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ABSTRACT

Real world images often contain large amounts of private / sensitive information
that should be carefully protected without reducing their utilities. In this paper,
we propose a privacy-preserving deep learning framework with a learnable ob-
fuscator for the image classification task. Our framework consists of three mod-
els: learnable obfuscator, classifier and reconstructor. The learnable obfuscator
is used to remove the sensitive information in the images and extract the feature
maps from them. The reconstructor plays the role as an attacker, which tries to
recover the image from the feature maps extracted by the obfuscator. In order to
best protect users’ privacy in images, we design an adversarial training methodol-
ogy for our framework to optimize the obfuscator. Through extensive evaluations
on real world datasets, both the numerical metrics and the visualization results
demonstrate that our framework is qualified to protect users’ privacy and achieve
a relatively high accuracy on the image classification task.

1 INTRODUCTION

In the past few years, deep neural networks (DNNs) (Goodfellow et al., |2016) have achieved great
breakthroughs in computer vision, speech recognition and many other areas. To support the training
of DNNGs, large datasets have been collected, e.g., ImageNet (Deng et al., 2009), MNIST (LeCun
et al.,[1998) and CIFAR-10/CIFAR-100 (Krizhevsky & Hinton, 2009) as image datasets, Youtube-
8M (Abu-El-Haija et al., 2016) as video datasets, and AudioSet (Gemmeke et al., 2017) as audio
datasets. These datasets are usually crowdsourced from the real world, and may carry sensitive
private information, thus, leading to serious privacy problems.

The new European Union’s General Data Protection Regulation (GDPR) (Regulation, [2016) stipu-
lates that personal data cannot be stored for long periods of time, and personal data requests, such as
deleting personal images, should be handled within 30 days. In other words, this regulation prevents
long-term storage of video/image data (e.g., from CCTV cameras), which hinders the collection of
real-world datasets for training deep learning models. However, the data storage limitations do not
apply if the data is anonymized.

This regulation considers the trade-off between the utility and the privacy of the data. However,
30 days may not be a long enough period to collect image data and train a complex deep learning
model, and deletion of data hinders re-training later when the model structure is updated or more
data becomes available. GPDR allows anonymized data to be stored indefinitely, which inspires us
to design a framework where an image is converted into an obfuscated intermediate representation
that removes sensitive personal information while retaining suitable discriminative features for the
learning task. Thus the obfuscated intermediate representation can be stored indefinitely for model
training in compliance with GDPR.

Contributions In this paper, we design a obfuscator-adversary framework to obtain a trainable ob-
fuscator that fulfills the dual goals of removing sensitive information and extracting useful features
for the learning task. Here, we mainly focus on image classification as the learning task, since it is a
more general task in computer vision — the framework could be extended to other tasks. Our frame-
work consists of three models, each with its own objective: the obfuscator, the classifier and the
reconstructor, shown in Figure E} The obfuscator works as an information remover, which takes the
input image and extracts feature maps that carry enough primary information for the classification
task while removing sensitive private information. These feature maps are the obfuscated represen-
tation of the input image. The classifier uses the obfuscated representation to perform classification
of the input image. Finally, the reconstructor plays the role as an adversary whose goal is to extract
the sensitive information from the obfuscated representation.
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Figure 1: (top) Our proposed framework learns an obfuscated representation (feature maps) for image clas-
sification that also prevents leakage of users’ privacy. The obfuscator extracts a feature map (the obfuscated
representation) that both prevents the reconstruction of the image and keeps the primary information for the
classification task. The classifier uses the obfuscated feature map to perform the image classification task. The
reconstructor aims to reconstruct the original image from the feature map. The three models are trained using
an adversarial training process. (bottom) The attacker aims to reconstruct a users’ images to eavesdrop their
privacy. We assume that the attacker has unlimited access to the obfuscator and the feature maps extracted
from users’ images. The attacker trains their own reconstructor using their own set of images, and attempts to
reconstruct the users’ images from the stored feature maps.

