
Few-shot Video-to-Video Synthesis

Ting-Chun Wang, Ming-Yu Liu, Andrew Tao, Guilin Liu, Jan Kautz, Bryan Catanzaro

NVIDIA Corporation

{tingchunw,mingyul,atao,guilinl,jkautz,bcatanzaro}@nvidia.com

Abstract

Video-to-video synthesis (vid2vid) aims at converting an input semantic video,
such as videos of human poses or segmentation masks, to an output photorealistic
video. While the state-of-the-art of vid2vid has advanced significantly, existing
approaches share two major limitations. First, they are data-hungry. Numerous
images of a target human subject or a scene are required for training. Second, a
learned model has limited generalization capability. A pose-to-human vid2vid
model can only synthesize poses of the single person in the training set. It does not
generalize to other humans that are not in the training set. To address the limitations,
we propose a few-shot vid2vid framework, which learns to synthesize videos of
previously unseen subjects or scenes by leveraging few example images of the target
at test time. Our model achieves this few-shot generalization capability via a novel
network weight generation module utilizing an attention mechanism. We conduct
extensive experimental validations with comparisons to strong baselines using
several large-scale video datasets including human-dancing videos, talking-head
videos, and street-scene videos. The experimental results verify the effectiveness
of the proposed framework in addressing the two limitations of existing vid2vid
approaches. Code is available at our website.

1 Introduction
Video-to-video synthesis (vid2vid) refers to the task of converting an input semantic video to an
output photorealistic video. It has a wide range of applications, including generating a human-dancing
video using a human pose sequence [7, 12, 57, 67], or generating a driving video using a segmentation
mask sequence [57]. Typically, to obtain such a model, one begins with collecting a training dataset
for the target task. It could be a set of videos of a target person performing diverse actions or a set
of street-scene videos captured by using a camera mounted on a car driving in a city. The dataset is
then used to train a model that converts novel input semantic videos to corresponding photorealistic
videos at test time. In other words, we expect a vid2vid model for humans can generate videos of
the same person performing novel actions that are not in the training set and a street-scene vid2vid
model can videos of novel street-scenes with the same style as those in the training set. With the
advance of the generative adversarial networks (GANs) framework [13] and its image-conditional
extensions [22, 58], existing vid2vid approaches have shown promising results.

We argue that generalizing to novel input semantic videos is insufficient. One should also aim for
a model that can generalize to unseen domains, such as generating videos of human subjects that
are not included in the training dataset. More ideally, a vid2vid model should be able to synthesize
videos of unseen domains by leveraging just a few example images given at test time. If a vid2vid
model cannot generalize to unseen persons or scene styles, then we must train a model for each new
subject or scene style. Moreover, if a vid2vid model cannot achieve this domain generalization
capability with only a few example images, then one has to collect many images for each new subject
or scene style. This would make the model not easily scalable. Unfortunately, existing vid2vid
approaches suffer from these drawbacks as they do not consider such generalization.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://nvlabs.github.io/few-shot-vid2vid

few-shot vid2vid

Example images of person 1 Example images of person N

Output videos

Input videos

vid2vid for person 1

vid2vid for person N

Output videosInput videos

Figure 1: Comparison between the vid2vid (left) and the proposed few-shot vid2vid (right).
Existing vid2vid methods [7, 12, 57] do not consider generalization to unseen domains. A trained
model can only be used to synthesize videos similar to those in the training set. For example, a
vid2vid model can only be used to generate videos of the person in the training set. To synthesize
a new person, one needs to collect a dataset of the new person and uses it to train a new vid2vid
model. On the other hand, our few-shot vid2vid model does not have the limitations. Our model
can synthesize videos of new persons by leveraging few example images provided at the test time.

To address these limitations, we propose the few-shot vid2vid framework. The few-shot vid2vid
framework takes two inputs for generating a video, as shown in Figure 1. In addition to the input
semantic video as in vid2vid, it takes a second input, which consists of a few example images
of the target domain made available at test time. Note that this is absent in existing vid2vid
approaches [7, 12, 57, 67]. Our model uses these few example images to dynamically configure
the video synthesis mechanism via a novel network weight generation mechanism. Specifically, we
train a module to generate the network weights using the example images. We carefully design the
learning objective function to facilitate learning the network weight generation module.

We conduct extensive experimental validation with comparisons to various baseline approaches using
several large-scale video datasets including dance videos, talking head videos, and street-scene videos.
The experimental results show that the proposed approach effectively addresses the limitations of
existing vid2vid frameworks. Moreover, we show that the performance of our model is positively
correlated with the diversity of the videos in the training dataset, as well as the number of example
images available at test time. When the model sees more different domains in the training time, it can
better generalize to deal with unseen domains (Figure 7(a)). When giving the model more example
images at test time, the quality of synthesized videos improves (Figure 7(b)).

