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ABSTRACT

We propose an approximate strategy to efficiently train neural network based
language models over very large vocabularies. Our approach, called adap-
tive softmax, circumvents the linear dependency on the vocabulary size by ex-
ploiting the unbalanced word distribution to form clusters that explicitly min-
imize the expectation of computational complexity. Our approach further re-
duces the computational cost by exploiting the specificities of modern archi-
tectures and matrix-matrix vector operations, making it particularly suited for
graphical processing units. Our experiments carried out on standard bench-
marks, such as EuroParl and One Billion Word, show that our approach brings
a large gain in efficiency over standard approximations while achieving an ac-
curacy close to that of the full softmax. The code of our method is available at
https://github.com/facebookresearch/adaptive-softmax.

1 INTRODUCTION

This paper considers strategies to learn parametric models for language modeling with very large
vocabularies. This problem is key to natural language processing, with applications in machine
translation (Schwenk et al., 2012; Sutskever et al., 2014; Vaswani et al., 2013) or automatic speech
recognition (Graves et al., 2013; Hinton et al., 2012). In particular, Neural Network Language Models
(NNLMs) have received a renewed interest in recent years, by achieving state of the art performance
on standard benchmarks (Jozefowicz et al., 2016; Mikolov et al., 2010). These approaches are more
costly but generalize better than traditional non-parametric models (Bahl et al., 1983; Kneser & Ney,
1995).

Statistical language models assign a probability to words given their history (Bahl et al., 1983). They
are evaluated by objective criteria such as perplexity (ppl), which directly measures the ability of the
system to determine proper probabilities for all the words. This potentially makes parametric models
prohibitively slow to train on corpara with very large vocabulary. For instance, the vocabulary of the
One Billion Word benchmark (Chelba et al., 2013) contains around 800K words. In standard NNLMs,
such as feedforward networks (Bengio et al., 2003a) or recurrent networks (Mikolov et al., 2010),
computing this probability over the whole vocabulary is the bottleneck. Many solutions have been
proposed to reduce the complexity of this expensive step (Bengio et al., 2003b; Goodman, 2001a;
Gutmann & Hyvärinen, 2010). We distinguish (i) the methods that consider the original distribution
and aim at providing approximations of the probabilities, or of a subset of them (Bengio et al., 2003b;
Ji et al., 2015), from (ii) the approaches that compute exact probabilities for an approximate model
yielding a lower computational cost, such as the popular hierarchical softmax (Goodman, 2001a;
Mnih & Hinton, 2009; Morin & Bengio, 2005).

Our approach, called adaptive softmax, belongs to the second category. More specifically, it is
inspired by the hierarchical softmax and its subsequent variants. In contrast to previous works and
motivated by the trend that GPUs are comparatively more and more performant than CPUs, our design
is oriented towards efficient processing on GPUs. In this context, our paper makes the following
points:

• We define a strategy to produce an approximate hierarchical model. It departs from previous
ones in that it explicitly takes into account the complexity of matrix-matrix multiplications
on modern architectures, which is not trivially linear in the dimensions of the matrices.
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• We conduct an empirical complexity analysis of this model on recent GPUs. This leads us
to define a realistic complexity model that is incorporated in the proposed optimization;

• Our approach provides a significant acceleration factor compared to the regular softmax,
i.e., 2× to 10× speed-ups. Equivalently we improve the accuracy under computational
constraints. Importantly, on the largest corpus, this higher efficiency empirically comes at
no cost in accuracy for a given amount of training data, in contrast to concurrent approaches
improving the efficiency.

This paper is organized as follows. Section 2 briefly reviews the related work and Section 3 provides
some background on the language modeling task that we consider. Section 4 describes our proposal,
which is subsequently evaluated in Section 5 on typical benchmarks of the language modeling
literature, including Text8, Europarl and One Billion Word datasets.

2 RELATED WORK

Many methods have been proposed to approximate the softmax efficiently (Bengio et al., 2003b;
Goodman, 2001a; Gutmann & Hyvärinen, 2010; Morin & Bengio, 2005). We briefly describe the
most popular ones below and point the reader to Chen et al. (2015) for a comparative study. For
the sake of completeness, we refer the reader to other strategies that can speed-up the training of
language models in complementary manners (Mikolov et al., 2011b).

