
Published as a conference paper at ICLR 2019

DEEP GRAPH INFOMAX

Petar Veličković∗
Department of Computer Science and Technology
University of Cambridge
petar.velickovic@cst.cam.ac.uk

William Fedus
Mila – Québec Artificial Intelligence Institute
Google Brain
liamfedus@google.com

William L. Hamilton
Mila – Québec Artificial Intelligence Institute
McGill University
wlh@cs.mcgill.ca

Pietro Liò
Department of Computer Science and Technology
University of Cambridge
pietro.lio@cst.cam.ac.uk

Yoshua Bengio†
Mila – Québec Artificial Intelligence Institute
Université de Montréal
yoshua.bengio@mila.quebec

R Devon Hjelm
Microsoft Research
Mila – Québec Artificial Intelligence Institute
devon.hjelm@microsoft.com

ABSTRACT

We present Deep Graph Infomax (DGI), a general approach for learning node
representations within graph-structured data in an unsupervised manner. DGI re-
lies on maximizing mutual information between patch representations and corre-
sponding high-level summaries of graphs—both derived using established graph
convolutional network architectures. The learnt patch representations summarize
subgraphs centered around nodes of interest, and can thus be reused for down-
stream node-wise learning tasks. In contrast to most prior approaches to unsuper-
vised learning with GCNs, DGI does not rely on random walk objectives, and is
readily applicable to both transductive and inductive learning setups. We demon-
strate competitive performance on a variety of node classification benchmarks,
which at times even exceeds the performance of supervised learning.

1 INTRODUCTION

Generalizing neural networks to graph-structured inputs is one of the current major challenges of
machine learning (Bronstein et al., 2017; Hamilton et al., 2017b; Battaglia et al., 2018). While
significant strides have recently been made, notably with graph convolutional networks (Kipf &
Welling, 2016a; Gilmer et al., 2017; Veličković et al., 2018), most successful methods use supervised
learning, which is often not possible as most graph data in the wild is unlabeled. In addition, it
is often desirable to discover novel or interesting structure from large-scale graphs, and as such,
unsupervised graph learning is essential for many important tasks.

Currently, the dominant algorithms for unsupervised representation learning with graph-structured
data rely on random walk-based objectives (Grover & Leskovec, 2016; Perozzi et al., 2014; Tang
et al., 2015; Hamilton et al., 2017a), sometimes further simplified to reconstruct adjacency informa-
tion (Kipf & Welling, 2016b; Duran & Niepert, 2017). The underlying intuition is to train an encoder
network so that nodes that are “close” in the input graph are also “close” in the representation space.

While powerful—and related to traditional metrics such as the personalized PageRank score (Jeh
& Widom, 2003)—random walk methods suffer from known limitations. Most prominently, the
random-walk objective is known to over-emphasize proximity information at the expense of struc-
tural information (Ribeiro et al., 2017), and performance is highly dependent on hyperparameter
choice (Grover & Leskovec, 2016; Perozzi et al., 2014). Moreover, with the introduction of stronger
∗Work performed while the author was at Mila.
†CIFAR Fellow

1

Published as a conference paper at ICLR 2019

encoder models based on graph convolutions (Gilmer et al., 2017), it is unclear whether random-
walk objectives actually provide any useful signal, as these encoders already enforce an inductive
bias that neighboring nodes have similar representations.

In this work, we propose an alternative objective for unsupervised graph learning that is based upon
mutual information, rather than random walks. Recently, scalable estimation of mutual information
was made both possible and practical through Mutual Information Neural Estimation (MINE, Bel-
ghazi et al., 2018), which relies on training astatistics networkas a classi�er of samples coming
from the joint distribution of two random variables and their product of marginals. Following on
MINE, Hjelm et al. (2018) introduced Deep InfoMax (DIM) for learning representations of high-
dimensional data. DIM trains an encoder model to maximize the mutual information between a
high-level “global” representation and “local” parts of the input (such as patches of an image). This
encourages the encoder to carry the type of information that is present in all locations (and thus are
globally relevant), such as would be the case of a class label.