As different kinds of images may contain different kinds of sensitive information (e.g., personal
identity, location, etc), we choose image reconstruction quality as a general measure for privacy
preservation. The reconstructor, as the adversary, tries to reveal the sensitive information by restor-
ing the image from the feature maps. If even state-of-the-art reconstructors cannot restore the im-
age, and the classification accuracy is still good, we can say that our framework has experimentally
demonstrated enough security to protect users’ privacy. As the obfuscator and the reconstructor
have opposite objectives, the training of our proposed framework can be formalized as an adversar-
ial training paradigm. The main contributions of this paper are:

1) To the best of our knowledge, this is the first study of using the adversarial training methodology
for privacy-preserving image classification.

2) We propose a brute-force experimental evaluation method to demonstrate the security-level per-
formance of the proposed framework.

3) The experiments on real-world datasets demonstrate that utility(classification accuracy)-privacy
trade-off is perfectly handled via the adversarial training process.

2 RELATED WORK

Deep learning requires a tremendous amount of data that may contain a significnat private informa-
tion. Conventional works have already proposed several approaches to counter the privacy problem
in learning tasks. Prior works can be divided into three categories: privacy of datasets, privacy of
models, and privacy of models’ outputs (Shokri & Shmatikov}2015). In this paper, we mainly focus
on the privacy of datasets.

One way to protect the privacy of data is to increase the amount of uncertainty, e.g., based on k-
anonymity (Sweeney} 2002), 1-diversity (Machanavajjhala et al.l 2006) and t-closeness (Li et al.,
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2007). Unfortunately, these approaches are only suitable for low-dimensional data because the
quasi-identifiers and sensitive attributes are not easily defined for high-dimensional data. This makes
private information in multimedia (videos, images and audios, etc.) much harder to be protected.

Differential privacy (Dworkl 2008)), as the state-of-the-art privacy preserving mechanism, is a more
formal way to open-source a database while keeping all individual records private by adding well-
designed noise. However, differential privacy only affects inserting and deleting an individual data
record. |Abadi et al.| (2016)) investigated the application of differential privacy to deep learning, and
extended the conventional Stochastic Gradient Descent (SGD) (Bottoul 2010) algorithm to a novel
Differentially Private SGD (DPSGD) algorithm. However, the inherent character of differential
privacy implies that there will always be a data utility and privacy tradeoff. The fact that more
strict privacy guarantee always demands more noise added to the data often limits its application
scenarios, especially when high accuracy of learning tasks is a must.

Another way for data-level privacy protection is to use cryptographic operations to encrypt the
dataset. |Gilad-Bachrach et al.| (2016) proposed Cryptonets, a cloud based framework, in which
the inference stage is applied on encrypted datum. However, Cryptonets has some limitations. First,
it has a sensitive privacy-utility trade-off. Second, low-degree polynomials using homomorphic en-
cryption are not able to compute the non-linear activation function efficiently. Focusing on these
shortcomings, [Rouhani et al.| (2017)) proposed DeepSecure, a provably-secure framework for scal-
able deep learning based data analysis. DeepSecure is also a cloud-client based framework, and it
does not have the concern of privacy-utility trade-off. However, this approach is only suitable for
scenarios in which the number of samples submitted by each client is less than 2600, which ex-
tremely limits its application. Other applications of homomorphic encryption to privacy preserving
tasks, e.g., (Chabanne et al.| (2017), Bellafqira et al.| (2018) and |Liu et al.| (2018), have almost the
same disadvantages and limitations as approaches mentioned above.

Recent works extend the common deep neural networks to protect the dataset privacy using pure
machine learning techniques. |Osia et al.[(2017;|2018]) proposed a client-server model, which sepa-
rates the common CNN into two parts and the first part becomes the feature extractor and the second
part works as the classifier. A Siamese network is used to ensure privacy protection. However, this
framework can only be deployed during the inference stage because the training of a neural net-
work would require a large amount of communication throughput between the clients and servers.
Li et al.| (2017) uses the reconstruction quality as a measure for privacy preservation. However, the
reconstruction quality is only used for evaluation, and it not used in the loss function during training,
which makes this work similar to that of|Osia et al.| (2017;/2018)).

