.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pp. 2778-2787, International Convention Centre, Sydney, Australia, 06—11 Aug 2017.
PMLR. URL http://proceedings.mlr.press/v70/pathakl7a.htmll

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent rein-
forcement learning. In Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 4295-4304, Stockholmsmssan,
Stockholm Sweden, 10—-15 Jul 2018.

Jiirgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990-2010). /IEEE
Transactions on Autonomous Mental Development, 2(3):230-247, 2010.

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

Alexander L. Strehl and Michael L. Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309 — 1331,
2008. ISSN 0022-0000. doi: https://doi.org/10.1016/j.jcss.2007.08.009. URL http://
WWwW.Sclencedirect.com/science/article/pi1i/S0022000008000767. Learn-
ing Theory 2005.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropaga-
tion. In Advances in Neural Information Processing Systems, pp. 2244-2252, 2016.

11

http://arxiv.org/abs/1605.02097
http://proceedings.mlr.press/v70/pathak17a.html
http://www.sciencedirect.com/science/article/pii/S0022000008000767
http://www.sciencedirect.com/science/article/pii/S0022000008000767

Under review as a conference paper at ICLR 2020

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel. Value-
decomposition networks for cooperative multi-agent learning based on team reward. In Proceed-
ings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AA-
MAS ’18, pp. 2085-2087, Richland, SC, 2018. International Foundation for Autonomous Agents
and Multiagent Systems.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAl Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for

deep reinforcement learning. In Advances in neural information processing systems, pp. 2753—
2762, 2017.

Katja Verbeeck, Ann Nowé, and Karl Tuyls. Coordinated exploration in multi-agent reinforcement
learning: an application to load-balancing. In Proceedings of the fourth international joint con-
ference on Autonomous agents and multiagent systems, pp. 1105-1106. ACM, 2005.

A APPENDIX

A.1 ENVIRONMENT DETAILS
A.1.1 GRIDWORLD

The black holes which send agents back to their starting positions if they are stepped into are an
important aspect of the environment, as they add difficulty to exploration. The probability, p, of a
black hole opening at each step, ¢, evolves as such: p; 1 = p; + N (i, o), where p = o = 0.05 for
TASK 1 and i = 0 = 0.005 for 2 and 3.

Agents observe their global position in (x,y) coordinates (scalars), as well as local information
regarding walls in adjacent spaces, the probability of their adjacent spaces opening into a black
hole, the relative position of other agents (if they are within 3 spaces), as well as information about
which treasures the agent has already collected in the given episode. The global state is represented
by the (x, y) coordinates of all agents, as one-hot encoded vectors for x and y separately, as well as
the local information of all agents regarding black holes, walls, and treasures collected. Each agent’s
action space consists of the 4 cardinal directions as well as an option to not move, which is helpful
in cases where an agent is waiting for a black hole to be safe to cross.

A.1.2 VizDoom

Agents receive their egocentric view (Figure in the form of 48x48 grayscale images as obser-
vations along with an indicator of which agents (if any) have collected each reward, and we use a
vector based global state which includes all agents’ (x, y) positions and velocities, their orientations,
as well as the same indicator of which agent has collected each reward. As in the gridworld setting,
we use count-based intrinsic rewards for VizDoom; however, since VizDoom is not a discrete do-
main, we separate agents’ (x, y) positions into discrete bins and use the counts for these bins. There
are 30 bins in the 2 dimension and 26 in the y dimension. (x, y) positions in the global state are rep-
resented both as scalars and one-hot vectors indicating which bin the agents are currently occupying.
Each agent can choose from 3 actions at each time step: turn left, turn right, or go forward.

A.2 TRAINING DETAILS

The training procedure is detailed in Algorithm|[I] and all hyperparameters are listed in Tables [3|and
[l Hyperparameters were selected by tuning one parameter at a time through intuition on task 1 with
2 agents and then applying to the rest of the settings with minimal changes. Where hyperparameters
differ between settings, we make a footnote denoting them as such.

12

Under review as a conference paper at ICLR 2020

Algorithm 1 Training Procedure for Multi-Explore w/ Soft Actor-Critic (Haarnoja et al., [2018))

1: Initialize environment with n agents
2: Initialize replay buffer, D
3: tupdale 0
4: tep < max ep length
5: fort = 1...total steps do
6: if episode done or ¢, == max ep length then
7: for j = 1...num updates do
8: UPDATESELECTOR(R, h)
9: end for
10: $,0 < RESETENV
11: h~1I
12: tep <= 0
13: R+ 0
14: end if
15: Select actions a; ~ 7/*(+|o;) for each agent, i
16: Send actions to environment and get s, o, r
17: R+ R+ Aler
18: Store transitions for all environments in D
19: tupdate+ =1
20 tept =1
21: if £ypdae == steps per update then
22 for j = 1...num updates do
23: Sample minibatch, B
24: UPDATECRITIC(B)
25: UPDATEPOLICIES(B)
26: Update target parameters:
U=7¥+(1-7)T
O=70+(1-71)0
27: end for
28: tupdate +~0
29: end if
30: end for

> Egs 10-11 in main text

> Sample policy head

> Eqgs 4-6 in main text
> Eqs 7-9 in main text

13

Under review as a conference paper at ICLR 2020

Table 3: Hyperparameter settings across all runs in gridworld.