DIM relies heavily on convolutional neural network structure in the context of image data, and to our
knowledge, no work has applied mutual information maximization to graph-structured inputs. Here,
we adapt ideas from DIM to the graph domain, which can be thought of as having a more general
type of structure than the ones captured by convolutional neural networks. In the following sections,
we introduce our method calledDeep Graph Infomax(DGI). We demonstrate that the representation
learned by DGI is consistently competitive on both transductive and inductive classi�cation tasks,
often outperforming both supervised and unsupervised strong baselines in our experiments.

2 RELATED WORK

Contrastive methods. An important approach for unsupervised learning of representations is to
train an encoder to becontrastivebetween representations that capture statistical dependencies of
interest and those that do not. For example, a contrastive approach may employ ascoring function,
training the encoder to increase the score on “real” input (a.k.a, positive examples) and decrease the
score on “fake” input (a.k.a., negative samples). Contrastive methods are central to many popular
word-embedding methods (Collobert & Weston, 2008; Mnih & Kavukcuoglu, 2013; Mikolov et al.,
2013), but they are found in many unsupervised algorithms for learning representations of graph-
structured input as well. There are many ways to score a representation, but in the graph literature
the most common techniques use classi�cation (Perozzi et al., 2014; Grover & Leskovec, 2016;
Kipf & Welling, 2016b; Hamilton et al., 2017b), though other scoring functions are used (Duran
& Niepert, 2017; Bojchevski & G̈unnemann, 2018). DGI is also contrastive in this respect, as our
objective is based on classifying local-global pairs and negative-sampled counterparts.

Sampling strategies. A key implementation detail to contrastive methods is how to draw posi-
tive and negative samples. The prior work above on unsupervised graph representation learning
relies on a local contrastive loss (enforcing proximal nodes to have similar embeddings). Positive
samples typically correspond to pairs of nodes that appear together withinshort random walksin
the graph—from a language modelling perspective, effectively treating nodes aswordsand random
walks assentences. Recent work by Bojchevski & G̈unnemann (2018) uses node-anchored sam-
pling as an alternative. The negative sampling for these methods is primarily based on sampling
of random pairs, with recent work adapting this approach to use a curriculum-based negative sam-
pling scheme (with progressively “closer” negative examples; Ying et al., 2018a) or introducing an
adversary to select the negative examples (Bose et al., 2018).

Predictive coding. Contrastive predictive coding (CPC, Oord et al., 2018) is another method for
learning deep representations based on mutual information maximization. Like the models above,
CPC is also contrastive, in this case using an estimate of the conditional density (in the form of noise
contrastive estimation, Gutmann & Hyvärinen, 2010) as the scoring function. However, unlike our
approach, CPC and the graph methods above are allpredictive: the contrastive objective effectively
trains a predictor between structurally-speci�ed parts of the input (e.g., between neighboring node
pairs or between a node and its neighborhood). Our approach differs in that we contrast global /
local parts of a graph simultaneously, where the global variable is computed from all local variables.

To the best of our knowledge, the sole prior works that instead focuses on contrasting “global”
and “local” representations on graphs do so via (auto-)encoding objectives on the adjacency matrix

2

Published as a conference paper at ICLR 2019

(Wang et al., 2016) and incorporation of community-level constraints into node embeddings (Wang
et al., 2017). Both methods rely on matrix factorization-style losses and are thus not scalable to
larger graphs.

3 DGI METHODOLOGY

In this section, we will present the Deep Graph Infomax method in a top-down fashion: starting
with an abstract overview of our speci�c unsupervised learning setup, followed by an exposition of
the objective function optimized by our method, and concluding by enumerating all the steps of our
procedure in a single-graph setting.