Loss function approximation. The Hierarchical Softmax (HSM) is an approximation of the soft-
max function introduced by Goodman (2001a). This approach is generally used with a two-level
tree (Goodman, 2001a; Mikolov et al., 2011c) but has also been extended to deeper hierarchies (Morin
& Bengio, 2005; Mnih & Hinton, 2009). In general, the hierarchy structure is built on word simi-
larities (Brown et al., 1992; Le et al., 2011; Mikolov et al., 2013) or frequency binning (Mikolov
et al., 2011c). In particular, Mikolov et al. (2013) proposes an optimal hierarchy by constructing a
Huffman coding based on frequency. However this coding scheme does not take into account the
theoretical complexity reduction offered by matrix-matrix multiplication and distributed computation,
in particular with modern GPUs.

Similar to our work, Zweig & Makarychev (2013) constructs their hierachy in order to explicitly
reduce the computational complexity. They also solve the assignment problem with dynamic
programming. However, they only consider hierachies where words are kept in the leaves of the tree,
leading to a significant drop of performance (reported to be around 5− 10%), forcing them to also
optimize for word similarity. In our case, allowing classes to be stored in the internal node of the
tree leads to almost no drop of performance. Also, they assume a linear cost for the vector-matrix
operation which significantly limits the use of their approach on distributed system such as GPU.

The idea of keeping a short-list of the most frequent words has been explored before (Le et al., 2011;
Schwenk, 2007). In particular, Le et al. (2011) combines a short-list with a hierachical softmax based
on word representation. In contrast, the word hierarchy that we introduce in Section 4 explicitly aims
at reducing the complexity.

Our work also shares similarities with the d-softmax introduced by Chen et al. (2015). They assign
capacity to words according to their frequency to speed up the training. Less frequent words have
smaller classifiers than frequent ones. Unlike our method, their formulation requires accessing the
whole vocabulary to evaluate the probability of a word.

Sampling based approximation. Sampling based approaches have been successfully applied to
approximate the softmax function over large dictionaries in different domains, such as language
modeling (Jozefowicz et al., 2016), machine translation (Jean et al., 2015) and computer vision (Joulin
et al., 2015). In particular, importance sampling (Bengio & Senécal, 2008; Bengio et al., 2003b)
selects a subset of negative targets to approximate the softmax normalization. Different schemes
have been proposed for sampling, such as the unigram and bigram distribution (Bengio et al., 2003b)
or more recently, a power-raised distribution of the unigram (Ji et al., 2015; Mikolov et al., 2013).
While this approach often leads to significant speed-up at train time, it still requires to evaluate the
full softmax at test time.
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Self-normalized approaches. Self-normalized approaches aim at learning naturally normalized
classifier, to avoid computing the softmax normalization. Popular methods are Noise Contrastive
Estimation (Gutmann & Hyvärinen, 2010; Mnih & Teh, 2012; Vaswani et al., 2013) or a penalization
on the normalization function (Andreas & Klein, 2014; Devlin et al., 2014). Noise Contrastive
Estimation (Gutmann & Hyvärinen, 2010) replaces the softmax by a binary classifier distinguishing
the original distribution form a noisy one. While the original formulation still requires to compute
the softmax normalization, Mnih & Teh (2012) shows that good performance can be achieved even
without it.

Finally, Vincent et al. (2015) have also proposed an efficient way to train model with high dimensional
output space. Their approach is exact and leads to a promising speed-up but it cannot be directly
applied to the softmax function, limiting its potential application to language modeling.