2 Related Work
GANs. The proposed few-shot vid2vid model is based on GANs [13]. Specifically, we use
a conditional GAN framework. Instead of generating outputs by converting samples from some
noise distribution [13, 42, 32, 14, 25], we generate outputs based on user input data, which allows
more flexible control over the outputs. The user input data can take various forms, including
images [22, 68, 30, 41], categorical labels [39, 35, 65, 4], textual descriptions [43, 66, 62], and
videos [7, 12, 57, 67]. Our model belongs to the last one. However, different from the existing video-
conditional GANs, which take the video as the sole data input, our model also takes a set of example
images. These example images are provided at test time, and we use them to dynamically determine
the network weights of our video synthesis model through a novel network weight generation module.
This helps the network generate videos of unseen domains.

Image-to-image synthesis, which transfers an input image from one domain to a corresponding
image in another domain [22, 50, 3, 46, 68, 30, 21, 69, 58, 8, 41, 31, 2], is the foundation of vid2vid.
For videos, the new challenge lies in generating sequences of frames that are not only photorealistic
individually but also temporally consistent as a whole. Recently, the FUNIT [31] was proposed for
generating images of unseen domains via the adaptive instance normalization technique [19]. Our
work is different in that we aim for video synthesis and achieve generalization to unseen domains via
a network weight generation scheme. We compare these techniques in the experiment section.

Video generative models can be divided into three main categories, including 1) unconditional video
synthesis models [54, 45, 51], which convert random noise samples to video clips, 2) future video
prediction models [48, 24, 11, 34, 33, 63, 55, 56, 10, 53, 29, 27, 18, 28, 16, 40], which generate
future video frames based on the observed ones, and 3) vid2vid models [57, 7, 12, 67], which
convert semantic input videos to photorealistic videos. Our work belongs to the last category, but

2

in contrast to the prior works, we aim for a vid2vid model that can synthesize videos of unseen
domains by leveraging few example images given at test time.

Adaptive networks refer to networks where part of the weights are dynamically computed based
on the input data. This class of networks has a different inductive bias to regular networks and has
found use in several tasks including sequence modeling [15], image filtering [23, 59, 49], frame
interpolation [38, 37], and neural architecture search [64]. Here, we apply it to the vid2vid task.

Human pose transfer synthesizes a human in an unseen pose by utilizing an image of the human in
a different pose. To achieve high quality generation results, existing human pose transfer methods
largely utilize human body priors such as body part modeling [1] or human surface-based coordinate
mapping [36]. Our work differs from these works in that our method is more general. We do not use
specific human body priors other than the input semantic video. As a result, the same model can
be directly used for other vid2vid tasks such as street scene video synthesis, as shown in Figure 5.
Moreover, our model is designed for video synthesis, while existing human pose transfer methods are
mostly designed for still image synthesis and do not consider the temporal aspect of the problem. As
a result, our method renders more temporally consistent results (Figure 4).

3 Few-shot Video-to-Video Synthesis
Video-to-video synthesis aims at learning a mapping function that can convert a sequence of input
semantic images1, sT1 ≡ s1, s2, ..., sT , to a sequence of output images, x̃T1 ≡ x̃1, x̃2, ..., x̃T , in a
way that the conditional distribution of x̃T1 given sT1 is similar to the conditional distribution of the
ground truth image sequence, xT1 ≡ x1,x2, ...,xT , given sT1 . In other words, it aims to achieve
D(p(x̃T1 |sT1), p(xT1 |sT1)) → 0, where D is a distribution divergence measure such as the Jensen-
Shannon divergence or the Wasserstein distance. To model the conditional distribution, existing
works make a simplified Markov assumption, leading to a sequential generative model given by

x̃t = F (x̃t−1t−τ , s
t
t−τ) (1)

In other words, it generates the output image, x̃t, based on the observed τ + 1 input semantic images,
stt−τ , and the past τ generated images, x̃t−1t−τ . The sequential generator F can be modeled in several
different ways [7, 12, 57, 67]. A popular choice is to use an image matting function given by

F (x̃t−1t−τ , s
t
t−τ) = (1− m̃t)� w̃t−1(x̃t−1) + m̃t � h̃t (2)

where the symbol 1 is an image of all ones, � is the element-wise product operator, m̃t is a soft
occlusion map, w̃t−1 is the optical flow from t− 1 to t, and h̃t is a synthesized intermediate image.

Figure 2(a) visualizes the vid2vid architecture and the matting function, which shows the output
image x̃t is generated by combining the optical-flow warped version of the last generated image,
w̃t−1(x̃t−1), and the synthesized intermediate image, h̃t. The soft occlusion map, m̃t, dictates
how these two images are combined at each pixel location. Intuitively, if a pixel is observed in the
previously generated frame, it would favor duplicating the pixel value from the warped image. In
practice, these quantities are generated via neural network-parameterized functions M , W , and H:

m̃t =MθM
(x̃t−1t−τ , s

t
t−τ), (3)

w̃t−1 =WθW
(x̃t−1t−τ , s

t
t−τ), (4)

h̃t = HθH
(x̃t−1t−τ , s

t
t−τ) (5)

where θM , θW , and θH are learnable parameters. They are kept fixed once the training is done.