3.1 GRAPH-BASED UNSUPERVISED LEARNING

We assume a generic graph-based unsupervised machine learning setup: we are provided with a set
of node features, X = f ~x1; ~x2; : : : ; ~xN g, whereN is the number of nodes in the graph and~xi 2 RF

represents the features of nodei . We are also provided with relational information between these
nodes in the form of anadjacency matrix, A 2 RN � N . While A may consist of arbitrary real
numbers (or even arbitrary edge features), in all our experiments we will assume the graphs to be
unweighted, i.e. A ij = 1 if there exists an edgei ! j in the graph andA ij = 0 otherwise.

Our objective is to learn anencoder, E : RN � F � RN � N ! RN � F 0
, such thatE(X ; A) = H =

f ~h1;~h2; : : : ;~hN g represents high-level representations~hi 2 RF 0
for each nodei . These represen-

tations may then be retrieved and used for downstream tasks, such as node classi�cation.

Here we will focus ongraph convolutionalencoders—a �exible class of node embedding architec-
tures, which generate node representations by repeated aggregation over local node neighborhoods
(Gilmer et al., 2017). A key consequence is that the produced node embeddings,~hi , summarize a
patchof the graph centered around nodei rather than just the node itself. In what follows, we will
often refer to~hi aspatch representationsto emphasize this point.

3.2 LOCAL-GLOBAL MUTUAL INFORMATION MAXIMIZATION

Our approach to learning the encoder relies onmaximizing local mutual information—that is, we
seek to obtain node (i.e., local) representations that capture the global information content of the
entire graph, represented by asummary vector, ~s.

In order to obtain the graph-level summary vectors,~s, we leverage areadout function, R : RN � F !
RF , and use it to summarize the obtained patch representations into agraph-level representation;
i.e.,~s = R(E(X ; A)) .

As a proxy for maximizing the local mutual information, we employ adiscriminator, D : RF �
RF ! R, such thatD(~hi ; ~s) represents the probability scores assigned to this patch-summary pair
(should be higher for patches contained within the summary).

Negative samples forD are provided by pairing the summary~s from (X ; A) with patch represen-

tations~ehj of an alternative graph,(eX ; eA). In a multi-graph setting, such graphs may be obtained
as other elements of a training set. However, for a single graph, an explicit (stochastic)corruption
function, C : RN � F � RN � N ! RM � F � RM � M is required to obtain a negative example from
the original graph, i.e.(eX ; eA) = C(X ; A). The choice of the negative sampling procedure will
govern the speci�c kinds of structural information that is desirable to be captured as a byproduct of
this maximization.

For the objective, we follow the intuitions from Deep InfoMax (DIM, Hjelm et al., 2018) and use a
noise-contrastive type objective with a standard binary cross-entropy (BCE) loss between the sam-
ples from the joint (positive examples) and the product of marginals (negative examples). Following

3

Published as a conference paper at ICLR 2019

their work, we use the following objective1:

L =
1

N + M

0

@
NX

i =1

E(X ;A)

h
logD

�
~hi ; ~s

�i
+

MX

j =1

E(eX ; eA)

�
log

�
1 � D

�
~ehj ; ~s

���
1

A (1)

This approach effectively maximizes mutual information between~hi and~s, based on the Jensen-
Shannon divergence2 between the joint and the product of marginals.

As all of the derived patch representations are driven to preserve mutual information with the global
graph summary, this allows for discovering and preserving similarities on the patch-level—for ex-
ample, distant nodes with similar structural roles (which are known to be a strong predictor for
many node classi�cation tasks; Donnat et al., 2018). Note that this is a “reversed” version of the
argument given by Hjelm et al. (2018): for node classi�cation, our aim is for thepatchesto establish
links to similar patches across the graph, rather than enforcing the summary to contain all of these
similarities (however, both of these effects should in principle occur simultaneously).

3.3 THEORETICAL MOTIVATION

We now provide some intuition that connects the classi�cation error of our discriminator to mutual
information maximization on graph representations.