Name

Description

Value

Qlr
@ optimizer
7 lr

learning rate for centralized critic
optimizer for centralized critic
learning rate for decentralized policies

0.001
Adam (Kingma & Ba,[2014)
0.001

T optimizer optimizer for decentralized policies Adam

IIlr learning rate for policy selector 0.04

II optimizer optimizer for policy selector SGD

T target function update rate 0.005

bs batch size 1024

total steps number of total environment steps le6

steps per update number of environment steps between updates 100

niters number of iterations per update 50

max ep length maximum length of an episode before resetting 500
coefficient for weight decay on

W penalty parameters of Q-function 0.001

O penalty coefficient on LQ penalty on pre-softmax 0.001
output of policies

6 penalty coefficient for We}ght decay on 0.001
parameters of policy selector

|D| maximum size of replay buffer le6

@ action policy reward scale 100

n selector policy reward scale 5

0% discount factor 0.99

B relative weight of intrisic rewards to extrinsic 0.1

¢ decay rate of count-based rewards 0.7

Table 4: Hyperparameter settings across all runs in VizDoom (only where

different from Table 3).
Name Description Value
QlIr learning rate for centralized critic 0.0005
mlr learning rate for decentralized policies 0.0005
bs batch size 128
|D| maximum size of replay buffer 5eb

A.3 NETWORK ARCHITECTURES

In this section we list, in pseudo-code, the architectures we used for all policies and critics

A.3.1 GRIDWORLD

gshare (shared for policy heads):

obs_size = observations.shape[l]
fcl = Linear (in_dim=obs_size, out_dim=128)

nll = ReLU()

9? (specific to each policy head):

n_acs = actions.shape[l]

14

Under review as a conference paper at ICLR 2020

fc2 = Linear (in_dim=fcl.out_dim, out_dim=32)
nl2 = ReLU()
fc3 = Linear (in_dim=fc2.out_sim, out_dim=n_acs)

™ (shared across critics for all agents and reward types):

state_size = states.shapel[l]
fcl = Linear (in_dim=state_size, out_dim=128)
nll = ReLU()

;.5 (specific to each agent/policy head combination, same architecture for extrinsic and intrinsic
critics):

n_acs = actions.shape[l]

fc2 takes other agents’ actions as input

fc2 = Linear (in_dim=fcl.out_dim + (num_agents - 1) % n_acs, out_dim=128)
nl2 = RelLU()

fc3 = Linear (in_dim=fc2.out_dim, out_dim=n_acs)

A.3.2 VizDoom

gshare (shared for policy heads belonging to one agent):

vector observation encoder

vect_obs_size = vector_observations.shape[l]
vect_fc = Linear (in_dim=obs_size, out_dim=32)
vect_nl = ReLU()

image observation encoder

img_obs_channels = image_observations.shape[l]
padl = ReflectionPadding(size=1)
convl = Conv2D (in_channels=img_obs_channels, out_channels=32,

filter_size=3, stride=2)

conv_nll = ReLU()

pad2 = ReflectionPadding(size=1)

conv2 = Conv2D (in_channels=convl.out_channels, out_channels=32,
filter_size=3, stride=2)

conv_nl2 = RelLU()

pad3 = ReflectionPadding (size=1)

conv3 = Conv2D (in_channels=conv2.out_channels, out_channels=32,
filter_size=3, stride=2)

conv_nl3 = ReLU()

pad4 = ReflectionPadding(size=1)

conv4d = Conv2D (in_channels=conv3.out_channels, out_channels=32,
filter_size=3, stride=2)

conv_nl4d = RelLU()

conv_flatten = Flatten() # flatten output of conv layers

conv_fc = Linear (in_dim=conv_flatten.out_dim, out_dim=128)

conv_fc_nl = ReLU()

9{ (specific to each policy head):

n_acs = actions.shape[l]

takes concatenation of image and vector encodings as input

fc_outl = Linear (in_dim=conv_fc.out_dim + vect_fc.out_dim, out_dim=32)
fc_out_nl = ReLU()

fc_out2 = Linear (in_dim=fc_outl.out_dim, out_dim=n_acs)

*hare (shared across critics for all agents and reward types):

15

Under review as a conference paper at ICLR 2020

sState_size states.shape[1l]
fcl = Linear (in_dim=state_size,
nll = ReLU()

out_dim=256)