Few-shot vid2vid. While the sequential generator in (1) is trained for converting novel input semantic
videos, it is not trained for synthesizing videos of unseen domains. For example, a model trained
for a particular person can only be used to generate videos of the same person. In order to adapt
F to unseen domains, we let F depend on extra inputs. Specifically, we let F take two more input
arguments: one is a set of K example images {e1, e2, ..., eK} of the target domain, and the other is
the set of their corresponding semantic images {se1

, se2
, ..., seK

}. That is

x̃t = F (x̃t−1t−τ , s
t
t−τ , {e1, e2, ..., eK}, {se1

, se2
, ..., seK

}). (6)

1For example, a segmentation mask or an image denoting a human pose.

3

weight generation module (E)

SPADE

ResBlk

SPADE

ResBlk

SPADE

ResBlk

conv conv

modified SPADE generator (H)

𝜽𝑯
𝟐

𝜽𝑯
𝟑

𝜽𝑯
𝟏

F
C

(c) Intermediate image synthesis network (for 𝐾 = 1)(a) vid2vid

𝐻𝜽𝐻

𝑀 𝑊

𝒔𝑡−𝑇
𝑡 𝒙𝑡−𝑇

𝑡−1

𝒎𝑡

෩𝒉𝑡

𝒘𝑡

𝒙𝑡−𝟏

𝒘𝑡(𝒙𝑡−𝟏)

Warp

Matting

𝒙𝑡

𝜽𝑀 𝜽𝑊

fixed

(b) Few-shot vid2vid

𝐸𝐹 𝐸𝐹

𝐸𝐴 𝐸𝐴

𝒆1 𝒆𝐾

𝜶1 𝜶𝐾

𝐸𝐴

𝒂1 𝒂𝐾 𝒂𝑡

𝒂𝑡

𝒔𝒆1 𝒔𝒆𝑲

𝒒1 𝒒𝐾

𝒔t

𝑘=1

𝐾

𝒒𝑘⊗𝜶𝑘

𝐸𝑃 𝐻𝜽𝐻

dynamic

𝒔t ෩𝒉𝑡𝒆1

𝐸𝐹 𝐸𝑃

F
C

F
C

𝐪𝟏

𝐪𝟐

𝐪𝟑

𝒑𝑺
𝟏

𝒑𝑺
𝟐

𝒑𝑺
𝟑

A
v
g

P
o

o
l

A
v
g

P
o

o
l

A
v
g

P
o

o
l

conv conv

conv conv

conv

conv

conv

Figure 2: (a) Architecture of the vid2vid framework [57]. (b) Architecture of the proposed few-shot
vid2vid framework. It consists of a network weight generation module E that maps example images
to part of the network weights for video synthesis. The module E consists of three sub-networks: EF ,
EP , and EA (used when K > 1). The sub-network EF extracts features q from the example images.
When there are multiple example images (K > 1), EA combines the extracted features by estimating
soft attention maps α and weighted averaging different extracted features. The final representation is
then fed into the network EP to generate the weights θH for the image synthesis network H .

This modeling allows F to leverage the example images given at the test time to extract some useful
patterns to synthesize videos of the unseen domain. We propose a network weight generation module
E for extracting the patterns. Specifically, E is designed to extract patterns from the provided
example images and use them to compute network weights θH for the intermediate image synthesis
network H:

θH = E(x̃t−1t−τ , s
t
t−τ , {e1, e2, ..., eK}, {se1

, se2
, ..., seK

}). (7)
Note that the networkE does not generate the weights θM or θW because the flow prediction network
W and the soft occlusion map prediction network W are designed for warping the last generated
image, and warping is a mechanism that is naturally shared across domains.

We build our few-shot vid2vid framework based on Wang et al. [57], which is the state-of-the-art
for the vid2vid task. Specifically, we reuse their proposed flow prediction network W and the soft
occlusion map prediction network M . The intermediate image synthesis network H is a conditional
image generator. Instead of reusing the architecture proposed by Wang et al. [57], we adopt the
SPADE generator [41], which is the current state-of-the-art semantic image synthesis model.

The SPADE generator contains several spatial modulation branches and a main image synthesis branch.
Our network weight generation module E only generates the weights for the spatial modulation
branches. This has two main advantages. First, it greatly reduces the number of parameters that E
has to generate, which avoids the overfitting problem. Second, it avoids creating a shortcut from
the example images to the output image, since the generated weights are only used in the spatial
modulation modules, which generates the modulation values for the main image synthesis branch. In
the following, we discuss details of the design of the network E and the learning objective.

Network weight generation module. As discussed above, the goal of the network weight generation
moduleE is to learn to extract appearance patterns that can be injected into the video synthesis branch
by controlling its weights. We first consider the case where only one example image is available
(K = 1). We then extend the discussion to handle the case of multiple example images.