Lemma 1. Letf X (k) gjX j
k=1 be a set of node representations drawn from an empirical probability dis-

tribution of graphs,p(X), with �nite number of elements,jX j, such thatp(X (k)) = p(X (k 0)) 8k; k0.
LetR(�) be a deterministic readout function on graphs and~s(k) = R(X (k)) be the summary vector
of thek-th graph, with marginal distributionp(~s). The optimal classi�er between the joint distri-
butionp(X ;~s) and the product of marginalsp(X)p(~s), assuming class balance, has an error rate
upper bounded byErr � = 1

2

P jX j
k=1 p(~s(k))2. This upper bound is achieved ifR is injective.

Proof. Denote byQ(k) the set of all graphs in the input set that are mapped to~s(k) by R, i.e.
Q(k) = f X (j) j R (X (j)) = ~s(k) g. As R(�) is deterministic, samples from the joint,(X (k) ; ~s(k)) are
drawn from the product of marginals with probabilityp(~s(k))p(X (k)), which decomposes into:

p(~s(k))
X

~s

p(X (k) ; ~s) = p(~s(k))p(X (k) j~s(k))p(~s(k)) =
p(X (k))

P
X 02Q (k) p(X 0)

p(~s(k))2 (2)

For convenience, let� (k) = p(X (k))P
X 02Q (k) p(X 0) . As, by de�nition, X (k) 2 Q (k) , it holds that� (k) � 1.

This probability ratio is maximized at1 whenQ(k) = f X (k) g, i.e. whenR is injective forX (k) .
The probability of drawing any sample of the joint from the product of marginals is then bounded
above by

P jX j
k=1 p(~s(k))2. As the probability of drawing(X (k) ; ~s(k)) from the joint is� (k) p(~s(k)) �

� (k) p(~s(k))2, we know that classifying these samples as coming from the joint has a lower error
than classifying them as coming from the product of marginals. The error rate of such a classi�er is
then the probability of drawing a sample from the joint as a sample from product of marginals under
the mixture probability, which we can bound byErr � 1

2

P jX j
k=1 p(~s(k))2, with the upper bound

achieved, as above, whenR(�) is injective for all elements off X (k) g.

It may be useful to note that12jX j � Err � � 1
2 . The �rst result is obtained via a trivial application

of Jensen's inequality, while the other extreme is reached only in the edge case of a constant readout
function (when every example from the joint is also an example from the product of marginals, so
no classi�er performs better than chance).

Corollary 1. From now on, assume that the readout function used,R, is injective. Assume the
number of allowable states in the space of~s, j~sj, is greater than or equal tojX j. Then, for~s?, the

1Note that Hjelm et al. (2018) use a softplus version of the binary cross-entropy.
2The “GAN” distance de�ned here—as per Goodfellow et al. (2014) and Nowozin et al. (2016)—and

Jensen-Shannon divergence can be related byD GAN = 2 D JS � log 4. Therefore, any parameters that op-
timize one also optimize the other.

4

Published as a conference paper at ICLR 2019

optimal summary under the classi�cation error of an optimal classi�er between the joint and the
product of marginals, it holds thatj~s? j = jX j.

Proof. By injectivity of R , we know that~s? = argmin ~s Err � . As the upper error bound,Err � ,
is a simple geometric sum, we know that this is minimized whenp(~s(k)) is uniform. AsR(�) is
deterministic, this implies that each potential summary state would need to be used at least once.
Combined with the conditionj~sj � j X j, we conclude that the optimum hasj~s? j = jX j.

Theorem 1. ~s? = argmax~s MI(X ;~s), whereMI is mutual information.

Proof. This follows from the fact that the mutual information is invariant under invertible trans-
forms. Asj~s? j = jX j andR is injective, it has an inverse function,R � 1. It follows then that, for
any~s, MI(X ;~s) � H (X) = MI(X ; X) = MI(X ; R(X)) = MI(X ;~s?), whereH is entropy.