In contrast to these previous works, we propose a privacy protection framework based on an ad-
versarial training procedure, where the obfuscator and classifier work together to preserve privacy
while performing the classification task, and an adversarial reconstructor tries to reveal the private
information by recovering the image. As good reconstruction quality is highly related with the re-
covery of private information, in our framework, we include the reconstruction quality into the loss
of the framework in order to better learn the obfuscator. Experimental results demonstrate that our
framework both preserves privacy well and achieves good classification accuracy.

3 SECURITY ANALYSIS

We consider a DNN-based training service involving three entities, namely the training data
providers, who provide raw images that may contain sensitive personal information and seek for
protection of privacy during the process of data delivery; the service provider, who initially has all
the sensitive personal information from raw images and is compelled to remove sensitive data via
an obfuscator under the regulation of GDPR, while maintaining most of other useful information
needed for DNN training; an attacker, who could be an unauthorized internal staff or an external
hacker that intends to recover the original images from information filtered by the obfuscator.

We then focus on the strength of security against an attacker aspiring to snoop private information of
the training data providers. Specifically, in our model, we consider a Chosen Image Attack (CIA),
in which an attacker gains unlimited access to the obfuscator, and leverages it to generate data for
training the attacker’s reconstructor. We stress CIA in this paper since this is the most natural and
convenient way of launching an attack. We are aware of that other data stored on the servers of
the service provider, i.e., weight vectors along with training inputs and outputs of the classifier and
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Figure 2: The structure of the (a) obfuscator and (b) classifier.

the reconstructor, can somehow also be leveraged by an attacker. However, compared to the attack
domain of CIA, threats of other attacks that focus solely on the training data domain appear less
imminent and hence those attacks are not covered in this paper. We further assume within the attack
model of CIA, an attacker would subsequently use a DNN to carry out image reconstruction due to
the fact that the obfuscated feature maps may contain information unnoticed by humans.

For quality assessment of the reconstructed images in CIA, it is extremely difficult to directly define
how successful an attack can be given the specific image because sensitive information contained
within different images may vary from case to case. To this end, we adopt the index measuring the
quality of reconstruction, i.e., Peak Signal to Noise Ratio (PSNR), to roughly evaluate the strength
of security against CIA in our design rather than define our own privacy measurement index. We
say the lower the PSNR value, the more secure it indicates that our design is able to defend against
such attack model of CIA. The PSNR between two images [, and I,- with dimensions m xn is

2 2
p p
PSNR(I,,I,) = 10log ) ——2%—— = 101logy, P R D —, (1)
MSE(L,, I) ﬁzz‘:o Zj:o (Lo(i,5) — IT(Z»J))Q
where ppax 1S the maximum range of pixel values in an image (typically 255 for 8-bit images).
Higher values of PSNR indicate that the two images are more similar.

4 OBFUSCATOR-ADVERSARY FRAMEWORK

In this section, we introduce the our proposed framework deep learning based privacy-preserving
image classification. Our approach is divided into three modules: the obfuscator, the classifier and
the reconstructor. The goal of the obfuscator is to produce a feature map that removes sensitive
information from the image, while also preserving primary information for the classifier. On the
opposite, the reconstructor acts as an attacker that aims to reconstruct the original image from the
feature map. We formulate the training of our proposed framework as an adversarial training process.

Here we give the following notations. Let D = {I;, ... Iy} denote the images in our dataset, where
N is the number of images, and Y = {y1,...,yn} are the corresponding class labels, where the
set of possible classes is ) = {1,..., M}. An obfuscator f(-;6¢) : Z — F is a function mapping
from images 7 to feature maps F. 0 are the parameters (weights) of the obfuscator. The classifier
g(-;04) + F — Y represents a mapping from feature maps F to class labels ). The reconstructor
r(+;6,) : F — T is a function mapping from feature maps back to images.