We decompose E into two sub-networks: an example feature extractor EF , and a multi-layer
perceptron EP . The network EF consists of several convolutional layers and is applied on the
example image e1 to extract an appearance representation q. The representation q is then fed into
EP to generate the weights θH in the intermediate image synthesis network H .

Let the image synthesis network H has L layers H l, where l ∈ [1, L]. We design the weight
generation network E to also have L layers, each El generates the weights for the corresponding H l.
Specifically, to generate the weights θlH for layer H l, we first take the output ql from l-th layer in

4

EF . Then, we average pool ql (since ql might be still a feature map with spatial dimensions.) and
apply a multi-layer perceptron ElP to generate the weights θlH . Mathematically, if we define q0 ≡ e1,
then ql = ElF (q

l−1), and θlH = ElP (q
l). These generated weights are then used to convolve the

current input semantic map st to generate the normalization parameters used in SPADE (Figure 2(c)).

For each layer in the main SPADE generator, we use θlH to compute the denormalization parameters
γl and βl to denormalize the input features. We note that, in the original SPADE module, the scale
map γl and bias map βl are generated by fixed weights operated on the input semantic map st. In
our setting, these maps are generated by dynamic weights, θlH . Moreover, θlH contains three sets
of weights: θlS , θlγ and θlβ. θlS acts as a shared layer to extract common features, and θlγ and θlβ
take the output of θlS to generate γl and βl maps, respectively. For each BatchNorm layer in Gl, we
compute the denormalized features plH from the normalized features p̂lH by

plS =

{
st, if l = 0

σ
(
pl−1S ~ θlS

)
, otherwise

(8)

γl = plS ~ θlγ , βl = plS ~ θlβ (9)

plH = γl � p̂lH + βl (10)

where ~ stands for convolution, and σ is the nonlinearity function.

Attention-based aggregation (K > 1). In addition, we want E to be capable of extracting the
patterns from an arbitrary number of example images. As different example images may carry
different appearance patterns, and they have different degrees of relevance to different input images,
we design an attention mechanism [61, 52] to aggregate the extracted appearance patterns q1,...,qK .

To this end, we construct a new attention network EA, which consists of several fully convolutional
layers. EA is applied to each of the semantic images of the example images, sek

. This results in
a key vector ak ∈ RC×N , where C is the number of channels and N = H ×W is the spatial
dimension of the feature map. We also apply EA to the current input semantic image st to extract its
key vector at ∈ RC×N . We then compute the attention weight αk ∈ RN×N by taking the matrix
product αk = (ak)

T ⊗at. The attention weights are then used to compute a weighted average of the
appearance representation q =

∑K
k=1 qk ⊗αk, which is then fed into the multi-layer perceptron EP

to generate the network weights (Figure 2(b)). This aggregation mechanism is helpful when different
example images contain different parts of the subject. For example, when example images include
both front and back of the target person, the attention maps can help capture corresponding body
parts during synthesis (Figure 7(c)).

Warping example images. To ease the burden of the image synthesis network, we can also (op-
tionally) warp the given example image and combine it with the intermediate synthesized output h̃t.
Specifically, we make the model estimate an additional flow w̃et and mask m̃et , which are used to
warp the example image e1 to the current input semantics, similar to how we warp and combine with
previous frames. The new intermediate image then becomes

h̃′t = (1− m̃et)� w̃et(e1) + m̃et � h̃t (11)

In the case of multiple example images, we pick e1 to be the image that has the largest similarity
score to the current frame by looking at the attention weights α. In practice, we found this helpful
when example and target images are similar in most regions, such as synthesizing poses where the
background remains static.

Training. We use the same learning objective as in the vid2vid framework [57]. But instead of
training the vid2vid model using data from one domain, we use data from multiple domains. In
Figure 7(a), we show the performance of our few-shot vid2vid model is positively correlated
with the number of domains included in the training dataset. This shows that our model can gain from
increased visual experiences. Our framework is trained in the supervised setting where paired sT1 ,
and xT1 are available. We train our model to convert sT1 to xT1 by using K example images randomly
sampled from x. We adopt a progressive training technique, which gradually increases the length of
training sequences. Initially, we set T = 1, which means the network only generates single frames.
After that, we double the sequence length (T) for every few epochs.

5

Inference. At test time, our model can take an arbitrary number of example images. In Figure 7(b),
we show that our performance is positively correlated with the number of example images. Moreover,
we can also (optionally) finetune the network using the given example images to improve performance.
Note that we only finetune the weight generation module E and the intermediate image synthesis
network H , and leave all parameters related to flow estimation (θM , θH) fixed. We found this can
better preserve the person identity in the example image.

4 Experiments
Implementation details. Our training procedure follows the procedure from the vid2vid work [57].
We use the ADAM optimizer [26] with lr = 0.0004 and (β1, β2) = (0.5, 0.999). Training was
conducted using an NVIDIA DGX-1 machine with 8 32GB V100 GPUs.

Datasets. We adopt three video datasets to validate our method.