Theorem 1 shows that for �nite input sets and suitable deterministic functions, minimizing the clas-
si�cation error in the discriminator can be used to maximize the mutual information between the
input and output. However, as was shown in Hjelm et al. (2018), this objective alone is not enough
to learn useful representations. As in their work, we discriminate between the global summary
vector and local high-level representations.

Theorem 2. Let X (k)
i = f ~xj gj 2 n (X (k) ;i) be the neighborhood of the nodei in thek-th graph that

collectively maps to its high-level features,~hi = E(X (k)
i), wheren is the neighborhood function that

returns the set of neighborhood indices of nodei for graphX (k) , andE is a deterministic encoder
function. Let us assume thatjX i j = jX j = j~sj � j ~hi j. Then, the~hi that minimizes the classi�cation
error betweenp(~hi ; ~s) andp(~hi)p(~s) also maximizesMI(X (k)

i ;~hi).

Proof. Given our assumption ofjX i j = j~sj, there exists an inverseX i = R � 1(~s), and therefore
~hi = E(R � 1(~s)) , i.e. there exists a deterministic function (E � R � 1) mapping~s to~hi . The optimal
classi�er between the jointp(~hi ; ~s) and the product of marginalsp(~hi)p(~s) then has (by Lemma 1)
an error rate upper bound ofErr � = 1

2

P jX j
k=1 p(~h(k)

i)2. Therefore (as in Corollary 1), for the optimal
~hi , j~hi j = jX i j, which by the same arguments as in Theorem 1 maximizes the mutual information
between the neighborhood and high-level features,MI(X (k)

i ;~hi).

This motivates our use of a classi�er between samples from the joint and the product of marginals,
and using the binary cross-entropy (BCE) loss to optimize this classi�er is well-understood in the
context of neural network optimization.

3.4 OVERVIEW OF DGI

Assuming the single-graph setup (i.e.,(X ; A) provided as input), we will now summarize the steps
of the Deep Graph Infomax procedure:

1. Sample a negative example by using the corruption function:(eX ; eA) � C (X ; A).

2. Obtain patch representations,~hi for the input graph by passing it through the encoder:
H = E(X ; A) = f ~h1;~h2; : : : ;~hN g.

3. Obtain patch representations,~ehj for the negative example by passing it through the encoder:
eH = E(eX ; eA) = f ~eh1;~eh2; : : : ;~ehM g.

4. Summarize the input graph by passing its patch representations through the readout func-
tion: ~s = R(H).

5. Update parameters ofE, R andD by applying gradient descent to maximize Equation 1.

This algorithm is fully summarized by Figure 1.

5

Published as a conference paper at ICLR 2019

Figure 1: A high-level overview of Deep Graph Infomax. Refer to Section 3.4 for more details.

Table 1: Summary of the datasets used in our experiments.

Dataset Task Nodes Edges Features Classes Train/Val/Test Nodes

Cora Transductive 2,708 5,429 1,433 7 140/500/1,000
Citeseer Transductive 3,327 4,732 3,703 6 120/500/1,000
Pubmed Transductive 19,717 44,338 500 3 60/500/1,000
Reddit Inductive 231,443 11,606,919 602 41 151,708/23,699/55,334

PPI Inductive 56,944 818,716 50 121 44,906/6,514/5,524
(24 graphs) (multilbl.) (20/2/2 graphs)

4 CLASSIFICATION PERFORMANCE

We have assessed the bene�ts of the representation learnt by the DGI encoder on a variety of node
classi�cation tasks (transductive as well as inductive), obtaining competitive results. In each case,
DGI was used to learn patch representations in a fully unsupervised manner, followed by evaluating
the node-level classi�cation utility of these representations. This was performed by directly using
these representations to train and test a simple linear (logistic regression) classi�er.