3 PRELIMINARIES ON LANGUAGE MODELING

The goal of language modeling is to learn a probability distribution over a sequence of words from
a given dictionary V . The joint distribution is defined as a product of conditional distribution of
tokens given their past (Bahl et al., 1983). More precisely, the probability of a sequence of T words
w1, . . . , wT ∈ VT is given as

P (w1, . . . , wT ) =

T∏
t=1

P (wt | wt−1, . . . , w1). (1)

This problem is traditionally addressed with non-parameteric models based on counting statis-
tics (Goodman, 2001b). In particular, smoothed N-gram models (Bahl et al., 1983; Katz, 1987;
Kneser & Ney, 1995) achieve good performance in practice (Mikolov et al., 2011a), especially
when they are associated with cache models (Kuhn & De Mori, 1990). More recently, parametric
models based on neural networks have gained popularity for language modeling (Bengio et al., 2003a;
Jozefowicz et al., 2016; Mikolov et al., 2010). They are mostly either feedforward networks (Bengio
et al., 2003a) or recurrent networks (Mikolov et al., 2010).

Feedforward network. In a standard feedforward network for language modeling, we fix a window
of length N and predict the next words according to the words appearing in this window. In the
simplest case, this probability is represented by a 2-layer neural network acting on an input xt ∈ VN ,
defined as the concatenation of the one-hot representation of the N previous words, wt−N+1, . . . , wt.
The state ht of the hidden layer and subsequently the vector of scores yt associated with the next
token wt+1 are computed as

ht = σ(APxt), (2)
yt = f(Bht), (3)

where σ is a non linearity, e.g., the pointwise sigmoid function σ(z) = 1/(1+exp(−z)), and f is the
softmax function discussed in the next section. This model is parameterized by the weight matrices
P , A and B and is routinely learned with an optimization scheme such as stochastic gradient descent
or Adagrad (Duchi et al., 2011).

Recurrent network. A Recurrent network (Elman, 1990) extends a feedforward network in that
the current state of the hidden layer also depends on its previous state. The hidden state ht is
updated according to the equation ht = σ(Awt + Rht−1), where R is a weight matrix and xt is
the one-hot representation of the current word wt. Computing the exact gradient for this model is
challenging but it is possible to compute an efficient and stable approximation of it, using a truncated
back-propagation through time (Werbos, 1990; Williams & Peng, 1990) and norm clipping (Mikolov
et al., 2010).

Since the model introduced by Elman (1990), many extensions have been proposed, such as Longer
Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997), Gated recurrent units (Chung et al.,
2014) or structurally constrained network (Mikolov et al., 2014). These models have been successfully
used in the context of language modeling (Jozefowicz et al., 2016; Mikolov et al., 2010; Mikolov
& Zweig, 2012). In this work, we focus on the standard word level LSTM architecture since it has
obtained state of the art performance on the challenging One Billion Word Benchmark (Jozefowicz
et al., 2016).
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Class-based hierarchical softmax. In neural language modeling, predicting the probability of the
next word requires to compute scores for every word in the vocabulary and to normalize them to
form a probability distribution. This is typically achieved by applying a softmax function to the
unnormalized score zw associate with each word w, where the softmax function is defined as

f(zw) =
exp(zw)∑

w′∈V exp(zw′)
. (4)

For a vocabulary comprising k = |V| words, this function requires O(k) operations once the scores
are computed. In the case of neural networks, the overall complexity is O(dk), where d is the size
of the last hidden layer. When the vocabulary is large, this step is computationally expensive and
often dominates the computation of the whole model (Jozefowicz et al., 2016; Mikolov et al., 2014),
as discussed in introduction and related work. A simple approach (Goodman, 2001a) to reduce this
computational cost is to assign each word w of the vocabulary to a unique class C(w) and to factorize
the probability distribution over words as

p(wt | ht) = p1(C(wt) | ht)× p2(wt | C(wt), ht),

where p1 and p2 are obtained using the softmax function (Eq. 4). If each class contains
√
k words,

the computational cost is reduced from O(dk) to O(d
√
k).

4 OUR APPROACH: THE ADAPTIVE SOFTMAX

In this section, we propose the adaptive softmax, a simple speedup technique for the computation of
probability distributions over words. The adaptive softmax is inspired by the class-based hierarchical
softmax, where the word classes are built to minimize the computational complexity. Our method is
designed to be efficient for GPUs, which are commonly used to train neural networks. For the sake of
clarity, we first present the intuition behind our method in the simple case where we simply split our
dictionary in two distinct clusters, before analyzing a more general case.

4.1 GPU COMPUTATIONAL MODEL

The bottleneck of the model described in the previous section is the matrix multiplication between
the matrix representing the hidden states (of size B × d, where B denotes the batch size), and the
matrix of word representations, of size d× k. For a fixed size d of the hidden layer, we denote by
g(k,B, d) the complexity of this multiplication, and simplify the notation wherever some parameters
are fixed. Figure 1 reports empirical timings as a function of k for typical parameters of B and d for
two GPU models, namely K40 and Maxwell. We observe that the complexity g(k) is constant for
low values of k, until a certain inflection point k0 ≈ 50, and then becomes affine for values k > k0.
This suggests a cost function of the form

g(k) = max(c+ λk0, c+ λk) = cm +max
[
0, λ(k − k0)

]
. (5)

Empirically, cm = 0.40ms on a K40 and 0.22 ms on a Maxwell. We observe the same behavior when
measuring the timings as a function of the other parameters, i.e., it is inefficient to matrix-multiply
when one of the dimensions is small. This observation suggests that hierarchical organizations of
words with a low number of children per node, such as binary Huffman codes, are highly suboptimal.

4.2 INTUITION: THE TWO-CLUSTERS CASE

In natural languages, the distribution of the words notoriously follows a Zipf law (Zipf, 1949).
Most of the probability mass is covered by a small fraction of the dictionary, e.g., 87% of the
document is covered by only 20% of the vocabulary in the Penn TreeBank. Similar to the frequency
binning hierarchical softmax (Mikolov et al., 2011c), this information can be exploited to reduce the
computation cost.

A simple strategy to reduce the overall complexity is to partition the dictionary V into two clusters as
Vh and Vt, where Vh denotes the head of the distribution consisting of the most frequent words, and
where Vt is the tail associated with a large number of rare words. The classifier frequently accesses
the head, which motivates the fact that it should be computed efficiently. In contrast, the tail occurs
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Figure 1: GPU timings for multi-
plying two matrices in the dominant
step of the RNN model. We con-
sider matrices of size 2560 × 2048
and 2048 × k representing hidden
states and word representations. We
report the timings as a function of
k (number of word representations),
and we compute the averages (cir-
cles) over 1000 measures, and the
minima and maxima for the K40.
The standard deviation does not ex-
ceed 5% of each timing.

less frequently and the corresponding computation can be slower. This suggests to define clusters with
unbalanced cardinalities |Vh| � |Vt| and probabilities P (Vh)� P (Vt), where P (A) =

∑
w∈A pi

is the probability of a word to occur in the set Vi. For instance, one may define the head would only
contain 20% of the vocabulary (covering for 87% on PennTree Bank). These two clusters can be
organized in two different ways: either they are both leaves of a 2-level tree (Mikolov et al., 2011c),
or the head cluster is kept as a short-list in the root node (Le et al., 2011). We now analyze what is
the best structure and how to split the vocabulary by determining the corresponding complexities,
assuming that the head consists of the most frequent words. The next subsection shows the optimality
of this choice.

Given a vocabulary of k words, we are looking for the number kh = |Vh| of words from the head of
the distribution to be assigned to the first cluster. These words will cover for ph of the distribution.
The tail cluster will then contain the rest of the vocabulary, made of kt = k − kh words and covering
for pt = 1− ph of the overall distribution. We denote by g(k, d) the computational complexity of
computing the softmax function over k words with d dimensional input features. Figure 1 shows
an example of this function for a fixed d. The complexity of putting the head of the distribution in
the root of the tree is g(kh + 1, d) + ptg(kt, d), while the complexity associated with putting both
cluster in leaves is g(2, d) + phg(kh, d) + ptg(kt, d). Depending on the distribution of a corpus, it is
then simple to choose the best assignment of words into the two clusters. For example, on PennTree
Bank, with a hidden layer of size d = 128, the optimal configuration is to keep a short-list of 1400
classes in the root node, leading to an average cost of 0.33 ms per batch of size 512, while it takes
0.36 ms when both clusters are in the leaves. In comparison, the full softmax takes 0.80 ms for the
same configuration, leading to a ×2.4 speed-up.

Adapting the classifier capacity for each cluster. Each cluster is accessed independently of each
other, they thus do not need to have the same capacity. Frequent words need high capacity to be
predicted correctly. In contrast, rare words cannot be learned very well, since we only see them a few
times. It would then be wasteful to associate them with high capacity. Like in Chen et al. (2015),
we exploit this observation to further reduce the computational cost of our classifier. Unlike Chen
et al. (2015), we share the state of hidden layer across clusters and simply reduce the input size of the
classifiers by applying a projection matrix. Typically, the projection matrix for the tail cluster reduces
the size from d to dt = d/4, reducing the complexity from g(kt, d) to g(dt, d) + g(kt, dt).

Compromising between efficiency and accuracy. We observe empirically that putting all the
clusters in the leaves of the tree leads to a significant drop of performance (around 5− 10% perfor-
mance drop, Mikolov et al., 2011c; Zweig & Makarychev, 2013). The reason is that the probability
of every word w belonging to a cluster c is multiplied by the probability of its class, i.e., it is equal to
P (c | h)P (w | c, h), while attaching a frequent word directly to the root associates it directly to the
probability P (w | h) making its inference sharper. For this reason, unless there is a significant differ-
ence in computational complexity, we favor using a short-list, over the standard 2-level hierarchical
softmax.
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Figure 2: Our hierarchical model is organized
as (i) a first level that includes both the most
frequent words and vectors representing clus-
ters, and (ii) clusters on the second level that
are associated with rare words, the largest
ones being associated with the less frequent
words. The sizes are determined so as to min-
imize our cost model on GPU.

4.3 GENERAL CASE

Let us now consider the more general case where the dictionary is partitioned as V = Vh ∪ V1 . . .VJ ,
Vi ∩ Vj = ∅ if i 6= j. We consider the hierarchical model depicted in Figure 2, where the sub-
dictionary Vh is accessed at the first level, and the others in the second level. We now investigate
the computational cost C of the forward (equivalently, backward) pass of this approximate softmax
layer. For the time being, we fix the batch size B and the dimensionality d of the hidden layer, in
order to analyze the complexity as a function of the sub-dictionary sizes and probabilities. We denote
by pi =

∑
w∈Vi p(w) the probability P (w ∈ Vi) and ki = |Vi| the cardinality of each cluster.

The expected cost C is decomposed as C = Ch +
∑

i Ci, where

Ch = ph g(J + kh) and ∀i, Ci = pi
[
g(J + kh) + g(ki)

]
, (6)

leading to
C = g(J + kh) +

∑
i

pi g(ki). (7)

We add the constraint k ≥ k0 to ensure that there is no penalty induced by the constant part of the
cost model of Equation 5, the previous equation simplifies as

C = c+ λ(J + kh) +
∑
i

pi(c+ λki) (8)

= c(2− ph) + λ
[
J + kh +

∑
i

pi ki
]
. (9)

Let us discuss this equation, by first considering that the cardinalities of the sub-vocabularies are
fixed. The right-most term is the only one that depends on the word probabilities. For two distinct
clusters Vi and Vj , we can re-write pjkj as (pi+j − pi)kj , where pi+j = pi + pj , so that

piki + pjkj = pi(ki − kj) + pi+jkj . (10)

Without loss of generality, we assume that ki > kj . The quantities pi+j , ki and kj being fixed, the
second term of the right-hand side of this equation is constant, and the best strategy is trivially to
minimize the probability of the largest cluster Vi. In other terms, an optimal solution for Equation 9
requires that the most frequent words are assigned to the smallest cluster. This remark is true for
any tuple (i, j), and we easily see that this point also holds for the head cluster. As a consequence,
for a fixed number of clusters of given sizes, the best strategy is to assign the words by decreasing
probabilities to clusters of increasing size. Note, this analysis remains valid as long as the g is
monotonically increasing in k.

Determining ki with J fixed: dynamic programming. We now assume that the number of
clusters is fixed. Following our analysis above, the optimization solely depends on the cardinalities
ki for all clusters, which perfectly determines how to split the list of words ordered by frequency. We
solve this problem by dynamic programming.

Finding the number of clusters. The only remaining free variable in our optimization is J , since
the other parameters are then determined by the aforementioned optimizations. For this step, the
cost of Equation 9 over-estimates the number of clusters because we have neglected the effect of the
non-linearity of the batch size: in the second layer, the batches are typically smaller than the inflection
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ppl training time

full softmax 144 83 min
sampling 166 41 min
HSM (freq) 166 34 min
D-softmax 195 53 min
D-softmax [*] 147 54 min

Ours 147 30 min

Table 1: Text8. Perplexity and training time after 5 epochs.
Our approach is significantly better than other published
approximate strategies. We also show that improving the
baseline D-softmax [*] as discussed in text improve the
results, but is slower than our proposal.
Note, approximate strategies are comparatively less inter-
esting for small vocabularies such as in this case.

���

����

����

����

����

����

����

�� ���� ���� ���� ���� ���� ���� ���� ����

�
��
�
��
��
��

����������

������������
��������

���
�������������

����

Figure 3: Training on Europarl
(Finnish): perplexity (on validation) as
the function of time for our method
and approaches from the state of the
art. We represent the result after each
epoch by a point. Our method fa-
vorably compares with all other ap-
proaches w.r.t. the tradeoff perplexity
and training time, and of training data
vs perplexity. Similar conclusions are
drawn for the other languages.

point k0. In practice, we optimize over small values of J = 1, 2, 3, 4 and empirically determine the
best compromise speed/perplexity on training data. Note, having a lower number of clusters with
numerous frequent words on the first level has another flavor: we empirically observe that it offers a
better perplexity than word hierarchy with a large number of clusters. It is comparable to that of the
exact softmax for large corpora, as shown later by our experiments.

5 EXPERIMENTS

This section provides a set of experiments aiming at analyzing the trade-off between actual complexity
and effectiveness of several strategies, in particular the approach presented in the previous section.
First we describe our evaluation protocol, then we evaluate some of the properties of our model and
finally we compare it on standard benchmark against standard baselines.

Datasets. We evaluate our method on standard datasets, and use the perplexity (ppl) as an evaluation
metric, as the function of the training time or of the number of training data (epochs). The datasets
have varying vocabulary sizes, in different languages, which allows us to better understand the
strengths and weaknesses of the different approaches.

• Text81 is a standard compression dataset containing a pre-processed version of the first
100 million characters from Wikipedia in English. It has been recently used for language
modeling (Mikolov et al., 2014) and has a vocabulary of 44k words.

• Europarl2 is a machine translation corpus, containing 20 languages (Koehn, 2005). For
most languages, there are 10M–60M tokens and the vocabulary is in between 44k and 250k
words.

• One Billion Word 3 is a massive corpus introduced by Chelba et al. (2013). It contains 0.8B
tokens and a vocabulary comprising almost 800k words.

Implementation details. We use an LSTM with one layer in all our experiments. On Text8 and
Europarl, the models have d = 512 hidden units and are regularized with weight decay (λ = 10−6).

1http://mattmahoney.net/dc/textdata
2http://www.statmt.org/europarl/
3https://code.google.com/archive/p/1-billion-word-language-modeling-benchmark/
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Model Test perplexity

Interpolated Kneser-Ney 5-gram (Chelba et al., 2013) 67.6
Feedforward NN + D-Softmax (Chen et al., 2015) 91.2
4-layer IRNN-512 (Le et al., 2015) 69.4
RNN-2048 + BlackOut sampling (Ji et al., 2015) 68.3
Sparse Non-negative Matrix Language Model (Shazeer et al., 2015) 52.9
RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013) 51.3
LSTM-2048-512 (Jozefowicz et al., 2016) 43.7
2-layer LSTM-8192-1024 + CNN inputs (Jozefowicz et al., 2016) 30.0

Ours (LSTM-2048) 43.9
Ours (2-layer LSTM-2048) 39.8

Table 2: One Billion Word benchmark. Perplexity on the test set for single models. Our result is
obtained after 5 epochs.

On the One Billion Word benchmark, we use d = 2048 hidden units and no regularization. The
dimension of the input word embeddings is set to 256, so that large models fit in GPU memory. For
the backpropagation through time, we unroll the models for 20 steps. We use Adagrad (Duchi et al.,
2011), with a step size of 0.1 and 5 epochs, and we clip the norm of the gradients to 1. The batch size
B is set to 128, except on the Finnish portion of Europarl where B=64 due to memory constraints.
All the experiments were run on the same GPU with the Maxwell architecture.

Baselines. Our method is compared to: (1) the full softmax, (2) the hierarchical softmax (HSM)
with frequency binning (Mikolov et al., 2011b), (3) importance sampling (Bengio et al., 2003b;
Bengio & Senécal, 2008) and (4) the differentiated softmax (Chen et al., 2015). For HSM, we tried
different strategies for the binning. We observe that using the square root function on the count before
computing the word bins is the most efficient. For the negative sampling method, we used a number
of samples equal to 20% of the size of the vocabulary (Chen et al., 2015). For the differentiated
softmax (D-softmax), we used the same partitions for the vocabulary as for our approach. We tried
two version of the differentiated softmax. The first is the one described by Chen et al. (2015), where
each word cluster uses a disjoint subset of the hidden representation. We also present an improved
version, referred to as D-softmax [*], which uses our choice to have the whole hidden representation
mapped to the different word clusters using projection matrices of different sizes.

Comparison with the state of the art. Table 1 reports the results that we achieve on Text8. On
this small vocabulary, approximate methods are comparatively less interesting. Our approach is the
only one to approach the result of the full soft-max (below by 3 points of perplexity), while being the
fastest. Our improved variant D-softmax [*] of the work by Chen et al. (2015) obtains similar results
but is slower by a factor ×1.8.

On Europarl, we first present the convergence properties of our approach compared to other approxi-
mate strategies in Figure 3 show the perplexity (ppl) as a function of training time. Our approach
significantly outperforms all competitors by a large margin. For reference, we also show the perfor-
mance (D-softmax [*]) obtained by improving the D-softmax, to make it more comparable to our
method. Our method is 2× to 3× faster than this improved competitor, which demonstrates how
critical is our optimization strategy. Similar conclusions are drawn from Table 3 for other languages
from the Europal corpus.

Table 2 gives the test perplexity on One Billion Word benchmark: Our method achieves a perplexity
of 43.9 after five epochs, taking less than three days to train on a single GPU. In comparison, only
Jozefowicz et al. (2016) achieves a lower perplexity, but with a model 8× bigger than ours and trained
over 32 GPUs during 3 weeks. We also note that for models of similar size, we achieve similar
perplexity than the method introduced by Jozefowicz et al. (2016). As far as we know, ours the first
method to achieve a perplexity lower than 50 on a single GPU.

8



Under review as a conference paper at ICLR 2017

Language: bg cs da de el es
k= 50k 83k 128k 143k 100k 87k

Method ppl t ppl t ppl t ppl t ppl t ppl t

Full 37 58 62 132 37 713 42 802 38 383 30 536
Sampling 40 29 70 53 40 247 45 262 41 144 32 217
HSM (freq) 43 17 78 29 42 114 51 124 45 73 34 110
D-softmax 47 36 82 75 46 369 56 397 50 211 38 296
D-softmax [*] 37 36 62 76 36 366 41 398 37 213 29 303
Ours 37 18 62 30 35 105 40 110 36 72 29 103

Table 3: Europarl. Perplexity after 5 epochs for different languages as a function of time t (minutes).

6 CONCLUSION

In this paper, we have proposed a simple yet efficient approximation of the softmax classifier. To
our knowledge, it is the first speed optimizing approximation that obtains performance on par with
the exact model. This is achieved by explicitly taking into account the computational complexity of
parallel systems and combining it with a few important observations, namely keeping a short-list of
frequent words in the root node (Schwenk, 2007) and reducing the capacity of rare words (Chen et al.,
2015). In all our experiments on GPU, our method consistently maintains a low perplexity while
enjoying a speed-up going from 2× to 10× compared to the exact model. This type of speed-up
allows to deal with extremely large corpora in reasonable time and without the need of a large number
of GPUs. We believe our approach to be general enough to be applied to other parallel computing
architectures and other losses, as well as to other domains where the distributions of the class are
unbalanced.
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