• YouTube dancing videos. It consists of 1, 500 dancing videos from YouTube. We divide them
into a training set and a test set with no overlapping subjects. Each video is further divided into
short clips of continuous motions. This yields about 15, 000 clips for training. At each iteration,
we randomly pick a clip and select one or more frames in the same clip as the example images.
At test time, both the example images and the input human poses are not seen during training.

• Street-scene videos. We use street-scene videos from three different geographical areas: 1)
Germany, from the Cityscapes dataset [9], 2) Boston, collected using a dashcam, and 3) NYC,
collected by a different dashcam. We apply a pretrained segmentation network [60] to get the
segmentation maps. Again, during training, we randomly select one frame of the same area as the
example image. At test time, in addition to the test set images from these three areas, we also test
on the ApolloScape [20] and CamVid [5] datasets, which are not included in the training set.

• Face videos. We use the real videos in the FaceForensics dataset [44], which contains 854 videos
of news briefing from different reporters. We split the dataset into 704 videos for training and 150
videos for validation. We extract sketches from the input videos similar to vid2vid, and select
one frame of the same video as the example image to convert sketches to face videos.

Baselines. Since no existing vid2vid method can adapt to unseen domains using few example im-
ages, we construct 3 strong baselines that consider different ways of achieving the target generalization
capability. For the following comparisons and figures, all methods use 1 example image.

• Encoder. In this baseline approach, we encode the example images into a style vector and then
decode the features using the image synthesis branch in our H to generate h̃t.

• ConcatStyle. In this baseline approach, we also encode the example images into a style vector.
However, instead of directly decoding the style vector using the image synthesis branch in our
H , it concatenates the vector with each of the input semantic images to produce an augmented
semantic input image. This image is then used as input to the spatial modulation branches in our
H for generating the intermediate image h̃t.

• AdaIN. In this baseline, we insert an AdaIN normalization layer after each spatial modulation
layer in the image synthesis branch of H . We generate the AdaIN normalization parameters by
feeding the example images to an encoder, similar to the FUNIT method [31].

In addition to these baselines, for the human synthesis task, we also compare our approach with the
following methods using the pretrained models provided by the authors.

• PoseWarp [1] synthesizes humans in unseen poses using an example image. The idea is to
assume each limb undergoes a similarity transformation. The final output image is obtained by
combining all transformed limbs together.

• MonkeyNet [47] is proposed for transferring motions from a sequence to a still image. It first
detects keypoints in the images, and then predicts their flows for warping the still image.

Evaluation metrics. We use the following metrics for quantitative evaluation.

• Fréchet Inception Distance (FID) [17] measures the distance between the distributions of real
data and generated data. It is commonly used to quantify the fidelity of synthesized images.

• Pose error. We estimate the poses of the synthesized subjects using OpenPose [6]. This renders a
set of joint locations for each video frame. We then compute the absolute error in pixels between

6

YouTube Dancing videos Street Scene videos
Method Pose Error FID Human Pref. Pixel Acc mIoU FID Human Pref.
Encoder 13.30 234.71 0.96 0.400 0.222 187.10 0.97

ConcatStyle 13.32 140.87 0.95 0.479 0.240 154.33 0.97
AdaIN 12.66 207.18 0.93 0.756 0.360 205.54 0.87

PoseWarp [1] 16.84 180.31 0.83 N/A N/A N/A N/A
MonkeyNet [47] 13.73 260.77 0.93 N/A N/A N/A N/A

Ours 6.01 80.44 — 0.831 0.408 144.24 —
Table 1: Our method outperforms existing pose transfer methods and our baselines for both dancing
and street scene video synthesis tasks. For pose error and FID, lower is better. For pixel accuracy and
mIoU, higher is better. The human preference score indicates the fraction of subjects favoring results
synthesized by our method.

Figure 3: Visualization of human video synthesis results. Given the same pose video but different
example images, our method synthesizes realistic videos of the subjects, who are not seen during
training. The figure is best viewed with Acrobat Reader. Click the image to play the video clip.

the estimated pose and the original pose input to the model. The idea behind this metric is that
if the image is well-synthesized, a well-trained human pose estimation network should be able
to recover the original pose used to synthesize the image. We note similar ideas were used in
evaluating image synthesis performance in several prior works [22, 58, 57].

• Segmentation accuracy. To evaluate the performance of street scene videos, we run a state-of-
the-art street scene segmentation network on the result videos generated by all the competing
methods. We then report the pixel accuracy and mean intersection-over-union (IoU) ratio. The
idea of using segmentation accuracy as a performance metric follows the discussion of using the
pose error as discussed above.

• Human subjective score. Finally, we use Amazon Mechanical Turk (AMT) to evaluate the
quality of generated videos. We perform AB tests where we provide the user videos from

7

Figure 4: Comparisons against different baselines for human motion synthesis. Note that the
competing methods either have many visible artifacts or completely fail to transfer the motion. The
figure is best viewed with Acrobat Reader. Click the image to play the video clip.