4.1 OBFUSCATOR AND CLASSIFIER

Conventional deep learning models for the image classification are usually based on convolutional
neural networks (CNNs), which is a stack of multiple convolutional layers, pooling layers, activation
functions and fully connected layers. An intrinsic characteristic of the convolutional layers in CNNs
is the ability to extract discriminative information from the input image into feature maps, while ig-
noring non-discriminative information. This phenomenon inspires us to modify the objective of the
convolutional layers to both extract discriminative features and remove sensitive information in the
extracted feature maps. Thus, in our framework, we divide a deep CNN architecture, VGG16 (Si-
monyan & Zisserman, 2014), into two parts. The first part is used as the obfuscator, while the second
part is used as the classifier. The feature map between the two parts is the obfuscated representation.
Figure 2] shows the structure of the obfuscator and the classifier.
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As an feature extractor and sensitive information filter, the obfuscator has two objectives. First,
it should minimize the classification error to ensure the high utility of our framework. Second, to
protect the privacy in input images, it should minimize the PSNR between the original image and the
reconstructed image in (I)). The goal of the classifier is to minimize the classification error, which
is consistent with the obfuscator. Hence, the obfuscator and classifier can be trained by minimizing
the loss function,

N
0%,0; = argmin > _ Leross (i, 9(f (1)) + APSNR(L, r(f (1)), )

05,05 21

where ) is a trade-off parameter. The first term is the categorical cross-entropy loss between the
ground-truth class label and the classifier prediction. The second term is the reconstruction loss,
based on the output of the reconstructor. The loss in Eq[2]is the adversarial loss of our framework.

4.2 RECONSTRUCTOR

The reconstructor in our framework plays the role of an attacker. According to the assumptions
in Section (3| the attacker can access the feature maps of raw images extracted by a pre-trained
obfuscator. The attacker’s goal is to recover private information stored in the feature maps through
reconstruction of the image from the feature map. Consequently, the objective of the reconstructor
is to maximize the similarity between reconstructed images and raw images, as measured by PSNR,

N
0% = arg maXZPSNR(IZ-,T(f(Ii)))7 &)

T i=1

which is the opposite objective of the loss function in (2). The architecture of the reconstructors is
discussed in the next section.

4.3 ADVERSARIAL TRAINING METHODOLOGY

Intuitively, the roles of the obfuscator and the reconstructor are working against each other. During
the training period, the obfuscator tries its best to maximally remove the sensitive information in
the input images so that the reconstructor cannot reconstruct images similar to raw input images.
Whereas the reconstructor will fine-tune its parameters to find the best reconstructions for given
input feature maps. This training formulation is exactly an adversarial training process, where two
models play a minimax game (Chen et al.,|2016). The adversarial training methodology introduces
an rebuttal procedure in the training process. We formalize the training procedure in Algorithm I}

Data: The training set of images D = {I, ..., Iy} and their class labels Y = {y1, ..., yn },
number of main iterations 7,45, number of sub-iterations 7%,
Result: Weights of three models: 0, 4, 8, such that the given three objects are optimized
Initialization: Initialize 6, 64, 8, using Xaiver initialization (Glorot & Bengio, [2010);
while not converged or reached T4y, do
Generate augmented data from input images;
if is the first epoch then
train the obfuscator-classifier until it reaches its optimal performance (at least 200
epochs);
else
\ train the obfuscator-classifier for T, epochs;
end
freeze the obfuscator, then train the reconstructor for 7%, epochs;
freeze the reconstructor and classifier, then train the obfuscator for 7,; epochs;

end
Algorithm 1: Adversarial training algorithm for our framework

As the primary task of our framework is to classify images, we first train the classifier and obfus-
cator together without any security concern to obtain optimal performance at image classification.
The obfuscator working in this stage can be recognized as the first several layers of the classifier.
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Table 1: Reconstructor Configurations

SimRec | URec#l | UReci#2 | ResRec
Input (8 x 8 x 128 feature maps)
conv3-128 conv3—6j conv3-64 transconvS-Zé_l
conv3-128 conv3-6 conv3-64 3x3, 6 X 2
conv3-64 3x3, 64
Upsampling2D | Upsampling2D | Upsampling2D | Upsampling2D
conv3-64 gggzggg conv3-128 3x3, 64]
conv3-64 conv3-128 3x3, 64
conv3-128 ]
Upsampling2D | Upsampling2D | Upsampling2D | Upsampling2D
conv3-256
conv3-256
conv3-3 conv3-256 conv3-256 convl-3
conv3-256
. . conv3-3 conv3-3 . .
sigmoid convl-3 convl-3 sigmoid
sigmoid sigmoid

After the initial training of the obfuscator-classifier, we need to take the privacy problem into con-
sideration, which is handled by our adversarial training framework. In particular, the reconstructor
is trained while holding the obfuscator fixed, and then the obfuscator is trained while keeping the
reconstructor and classifier fixed. In this way, the obfuscator can counteract the any improvements
in PSNR from the reconstructor. Finally, the whole procedure is repeated until convergence or the
maximum number of epochs is reached.

5 EXPERIMENTS

In our experiments, we use three datasets: MNIST handwritten digits dataset (LeCun et al., [1998)
and CIFAR-10/CIFAR-100 dataset (Krizhevsky & Hinton, 2009). MNIST consists of 70,000 hand-
written digit images, of which 60,000 images belong to the training set, and 10,000 images belong
to the testing set. All these images are size-normalized and centered to a fixed-size (28 x 28).
CIFAR-10 is a tiny image dataset containing 60,000 32 x 32 colored images in 10 classes (50,000
for training and 10,000 for testing). CIFAR-100 is similar to CIFAR-10 but contains 100 classes
with 600 images per class.

In order to ensure the security under different kinds of attackers, we implement 4 state-of-the-art
reconstructors as attackers, and train them separately within our framework. Note that for space
interest, we only report the results where we set trade-off parameter A = 1 in the experiment. We
will include more enriched results with diverse choice of parameters in the full version. The four
reconstructors are (see Table[T] for architecture details): 1) Simple autoencoder reconstructor (Sim-
Rec): This is a simple reconstructor, which is just a reversed model of the obfuscator used in our
framework. As the structure of the obfuscator-reconstructor is similar to the structure of an autoen-
coder; 2) U-net reconstructor #1 (URec#1): U-net (Ronneberger et al.|[2015) is a fully convolutional
neural network structure used for biomedical image segmentation and image generation with GANs
Isola et al. (2016); 2) U-net reconstructor #2 (URec#2): This reconstructor is a simpler version of
URec#1, which reduces the number of layers; 3) ResNet reconstructor (ResRec): ResNet (He et al.,
2016)) is a deep learning model used for image recognition, as well as image restoration (Jiao et al.,
2017). ResNet model involves the residual function and contains several residual blocks.

5.1 CLASSIFICATION ACCURACY AND RECONSTRUCTION RESULTS

In this section, we will show the experimental results to demonstrate that our framework is a strong
method to protect user’s privacy while keeping the utility of a deep learning image classification
model. Table[2]presents the classification accuracy for each dataset, related to the number of epochs.
As the space is limited, here we only give the accuracy of the first 100 epochs. During the train-
ing and testing process, we find that the accuracy is not highly related to the reconstructor, which
means that although we changed the reconstructor in our framework, the classification accuracy is
consistent (as shown in Figure[3)). This suggests that the obfuscator is robust to the type of the recon-
structor, so that our framework is able to be deployed in different scenarios. In Table[2] the accuracy
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Table 2: Average classification accuracy versus epoch. Epoch 1 corresponds to the baseline classifier.

#epoch/dataset | 1 (baseline) 10 20 30 40 50 60 70 80 90 100

MNIST 99.70% 85.17% 88.19% 90.43% 90.60% 90.53% 91.03% 91.76% 92.17% 92.84% 92.95%

CIFAR-10 93.56% 83.35% 84.17% 84.74% 85.33% 85.48% 87.30% 88.07% 8837% 89.21% 89.48%

CIFAR-100 70.40% 50.23% 569%  58.25% 59.57% 60.51% 62.63% 63.18% 64.53% 64.21% 64.45%
(a) MNIST (b) CIFAR-10 (c) CIFAR-100
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Figure 3: The classification accuracy for different datasets and different training reconstructors.

of the first epoch represents the baseline of VGG16 on the given dataset. The baseline for MNIST
is 99.70% and our accuracy using privacy-preservation is 92.95%. For CIFAR-10 it is 93.56% and
89.48%, and for CIFAR-100 it is 70.40% and 64.53%. For comparison, the state-of-the-art work in
privacy-preserving networks (Li et al., 2017) achieved only 70.1% average accuracy on CIFAR-10
dataset, which our framework outperforms. The major difference between our work and |Li et al.
(2017) is that we employ adversarial training where the goal is to both reduce reconstruction quality
and improve classification accuracy.

Figure ] gives some examples of the reconstruction results on CIFAR-10 using different reconstruc-
tors. Comparing the reconstructed images with raw images, we find that the reconstructed images
only contain the blurred outlines of target objects in raw images, which may represent the category
information of the image. The average PSNR values for the reconstructors on all datasets is shown
in the diagonal of Table[3]- SimRec achieved 28.0306 as its average PSNR, while URec#1, URec#2
and ResRec, the PSNR values are 28.0020, 28.0129 and 28.0176, respectively. Small values of
PSNR indicate that the difference between the input image and the reconstructed image is large, and
hence most of the information of the raw image is removed by the obfuscator.

In order to simulate the behavior of the attackers, besides the adversarial training and testing, we
designed a complementary experiment that simulates a brute-force attack. In this experiment, we
assume that the attacker has a pre-trained obfuscator, and then trains multiple reconstructors to try
to recover sensitive information from a given feature map. During the training process, the obfus-
cator is not modified and only the reconstructors’ weights are updated (simulating the situation that
attackers wants to break the obfuscator). The off-diagonal entries of Table[3|show the reconstruction
PSNR when the attacker uses a different reconstruction method than the one used for training, The
PSNR values are also low and comparable to the reconstructor used for training the obfuscator. This
suggests that the obfuscator is able to remove most of the sensitive information from the feature
map, and that it is robust against different types of attackers on which it was not trained.

Finally, to demonstrate that adversarial training is useful, we train a variant of our framework that
removes the reconstructor and the adversarial training process, and the PSNR loss term in Eq[2]is
also removed. Reconstruction results are shown in Figure [5] Compared to our method, the recon-
structed images without the adversarial training have more detailed information about raw images,

Table 3: Average PSNR for different training and attacking reconstructors.

Training reconstructor
SimRec URec#l URec#2 ResRec
SimRec | 8.0306 7.9876 7.9278 8.0058
Attack URec#l | 8.0273 8.0020 8.9690 7.9975
Reconstructor URec#2 | 8.0222 7.9791 8.0129 8.0090
ResRec | 8.0317 7.9925 7.9630 8.0176
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Figure 5: The comparison between reconstructed images with adversarial training and without adversarial
training. The number under each image is the PSNR for the reconstruction.

and thus allow more private information to be leaked. Thus adversarial training plays an important
role in learning the obfuscator.

6 DISCUSSION AND CONCLUSION

We proposed a deep learning framework on privacy-preserving image classification tasks. Our
framework has three modules, the obfuscator, classifier, and reconstructor. The obfuscator works
as an feature extractor and sensitive information remover to protect users’ privacy without decreas-
ing the accuracy of the classifier. The reconstructor is an attacker, and has an opposite objective
to reveal the sensitive information. Based on this antagonism, we designed an adversarial training
methodology. Experiments showed our framework is qualified to protect users’ privacy and achieve
a relatively high accuracy on the image classification task.
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