4.1 DATASETS

We follow the experimental setup described in Kipf & Welling (2016a) and Hamilton et al. (2017a)
on the following benchmark tasks: (1) classifying research papers into topics on the Cora, Cite-
seer and Pubmed citation networks (Sen et al., 2008); (2) predicting the community structure of a
social network modeled with Reddit posts; and (3) classifying protein roles within protein-protein
interaction (PPI) networks (Zitnik & Leskovec, 2017), requiring generalisation to unseen networks.

Further information on the datasets may be found in Table 1 and Appendix A.

4.2 EXPERIMENTAL SETUP

For each of three experimental settings (transductive learning, inductive learning on large graphs,
and multiple graphs), we employed distinct encoders and corruption functions appropriate to that
setting (described below).

Transductive learning. For the transductive learning tasks (Cora, Citeseer and Pubmed), our en-
coder is a one-layer Graph Convolutional Network (GCN) model (Kipf & Welling, 2016a), with the
following propagation rule:

E(X ; A) = �
�

D̂ � 1
2 Â D̂ � 1

2 X�
�

(3)

whereÂ = A + I N is the adjacency matrix with inserted self-loops andD̂ is its corresponding
degree matrix; i.e.D̂ ii =

P
j Â ij . For the nonlinearity,� , we have applied the parametric ReLU

6

Published as a conference paper at ICLR 2019

Figure 2: The DGI setup on large graphs (such as Reddit). Summary vectors,~s, are obtained by
combining several subsampled patch representations,~hi (here obtained by sampling three and two
neighbors in the �rst and second level, respectively).

(PReLU) function (He et al., 2015), and� 2 RF � F 0
is a learnable linear transformation applied

to every node, withF 0 = 512 features being computed (specially,F 0 = 256 on Pubmed due to
memory limitations).

The corruption function used in this setting is designed to encourage the representations to prop-
erly encode structural similarities of different nodes in the graph; for this purpose,C preserves the
original adjacency matrix (eA = A), whereas the corrupted features,eX , are obtained by row-wise
shuf�ing of X . That is, the corrupted graph consists of exactly the same nodes as the original graph,
but they are located in different places in the graph, and will therefore receive different patch repre-
sentations. We demonstrate DGI is stable to other choices of corruption functions in Appendix C,
but we �nd those that preserve the graph structure result in the strongest features.

Inductive learning on large graphs. For inductive learning, we may no longer use the GCN update
rule in our encoder (as the learned �lters rely on a �xed and known adjacency matrix); instead, we
apply themean-poolingpropagation rule, as used by GraphSAGE-GCN (Hamilton et al., 2017a):

MP(X ; A) = D̂ � 1ÂX� (4)

with parameters de�ned as in Equation 3. Note that multiplying byD̂ � 1 actually performs a normal-
ized sum (hence the mean-pooling). While Equation 4 explicitly speci�es the adjacency and degree
matrices,they are not needed: identical inductive behaviour may be observed by aconstantattention
mechanism across the node's neighbors, as used by the Const-GAT model (Veli�cković et al., 2018).

For Reddit, our encoder is a three-layer mean-pooling model with skip connections (He et al., 2016):

gMP(X ; A) = � (X� 0kMP(X ; A)) E(X ; A) = gMP3(gMP2(gMP1(X ; A); A); A) (5)

wherek is featurewise concatenation (i.e. the central node and its neighborhood are handled sepa-
rately). We computeF 0 = 512 features in each MP layer, with the PReLU activation for� .

Given the large scale of the dataset, it will not �t into GPU memory entirely. Therefore, we use
the subsampling approach of Hamilton et al. (2017a), where a minibatch of nodes is �rst selected,
and then a subgraph centered around each of them is obtained bysampling node neighborhoods
with replacement. Speci�cally, we sample 10, 10 and 25 neighbors at the �rst, second and third
level, respectively—thus, each subsampled patch has 1 + 10 + 100 + 2500 = 2611 nodes. Only the
computations necessary for deriving the central nodei 's patch representation,~hi , are performed.
These representations are then used to derive the summary vector,~s, for the minibatch (Figure 2).
We used minibatches of 256 nodes throughout training.