Figure 5: Visualization of street scene video synthesis results. Our approach is able to synthesize
videos that realistically reflect the style in the example images even if the style is not included in the
training set. The figure is best viewed with Acrobat Reader. Click the image to play the video clip.

two different approaches and ask them to choose the one with better quality. For each pair of
comparisons, we generate 100 clips, each of them viewed by 60 workers. Orders are randomized.

Main results. In Figure 3, we show results of using different example images when synthesizing
humans. It can be seen that our method can successfully transfer motion to all the example images.
Figure 4 shows comparisons of our approaches against other methods. It can be seen that other
methods either generate obvious artifacts or fail to transfer the motion faithfully.

Figure 5 shows the results of synthesizing street scene videos with different example images. It can
be seen that even with the same input segmentation map, our method can achieve different visual
results using different example images.

Table 1 shows quantitative comparisons of both tasks against the other methods. It can be seen that
our method consistently achieves better results than the others on all the performance metrics.

In Figure 6, we show results of using different example images when synthesizing faces. Our method
can faithfully preserve the person identity while capturing the motion in the input videos.

Finally, to verify our hypothesis that a larger training dataset helps improve the quality of synthesized
videos, we conduct an experiment where part of the dataset is held out during training. We vary the
number of videos in the training set and plot the resulting performance in Figure 7(a). We find that
the results support our hypothesis. We also evaluate whether having access to more example images

8

Figure 6: Visualization of face video synthesis results. Given the same input video but different
example images, our method synthesizes realistic videos of the subjects, who are not seen during
training. The figure is best viewed with Acrobat Reader. Click the image to play the video clip.

(c) Example Attn maps

front back

In
p

u
t
fr

a
m

e
s

A
tte

n
tio

n
 m

a
p

s

fro
n
tfr

o
n
t

b
a
c
k b

a
c
k

Example images

(b) Effect of number of examples at inference(a) Effect of training dataset size

Figure 7: (a) The plot shows the quality of our synthesized videos improves when it is trained with
a larger dataset. Large variety helps learn a more generalizable network weight generation module
and hence improves adaptation capability. (b) The plot shows the quality of our synthesized videos
is correlated with the number of example images provided at test time. The proposed attention
mechanism can take advantage of a larger example set to better generate the network weights. (c)
Visualization of attention maps when multiple example images are given. Note that when synthesizing
the front of the target, the attention map indicates that the network utilizes more of the front example
image, and vice versa.

at test time helps with the video synthesis performance. As shown in Figure 7(b), the result confirms
our assumption.

Limitations. Although our network can, in principal, generalize to unseen domains, when the test
domain is too different from the training domains it will not perform well. For example, when
testing on CG characters which look very different from real-world people, the network will struggle.
In addition, since our network is based on semantic estimations as input such as pose maps or
segmentation maps, when these estimations fail our network will also likely fail.

5 Conclusion

We presented a few-shot video-to-video synthesis framework that can synthesize videos of unseen
subjects or street scene styles at the test time. This was enabled by our novel adaptive network
weight generation scheme, which dynamically determines the weights based on the example images.
Experimental results showed that our method performs favorably against the competing methods.

9

References

[1] G. Balakrishnan, A. Zhao, A. V. Dalca, F. Durand, and J. Guttag. Synthesizing images of humans in unseen
poses. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[2] S. Benaim and L. Wolf. One-shot unsupervised cross domain translation. In Advances in Neural Information
Processing Systems (NIPS), 2018.

[3] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. Unsupervised pixel-level domain
adaptation with generative adversarial networks. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[4] A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural image synthesis.
In International Conference on Learning Representations (ICLR), 2019.

[5] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Segmentation and recognition using structure from
motion point clouds. In European Conference on Computer Vision (ECCV), 2008.

[6] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh. OpenPose: realtime multi-person 2D pose
estimation using Part Affinity Fields. In arXiv preprint arXiv:1812.08008, 2018.

[7] C. Chan, S. Ginosar, T. Zhou, and A. A. Efros. Everybody dance now. arXiv preprint arXiv:1808.07371,
2018.

[8] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. Stargan: Unified generative adversarial
networks for multi-domain image-to-image translation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[9] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele. The Cityscapes dataset for semantic urban scene understanding. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[10] E. L. Denton and V. Birodkar. Unsupervised learning of disentangled representations from video. In
Advances in Neural Information Processing Systems (NIPS), 2017.

[11] C. Finn, I. Goodfellow, and S. Levine. Unsupervised learning for physical interaction through video
prediction. In Advances in Neural Information Processing Systems (NIPS), 2016.

[12] O. Gafni, L. Wolf, and Y. Taigman. Vid2game: Controllable characters extracted from real-world videos.
arXiv preprint arXiv:1904.08379, 2019.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial networks. In Advances in Neural Information Processing Systems (NIPS), 2014.

[14] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of wasserstein
GANs. In Advances in Neural Information Processing Systems (NIPS), 2017.