;.5 (specific to each agent/policy head combination, same architecture for extrinsic and intrinsic
critics):

n_acs
fc2
fc2
nl2
fc3

actions.shapel[l]
takes other agents’ actions as input

Linear (in_dim=fcl.out_dim + (num_agents - 1)
ReLU ()

Linear (in_dim=fc2.out_dim,

= * n_acs, out_dim=256)

out_dim=n_acs)

A.4 TRAINING CURVES

A.4.1 GRIDWORLD
2.00 500
1.75
T 1.50 Variant k= 400
3 50
& {95 —— Multi <
4) ~— Independent j
E 1.00 —— Minimum E 300
,g . —— Covering 5
S 0-75 —— Burrowing s
]
Eu 0.50 Leader-Follower = 200
0.25
0.00 100
0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
Step Step
Figure 4: Results on Task 1 in Gridworld with 2 agents.
2.5 Vi 500
—— Multi
9 —— Independent
0 .
2 —— Minimum = 450
3 I C i <E‘n
° overlng ;.5
8 1.5 —— Burrowing ‘ -
2 —— Leader-Follower "é 400
g . —— y 2z
= 1.0 LI;
& [+
g < 350

0.0

300

200000

400000 600000
Step

Figure 5:

800000 1000000 0 200000 400000

Step

Results on Task 1 in Gridworld with 3 agents.

16

600000

800000 1000000

Under review as a conference paper at ICLR 2020

2.0

1.5

1.0

Mean Treasures Found

0.5

0.0

I
N 2
o S

- e
[CRERS]
Qo S

e =
N 2
o S

Mean Treasures Found

e o e
o o o«
S @ o

Mean Treasures Found
-
ot o ot (=3 o (=3

o
o

0

0

0

Variant 500
Multi
Independent 499
Minimum 3:;0 198
o
3
K 497
2
496
c
3
= 495
494
493
200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
Step Step

Figure 6: Results on Task 1 in Gridworld with 4 agents.

Variant 500
Multi
Independent
S 400
o
o
S
8 300
2
o
w
o
$ 200
=
100
200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
Step Step

Figure 7: Results on Task 2 in Gridworld with 2 agents.

Variant 500

w S
I=1 o
S S

o
=1
S

Mean Episode Length

100

200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
Step Step

Figure 8: Results on Task 2 in Gridworld with 3 agents.

17

Under review as a conference paper at ICLR 2020

Mean Treasures Found

Mean Treasures Found
-

g
=}

Mean Treasures Found

e
o

w
o

g
&

g
o

=
@

&
=)

I
N 2
o S

- e
[CRERS]
Qo S

=
1=}
=)

o
=
ot

e 9
=)
S o

o = = 8
ot (=3 o o

o
o

@

=)

0

Variant
Multi
Independent
Minimum

Covering
Burrowing

0 200000

Variant
—— Multi
~— Independent
—— Minim|

0 200000

Variant
Multi
Independent
Minimum

200000

400000 600000 800000 1000000
Step

Figure 9: Results on Task 2 in Gridworld with 4 agents.

400000 600000 800000 1000000
Step

Mean Episode Length
[w w = P ot
[(=1 ot (=3 ot f=
(=] (=] (=) (=] (=] =]

o
=]
S

500

400

Mean Episode Length
no w
g 5

100

0

200000

200000

400000

400000

600000

Step

. Y

600000

Step

Figure 10: Results on Task 3 in Gridworld with 2 agents.

400000 600000 800000 1000000
Step

Mean Episode Length
w
o
o

450

w
=1
S

250

200

800000

800000

1000000

-

1000000

0

200000

400000

Step

Figure 11: Results on Task 3 in Gridworld with 3 agents.

18

600000

800000

1000000

Under review as a conference paper at ICLR 2020

Mean Treasures Found
iy = ~
o ot (=]

=
@

&
=)

Variant
Multi
Independent
Minimum
Covering

200000 400000 600000 800000 1000000
Step

Figure 12: Results on Task 3 in Gridworld with 4 agents.

A.4.2 VizDOOM

I
N 2
o S

- e
SRS
o S

Mean Treasures Found
e 2o 2 =
) ot - =3
ot (=} ot (=}

I
=3
k=3

Mean Treasures Found

0

Variant

Multi

Independent

Minimum

Covering 4

Burrow
fower |

200000 400000 600000 800000 1000000
Step

Figure 13: Results on Task 1 in Vizdoom.

Variant
Multi
Independent

200000 400000 600000 800000 1000000
Step

Figure 14: Results on Task 2 in Vizdoom.