To de�ne our corruption function in this setting, we use a similar approach as in the transductive
tasks, but treat each subsampled patch as a separate graph to be corrupted (i.e., we row-wise shuf�e

7

Published as a conference paper at ICLR 2019

the feature matrices within a subsampled patch). Note that this may very likely cause the central
node's features to be swapped out for a sampled neighbor's features, further encouraging diversity
in the negative samples. The patch representation obtained in the central node is then submitted to
the discriminator.

Inductive learning on multiple graphs. For the PPI dataset, inspired by previous successful super-
vised architectures (Veli�cković et al., 2018), our encoder is a three-layer mean-pooling model with
dense skip connections (He et al., 2016; Huang et al., 2017):

H 1 = � (MP1(X ; A)) (6)
H 2 = � (MP2(H 1 + XW skip; A)) (7)

E(X ; A) = � (MP3(H 2 + H 1 + XW skip; A)) (8)

whereW skip is a learnable projection matrix, and MP is as de�ned in Equation 4. We compute
F 0 = 512 features in each MP layer, using the PReLU activation for� .

In this multiple-graph setting, we opted to userandomly sampled training graphsas negative exam-
ples (i.e., our corruption function simply samples a different graph from the training set). We found
this method to be the most stable, considering that over 40% of the nodes have all-zero features in
this dataset. To further expand the pool of negative examples, we also apply dropout (Srivastava
et al., 2014) to the input features of the sampled graph. We found it bene�cial to standardize the
learnt embeddings across the training set prior to providing them to the logistic regression model.

Readout, discriminator, and additional training details. Across all three experimental settings,
we employed identical readout functions and discriminator architectures.

For the readout function, we use a simple averaging of all the nodes' features:

R(H) = �

1
N

NX

i =1

~hi

!

(9)

where� is the logistic sigmoid nonlinearity. While we have found this readout to perform the best
across all our experiments, we assume that its power will diminish with the increase in graph size,
and in those cases, more sophisticated readout architectures such as set2vec (Vinyals et al., 2015) or
DiffPool (Ying et al., 2018b) are likely to be more appropriate.

The discriminator scores summary-patch representation pairs by applying a simple bilinear scoring
function (similar to the scoring used by Oord et al. (2018)):

D(~hi ; ~s) = �
�
~hT

i W ~s
�

(10)

Here,W is a learnable scoring matrix and� is the logistic sigmoid nonlinearity, used to convert
scores into probabilities of(~hi ; ~s) being a positive example.

All models are initialized using Glorot initialization (Glorot & Bengio, 2010) and trained to maxi-
mize the mutual information provided in Equation 1 on the available nodes (all nodes for the trans-
ductive, and training nodes only in the inductive setup) using the Adam SGD optimizer (Kingma
& Ba, 2014) with an initial learning rate of 0.001 (specially,10� 5 on Reddit). On the transduc-
tive datasets, we use an early stopping strategy on the observedtraining loss, with a patience of 20
epochs3. On the inductive datasets we train for a �xed number of epochs (150 on Reddit, 20 on PPI).

4.3 RESULTS

The results of our comparative evaluation experiments are summarized in Table 2.

For the transductive tasks, we report the mean classi�cation accuracy (with standard deviation) on
the test nodes of our method after 50 runs of training (followed by logistic regression), and reuse the
metrics already reported in Kipf & Welling (2016a) for the performance of DeepWalk and GCN, as
well as Label Propagation (LP) (Zhu et al., 2003) and Planetoid (Yang et al., 2016)—a representative
supervised random walk method. Specially, we provide results for training the logistic regression
on raw input features, as well as DeepWalk with the input features concatenated.