[15] D. Ha, A. Dai, and Q. V. Le. Hypernetworks. In International Conference on Learning Representations
(ICLR), 2016.

[16] Z. Hao, X. Huang, and S. Belongie. Controllable video generation with sparse trajectories. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[17] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two time-scale
update rule converge to a local Nash equilibrium. In Advances in Neural Information Processing Systems
(NIPS), 2017.

[18] Q. Hu, A. Waelchli, T. Portenier, M. Zwicker, and P. Favaro. Video synthesis from a single image and
motion stroke. arXiv preprint arXiv:1812.01874, 2018.

[19] X. Huang and S. Belongie. Arbitrary style transfer in real-time with adaptive instance normalization. In
IEEE International Conference on Computer Vision (ICCV), 2017.

[20] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin, and R. Yang. The ApolloScape dataset
for autonomous driving. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[21] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz. Multimodal unsupervised image-to-image translation.
European Conference on Computer Vision (ECCV), 2018.

[22] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial
networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[23] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool. Dynamic filter networks. In Advances in Neural
Information Processing Systems (NIPS), 2016.

[24] N. Kalchbrenner, A. v. d. Oord, K. Simonyan, I. Danihelka, O. Vinyals, A. Graves, and K. Kavukcuoglu.
Video pixel networks. arXiv preprint arXiv:1610.00527, 2016.

[25] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[26] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015.

[27] A. X. Lee, R. Zhang, F. Ebert, P. Abbeel, C. Finn, and S. Levine. Stochastic adversarial video prediction.
arXiv preprint arXiv:1804.01523, 2018.

[28] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang. Flow-grounded spatial-temporal video prediction
from still images. In Proceedings of the European Conference on Computer Vision (ECCV), pages 600–615,
2018.

[29] X. Liang, L. Lee, W. Dai, and E. P. Xing. Dual motion GAN for future-flow embedded video prediction.
In Advances in Neural Information Processing Systems (NIPS), 2017.

[30] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation networks. In Advances in
Neural Information Processing Systems (NIPS), 2017.

10

[31] M.-Y. Liu, X. Huang, A. Mallya, T. Karras, T. Aila, J. Lehtinen, and J. Kautz. Few-shot unsupervised
image-to-image translation. arXiv preprint arXiv:1905.01723, 2019.

[32] M.-Y. Liu and O. Tuzel. Coupled generative adversarial networks. In Advances in Neural Information
Processing Systems (NIPS), 2016.

[33] W. Lotter, G. Kreiman, and D. Cox. Deep predictive coding networks for video prediction and unsupervised
learning. In International Conference on Learning Representations (ICLR), 2017.

[34] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square error. In
International Conference on Learning Representations (ICLR), 2016.

[35] T. Miyato and M. Koyama. cGANs with projection discriminator. In International Conference on Learning
Representations (ICLR), 2018.

[36] N. Neverova, R. Alp Guler, and I. Kokkinos. Dense pose transfer. In European Conference on Computer
Vision (ECCV), 2018.

[37] S. Niklaus, L. Mai, and F. Liu. Video frame interpolation via adaptive convolution. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[38] S. Niklaus, L. Mai, and F. Liu. Video frame interpolation via adaptive separable convolution. In IEEE
International Conference on Computer Vision (ICCV), 2017.

[39] A. Odena, C. Olah, and J. Shlens. Conditional image synthesis with auxiliary classifier GANs. In
International Conference on Machine Learning (ICML), 2017.

[40] J. Pan, C. Wang, X. Jia, J. Shao, L. Sheng, J. Yan, and X. Wang. Video generation from single semantic
label map. arXiv preprint arXiv:1903.04480, 2019.

[41] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu. Semantic image synthesis with spatially-adaptive normal-
ization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[42] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. In International Conference on Learning Representations (ICLR), 2015.

[43] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial text to image
synthesis. In International Conference on Machine Learning (ICML), 2016.

[44] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner. Faceforensics: A large-scale
video dataset for forgery detection in human faces. arXiv preprint arXiv:1803.09179, 2018.

[45] M. Saito, E. Matsumoto, and S. Saito. Temporal generative adversarial nets with singular value clipping.
In IEEE International Conference on Computer Vision (ICCV), 2017.

[46] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. Learning from simulated and
unsupervised images through adversarial training. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[47] A. Siarohin, S. Lathuilière, S. Tulyakov, E. Ricci, and N. Sebe. Animating arbitrary objects via deep
motion transfer. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[48] N. Srivastava, E. Mansimov, and R. Salakhudinov. Unsupervised learning of video representations using
lstms. In International Conference on Machine Learning (ICML), 2015.

[49] H. Su, V. Jampani, D. Sun, O. Gallo, E. Learned-Miller, and J. Kautz. Pixel-adaptive convolutional neural
networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[50] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-domain image generation. In International
Conference on Learning Representations (ICLR), 2017.

[51] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz. MoCoGAN: Decomposing motion and content for video
generation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[52] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems (NIPS), 2017.