19

500

'S
<t
S

350

Mean Episode Length
=
[=1
[=]

300

Mean Episode Length

[} &)
I=] i
S I=]

-
IS
=]

[S)
=1
S

—_
ot
o

0

0

0

200000

200000

200000

400000

400000

400000

Step

Step

600000

Step

600000

g

600000

800000

800000

y
Al

800000

1000000

1000000

1000000

Under review as a conference paper at ICLR 2020

2.00 Variant 500
- —— Multi
L75 450
—— Independent ‘
T 150 = Minimum = 400
ug_ i —— Covering @
125 Burrowi s
2 . urrowing _8 350
Z 1.00 — Leader-Follower 2
L. & 300
- 0.75 =
3 3
= 0.50 = 250
0.25 200
0.00 150
0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
Step Step

Figure 15: Results on Task 3 in Vizdoom.

A.5 MORE ABLATIONS

In this section we consider two ablations/comparisons to our model across all three tasks in the 2
agent version of gridworld. In the first (Centralized) we compute intrinsic rewards under the as-
sumption that all agents are treated as one agent. In other words, we use the inverse count of the
number of times that all agents have jointly taken up their combined positions, rather than consid-
ering agents independently. While this reward function will ensure that the global state space is
thoroughly searched, it lacks the inductive biases toward spatial coordination that our reward func-
tions incorporate. As such, it does not learn as efficiently as our method in any of the three tasks. In
the second (Multi (No Entropy)) we remove the entropy term from the head selector loss function in
order to test its importance. We find that this ablation is unable to match the performance of the full
method, indicating that entropy is crucial in making sure that our method does not converge early to
a suboptimal policy selector.

2.00 500

1.75
= 150 £ 400
E 5o
I b
§ 1.25 T)
E 1.00 E 300
8 &
o -

5
3 o
= 0.50 Variant = 200
—— Multi
0.25 Centralized
0.00 —— Multi (No Entropy) 100
0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
Step Step

Figure 16: Ablations on Task 1 in Gridworld with 2 agents.

20

Under review as a conference paper at ICLR 2020

[
I =]
a S o 2

=
=
=

Mean Treasures Found
-
=
(=]

[
[S S =]
a S o 2

Mean Treasures Found
s =
= =
wt (=]

0

0

200000

200000

Variant
—— Multi
N ~——— Centralized

—— Multi (No Entropy)

400000 600000 800000
Step

1000000

500

400

o
=3
S

Mean Episode Length
o
(=1
(=]

100

0

200000

400000

600000

Step

Figure 17: Ablations on Task 2 in Gridworld with 2 agents.

Variant
Multi
Centralized

Multi (No Entropy)

400000 600000 800000
Step

1000000

500

400

[
=
S

Mean Episode Length
Do
(=1
(=]

100

800000

1000000

0

200000

400000

Step

Figure 18: Ablations on Task 3 in Gridworld with 2 agents.

21

600000

800000

1000000

Under review as a conference paper at ICLR 2020

A.6 ANALYZING META-POLICY

i

Head v Head

Independent Independent

=N

ity

Pl

;: — Minim.um ;; —— Minimum
‘é —— Covering 3 —— Covering
a 04 —— Burrowing o 04 —— Burrowing

LFexplore LFexplore

KL

=

Mean Treasures Found
Mean Treasures Found

0.0 0.0

100000 200000 300000 400000 0 100000 200000 300000 400000 500000 600000 700000
Step Step

(a) (b)

Figure 19: Two runs of our method on GridWorld Task 3 with 2 agents. Top row shows the evolution of the
meta-policy’s probability of selecting each policy head. Bottom row shows the number of treasures found per
episode.

In Figure[T9) we analyze the behavior of the meta-policy in two separate runs. We evaluate on Task
3, since we find that our method is able to surpass the best individual reward function. This task
assigns specific goals to each agent. As such, one might expect that independent exploration would
work most effectively in this setting. While independent exploration is effective (see Figure[T0), we
find that our method can outperform it. In both runs, we find that burrowing rewards are selected
when the agents finally learn how to solve the task; however, we find that burrowing rewards are
not necessarily successful when deployed on their own. This lack of success is likely due to the fact
that these rewards cause the agents to pick a region and commit to exploring it for the duration of
training. As such, the agents may pick the “wrong” region at first and never be able to recover. On
the other hand, using our methods, the meta-policy can wait until the burrowing exploration regions
align with the assigned rewards and then select the policies trained on these rewards. This usually
ends up being more efficient than waiting for the agents to explore the whole map using independent
rewards.

22

	Introduction
	Related Work
	Background
	Intrinsic Reward Functions for Multi-Agent Exploration
	Learning Policies for Multi-Agent Exploration
	Experiments
	Gridworld Domain
	VizDoom Domain
	Main Results
	Analysis

	Conclusion
	Appendix
	Environment Details
	Gridworld
	VizDoom

	Training Details
	Network Architectures
	Gridworld
	VizDoom

	Training Curves
	Gridworld
	Vizdoom

	More Ablations
	Analyzing Meta-Policy