3 A reference DGI implementation may be found athttps://github.com/PetarV-/DGI .

8

Published as a conference paper at ICLR 2019

Table 2: Summary of results in terms of classi�cation accuracies (on transductive tasks) or micro-
averaged F1 scores (on inductive tasks). In the �rst column, we highlight the kind of data available
to each method during training (X : features,A : adjacency matrix,Y : labels). “GCN” corresponds
to a two-layer DGI encoder trained in a supervised manner.

Transductive

Available data Method Cora Citeseer Pubmed

X Raw features 47.9� 0.4% 49.3� 0.2% 69.1� 0.3%
A ; Y LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
A DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
X ; A DeepWalk + features 70.7� 0.6% 51.4� 0.5% 74.3� 0.9%

X ; A Random-Init (ours) 69.3� 1.4% 61.9� 1.6% 69.6� 1.9%
X ; A DGI (ours) 82.3� 0.6% 71.8� 0.7% 76.8� 0.6%

X ; A ; Y GCN (Kipf & Welling, 2016a) 81.5% 70.3% 79.0%
X ; A ; Y Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%

Inductive

Available data Method Reddit PPI

X Raw features 0.585 0.422
A DeepWalk (Perozzi et al., 2014) 0.324 —
X ; A DeepWalk + features 0.691 —

X ; A GraphSAGE-GCN (Hamilton et al., 2017a) 0.908 0.465
X ; A GraphSAGE-mean (Hamilton et al., 2017a) 0.897 0.486
X ; A GraphSAGE-LSTM (Hamilton et al., 2017a) 0.907 0.482
X ; A GraphSAGE-pool (Hamilton et al., 2017a) 0.892 0.502

X ; A Random-Init (ours) 0.933� 0.001 0.626� 0.002
X ; A DGI (ours) 0.940� 0.001 0.638� 0.002

X ; A ; Y FastGCN (Chen et al., 2018) 0.937 —
X ; A ; Y Avg. pooling (Zhang et al., 2018) 0.958� 0.001 0.969� 0.002

For the inductive tasks, we report the micro-averaged F1 score on the (unseen) test nodes, aver-
aged after 50 runs of training, and reuse the metrics already reported in Hamilton et al. (2017a) for
the other techniques. Speci�cally, as our setup is unsupervised, we compare against the unsuper-
vised GraphSAGE approaches. We also provide supervised results for two related architectures—
FastGCN (Chen et al., 2018) and Avg. pooling (Zhang et al., 2018).

Our results demonstrate strong performance being achieved across all �ve datasets. We particularly
note that the DGI approach is competitive with the results reported for the GCN modelwith the
supervised loss, even exceeding its performance on the Cora and Citeseer datasets. We assume that
these bene�ts stem from the fact that, indirectly, the DGI approach allows for every node to have
access to structural properties of the entire graph, whereas the supervised GCN is limited to only
two-layer neighborhoods (by the extreme sparsity of the training signal and the corresponding threat
of over�tting). It should be noted that, while we are capable of outperforming equivalent supervised
encoder architectures, our performance still does not surpass the current supervised transductive
state of the art (which is held by methods such as GraphSGAN (Ding et al., 2018)). We further ob-
serve that the DGI method successfully outperformed all the competing unsupervised GraphSAGE
approaches on the Reddit and PPI datasets—thus verifying the potential of methods based on local
mutual information maximization in the inductive node classi�cation domain. Our Reddit results are
competitive with the supervised state of the art, whereas on PPI the gap is still large—we believe this
can be attributed to the extreme sparsity of available node features (over 40% of the nodes having
all-zero features), that our encoder heavily relies on.

We note that arandomly initializedgraph convolutional network may already extract highly useful
features and represents a strong baseline—a well-known fact, considering its links to the Weisfeiler-

9

	Introduction
	Related Work
	DGI Methodology
	Graph-based unsupervised learning
	Local-global mutual information maximization
	Theoretical motivation
	Overview of DGI

	Classification performance
	Datasets
	Experimental setup
	Results

	Qualitative analysis
	Conclusions
	Further dataset details
	Further qualitative analysis
	Robustness to Choice of Corruption Function