[53] R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee. Decomposing motion and content for natural video
sequence prediction. In International Conference on Learning Representations (ICLR), 2017.

[54] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating videos with scene dynamics. In Advances in
Neural Information Processing Systems (NIPS), 2016.

[55] J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncertain future: Forecasting from static images using
variational autoencoders. In European Conference on Computer Vision (ECCV), 2016.

[56] J. Walker, K. Marino, A. Gupta, and M. Hebert. The pose knows: Video forecasting by generating pose
futures. In IEEE International Conference on Computer Vision (ICCV), 2017.

[57] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao, J. Kautz, and B. Catanzaro. Video-to-video synthesis. In
Advances in Neural Information Processing Systems (NIPS), 2018.

[58] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro. High-resolution image synthesis
and semantic manipulation with conditional GANs. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[59] J. Wu, D. Li, Y. Yang, C. Bajaj, and X. Ji. Dynamic sampling convolutional neural networks. In European
Conference on Computer Vision (ECCV), 2018.

[60] T. Wu, S. Tang, R. Zhang, and Y. Zhang. Cgnet: A light-weight context guided network for semantic
segmentation. arXiv preprint arXiv:1811.08201, 2018.

[61] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio. Show, attend
and tell: Neural image caption generation with visual attention. arXiv preprint arXiv:1502.03044, 2015.

[62] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He. Attngan: Fine-grained text to image
generation with attentional generative adversarial networks. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

11

[63] T. Xue, J. Wu, K. Bouman, and B. Freeman. Visual dynamics: Probabilistic future frame synthesis via
cross convolutional networks. In Advances in Neural Information Processing Systems (NIPS), 2016.

[64] C. Zhang, M. Ren, and R. Urtasun. Graph hypernetworks for neural architecture search. In International
Conference on Learning Representations (ICLR), 2019.

[65] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-attention generative adversarial networks. In
International Conference on Machine Learning (ICML), 2019.

[66] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. Metaxas. StackGAN: Text to photo-realistic
image synthesis with stacked generative adversarial networks. In IEEE International Conference on
Computer Vision (ICCV), 2017.

[67] Y. Zhou, Z. Wang, C. Fang, T. Bui, and T. L. Berg. Dance dance generation: Motion transfer for internet
videos. arXiv preprint arXiv:1904.00129, 2019.

[68] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent
adversarial networks. In IEEE International Conference on Computer Vision (ICCV), 2017.

[69] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman. Toward multimodal
image-to-image translation. In Advances in Neural Information Processing Systems (NIPS), 2017.

12

	Introduction
	Related Work
	Few-shot Video-to-Video Synthesis
	Experiments
	Conclusion

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	1.50:
	1.51:
	1.52:
	1.53:
	1.54:
	1.55:
	1.56:
	1.57:
	1.58:
	1.59:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	2.30:
	2.31:
	2.32:
	2.33:
	2.34:
	2.35:
	2.36:
	2.37:
	2.38:
	2.39:
	2.40:
	2.41:
	2.42:
	2.43:
	2.44:
	2.45:
	2.46:
	2.47:
	2.48:
	2.49:
	2.50:
	2.51:
	2.52:
	2.53:
	2.54:
	2.55:
	2.56:
	2.57:
	2.58:
	2.59:
	2.60:
	2.61:
	2.62:
	2.63:
	2.64:
	2.65:
	2.66:
	2.67:
	2.68:
	2.69:
	anm2:
	3.0:
	3.1:
	3.2:
	3.3:
	3.4:
	3.5:
	3.6:
	3.7:
	3.8:
	3.9:
	3.10:
	3.11:
	3.12:
	3.13:
	3.14:
	3.15:
	3.16:
	3.17:
	3.18:
	3.19:
	3.20:
	3.21:
	3.22:
	3.23:
	3.24:
	3.25:
	3.26:
	3.27:
	3.28:
	3.29:
	3.30:
	3.31:
	3.32:
	3.33:
	3.34:
	3.35:
	3.36:
	3.37:
	3.38:
	3.39:
	3.40:
	3.41:
	3.42:
	3.43:
	3.44:
	3.45:
	3.46:
	3.47:
	3.48:
	3.49:
	3.50:
	3.51:
	3.52:
	3.53:
	3.54:
	3.55:
	3.56:
	3.57:
	3.58:
	3.59:
	3.60:
	3.61:
	3.62:
	3.63:
	3.64:
	3.65:
	3.66:
	3.67:
	3.68:
	3.69:
	3.70:
	3.71:
	3.72:
	3.73:
	3.74:
	3.75:
	3.76:
	3.77:
	3.78:
	3.79:
	3.80:
	3.81:
	3.82:
	3.83:
	3.84:
	3.85:
	3.86:
	3.87:
	3.88:
	3.89:
	3.90:
	3.91:
	3.92:
	3.93:
	3.94:
	3.95:
	3.96:
	3.97:
	3.98:
	3.99:
	anm3:

