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ABSTRACT

Due to the success of residual networks (resnets) and related architectures, short-
cut connections have quickly become standard tools for building convolutional
neural networks. The explanations in the literature for the apparent effectiveness
of shortcuts are varied and often contradictory. We hypothesize that shortcuts
work primarily because they act as linear counterparts to nonlinear layers. We
test this hypothesis by using several variations on the standard residual block,
with different types of linear connections, to build small (100k–1.2M parameter)
image classification networks. Our experiments show that other kinds of linear
connections can be even more effective than the identity shortcuts. Our results
also suggest that the best type of linear connection for a given application may
depend on both network width and depth.

1 INTRODUCTION

Deep convolutional neural networks have become the dominant force for many image classification
tasks; see Krizhevsky et al. (2012); Simonyan & Zisserman (2014); Szegedy et al. (2014). Their
ability to assimilate low-, medium-, and high-level features in an end-to-end multi-layer fashion has
led to myriad groundbreaking advances in the field. In recent years, residual networks (resnets)
have emerged as one of the best performing neural network archetypes in the literature; see He et al.
(2015). Through the use of identity shortcut connections, resnets have overcome the challenging
technical obstacles of vanishing gradients and the apparent degradation that otherwise comes with
training very deep networks. Resnets have achieved state-of-the-art performance on several image
classification datasets using very deep neural networks, sometimes with over 1000 layers.

Although shortcut connections appeared in the early neural network literature, e.g., Bishop (1995);
Ripley & Hjort (1995); Schraudolph (2012), their importance became more clear in 2015 with the
emergence of the HighwayNets of Srivastava et al. (2015) and resnets. The former involved gated
shortcut connections that regulate the flow of information across the network, while the latter used
identity shortcut connections, which are parameterless. Resnets are also presumed to be easier to
train and seem to perform better in practice. In their first resnet paper, He et al. argued that identity
maps let gradients flow back, enabling the training of very deep networks, and that it’s easier for
a layer to learn when initialized near an identity map than near a zero map (with small random
weights); see also He et al. (2016).

However, in a flurry of recent activity, most notably from Zagoruyko & Komodakis (2016); Greff
et al. (2016); Veit et al. (2016); Li et al. (2016) and Wu et al. (2016), arguments have emerged that
the effectiveness of resnets is not due to their depth, where practitioners were training networks
of hundreds or thousands of layers, but rather that deep resnets are effectively creating ensembles
of shallower networks, and the layers are more likely to refine and reinforce existing features than
engineer new ones. These arguments assert that the achievement of resnets is less about extreme
depth and more about their ability to ease backpropagation with moderate depth. Indeed, in many
cases wider residual networks that were only 10–50 layers deep were shown to perform better and
train in less time than very deep ones (over 100 layers). See Zagoruyko & Komodakis (2016).

More recently still, others have presented many clever and creative ways to train very deep networks
using variations on the shortcut theme; see for example Huang et al. (2016); Larsson et al. (2016);
Zhang et al. (2016a); Han et al. (2016); Abdi & Nahavandi (2016); Chen et al. (2017); Zhang et al.
(2016b); He et al. (2015); Lee et al. (2017); Xie et al. (2016); Savarese (2016); Szegedy et al. (2014;
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2015), and Szegedy et al. (2016). In summary, shortcut connections clearly help in practice, but
there are many different, and sometimes conflicting hypotheses as to why.

In this paper we investigate a new hypothesis about shortcut connections, namely, that their power
lies not in the identity mapping itself, but rather just in combining linear and nonlinear functions at
each layer. The tests where identity shortcuts were observed to perform better than general linear
connections were all done in very deep (100 or more layers) networks. The recent evidence that
wider, shallower, resnet networks can outperform deeper ones suggests that it is worth investigating
whether identity connections are better than general linear connections in such networks.

We first describe some of the intuition about why this might be the case. We then investigate this
idea with careful experiments using relatively small networks constructed of five different types of
blocks. These blocks are all variations on the idea of residual blocks (resblocks), but where the
identity shortcut is replaced with a more general linear function. We call these blocks, consisting
of both a linear and a nonlinear part, tandem blocks and the resulting networks tandem networks.
Residual networks and several similar architectures are special cases of tandem networks.

The networks we use in our experiments are relatively small (100k–1.2M parameter) image classifi-
cation networks constructed from these various tandem blocks. The small networks are appropriate
because the goal of the experiments is not to challenge state-of-the-art results produced by much
larger models, but rather to compare the five architectures in a variety of settings in order to gain
insight into their relative strengths and weaknesses. Whereas many other authors pursue extreme
network depth as a goal in itself, here we limit our focus to comparing performance (in this case,
classification accuracy) of different architectures.

Our experiments suggest that general linear layers, which have learnable parameters, perform at
least as well as the identity shortcut of resnets. This is true even when some width is sacrificed to
keep the total number of parameters the same. Our results further suggest that the best specific type
of linear connection to use in the blocks of a tandem network depends on several factors, including
both network width and depth.

2 TANDEM BLOCKS

The basic building block we use is the tandem block, which consists of a linear and a nonlinear
part in parallel (see Figure 1). In the case of resnet blocks, the linear part is simply an identity
shortcut. But a tandem block generalizes this to allow any linear map. The outputs of the two parts
are summed and then passed to subsequent blocks.

Note that, unlike in the case of the original resnet paper, we do not pass the resulting sum to another
nonlinear activation function. This is because recent work of Dong et al. (2017) has shown that
removing the activation function after the sum in resnets improves performance.

Many authors assert that identity shortcuts are superior to other linear maps in such a configuration.
See He et al. (2016); Szegedy et al. (2016); He et al. (2015); Savarese (2016), and Li et al. (2016).
The reasons given for this assertion vary and are usually heuristic in nature. We chose the architec-
tures we did in order to test whether the following properties of identity shortcuts were important:
having no parameters, maintaining feature size (as opposed to creating higher-level features with
3× 3 filters), and bypassing multiple nonlinear convolutional layers.

2.1 BUILDING BLOCKS

We consider five different tandem blocks, each of which can be viewed as a variant on the standard
resblock. The nonlinear part of each block (depicted on the right side of each block in Figure 1)
consists of either one or two layers of activated (nonlinear) convolutions. The linear part of each
block (depicted on the left in Figure 1) consists of either (i) identity maps, corresponding to standard
resblocks or (ii) convolutions of size 1× 1 or 3× 3, corresponding to more general tandem blocks.
Note that in some (usually rare) cases identity maps are impossible to use because of mismatches
in layer width. In those cases, as is typical with resnets, we use 1 × 1 convolutions to project the
identity to have the necessary width. In all cases the outputs of the linear and nonlinear parts are
added together at the end.
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Specifically, the block variants we defined are as follows:

• Bid(2, w) is the standard residual block, with two activated convolutional layers and an
identity connection from start to finish. As is standard for resnets, in the relatively rare case
that layers of different widths must be connected (and hence the identity cannot be used),
the identity connection is replaced with a more flexible 1× 1 convolution.

• Bid(1, w) is the same as Bid(2, w), but with only one activated convolution instead of two.
This is another form of resblock.

• B1×1(2, w) is a tandem block like Bid(2, w) except that it always uses 1× 1 convolutions
instead of identity connections, even when connecting layers of the same width.

• B1×1(1, w) is a tandem block like B1×1(2, w), but with only one activated convolution
instead of two.

• B3×3(1, w) has 3 × 3 convolutions on both sides, but on the nonlinear side it is followed
by a nonlinear activation function while on the linear side it is not.

These are all shown in Figure 1. The first four blocks have all been used in previous publications,
such as He et al. (2016). We believe that the use of 3 × 3 filters for linear connections is unique.
However, our primary goal is not to introduce a novel architecture. Rather, it is to investigate why
tandem blocks, including residual blocks, work. We chose this selection of blocks in order to de-
termine which properties of shortcut connections (identity maps, fixed weights, linearity, etc) were
necessary and which were unnecessary or even suboptimal. In particular, these blocks were ideal for
determining whether learnable convolutions are just a necessary evil for accommodating occasional
changes in layer width or whether they are a viable, or even superior, alternative to identity shortcuts.
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Figure 1: The five tandem blocks used in all of our experiments. The two left-most blocks Bid(2, w)
and Bid(1, w) correspond to traditional resnets and the others to more general tandem nets.

Reasonable heuristic arguments could be made to justify all sorts of expectations for the different
blocks. For example, one might expect the identity blocks to perform well in deeper networks
because they avoid changes in gradient magnitude, but they might also be less effective than blocks
that can use 1× 1 convolutions to recombine features in potentially more useful ways. Using 3× 3
convolutions for the linear connections and letting both sides engineer new filters could create more
robust networks that need less depth, but it could also be an inefficient use of parameters. Our
experiments were designed to find out which of these intuitions are correct.
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3 EXPERIMENT DESIGN

For our experiments, we built networks of varying widths and depths from our five chosen tandem
blocks and tested them on several popular image recognition datasets.

3.1 NETWORK ARCHITECTURES

We focused on small architectures ranging from 8 to 26 layers and from 100k to 1.2M parameters.
This was appropriate because the goal of these experiments was not to challenge state-of-the-art
results produced by much larger models, but rather to compare the five block types in a variety of
settings, to gain insight into their relative strengths and weaknesses.

Each experiment features five models, corresponding to the five types of block. To ensure fair
comparisons, each model has the same number of layers and nearly the same number of learnable
parameters. To achieve the latter, each different type of block must have a different width w. In
particular, B3×3 requires significantly smaller values of w than the other blocks because its linear
convolutions have many more parameters.

3.2 NETWORK SHAPE

For all models we used a simple architecture with three shape hyperparameters. The block layer
parameter l sets the number of layers in each block, as in Figure 1. The depth parameter d controls
the depth in the network by determining how many times to repeat each block. The width parameter
w sets the width of each block and is used to control the number of parameters in each model. The
architecture is illustrated in Table 1. In every case, the resulting network had 6d+ 2 layers.

Component Repetitions
Input 1
3× 3× w Conv 1
B(l, w) 2d/l
B(l, 2w) with Stride 2 1
B(l, 2w) 2d/l − 1
B(l, 4w) with Stride 2 1
B(l, 4w) 2d/l − 1
Global Average Pooling 1
Softmax Output Layer 1

Table 1: All of the networks used in our experiments were instances of this meta-architecture. The
parameters w, d and l are chosen so that the total depth of each network is the same and the total
number of parameters is comparable.

3.3 REGULARIZATION

In each model, we used both dropout and L2 regularization (weight decay). In all blocks, we applied
dropout immediately after the linear and nonlinear sides were added together. In blocks with two
nonlinear layers, we also applied dropout after the first nonlinear layer. We applied L2 regularization
to the weights of every convolution, both linear and nonlinear, but not to the biases.

We determined the weight decay and dropout rates for each architecture separately for each archi-
tecture through a series of grid searches. While different values of these hyperparameters proved
optimal for different networks (as measured on a validation set), they were always modest (with
dropout values from 0.1 to 0.2 and weight decay values from 0.0001 to 0.0003) and did not signifi-
cantly change the relative performances of different architectures.

We also used a simple augmentation scheme for the training data: shifting images both horizontally
and vertically by a factor of no more than 10% and flipping the images horizontally.
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3.4 BATCH NORMALIZATION

We tried inserting batch normalization layers in several places in each block—before activations,
after activations, before convolutions, after the addition—and were quite surprised to find that none
of these approaches was helpful. Contrary to the claims usually associated with this method, we
observed that networks with batch normalization achieved about the same performance on average,
but were less stable and more sensitive to learning rates. It also took much longer to train networks
with batch normalization. Accordingly, we left it out of all of our experiments.

3.5 INITIALIZATION

We initialized all of the weights, but not the biases, by sampling from a truncated normal distribution
(cut off at two standard deviations) with zero mean. Standard deviations were scaled from a base
value by fan-in, as in He et al. (2015). The appropriate base standard deviation varied considerably
from network to network. Some were as high as 1.2 while others were as low as 0.3. Aside from this
variation, the responses to different base standard deviations were consistent. Low values produced
networks that didn’t learn, while high values produced networks that diverged. For a separate exper-
iment described in Section 5, we tried some non-random initialization schemes to see if networks
would learn identity maps on their own.

3.6 LEARNING RATE AND DESCENT METHOD

We used the Adam method of gradient descent for all experiments, with the authors’ recommended
hyperparameters; see Kingma & Ba (2014). Even with adaptive learning rates, we found that a
learning rate schedule significantly improved results. For CIFAR-10 and CIFAR-100, we used a
learning rate of 0.001 through epoch 90, then 0.0002 through epoch 120, and then 0.00004 until
epoch 150. For SVHN and Fashion-MNIST, we scaled this schedule to 100 epoch runs.
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Figure 2: Plots of the test accuracy by epoch from the third-best of each architecture’s five runs for
all CIFAR-10 experiments. In each case, the tandem model B1×1(1, w) (light blue) performed best,
beating both the resnet models Bid(1, w) and Bid(2, w). The model B1×1(1, w) was consistently
the best in the different runs. Average final accuracy for the five runs is listed in Table 2.

4 RESULTS

To evaluate the five blocks, we used each to build several different networks and then tested them
on four popular image recognition problems: CIFAR-10, CIFAR-100, SVHN, and Fashion-MNIST.
In total, we made the five blocks compete in thirteen challenges. Each challenge was run five times.
Table 2 summarizes the results of all of our experiments. To make the graphs in Figures 2, 3, 4, and
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Figure 3: Plots of the test accuracy by epoch from the third-best of each architecture’s five runs for
all CIFAR-100 experiments. In all cases the tandem models were clear winners, with B1×1(1, w)
(light blue) performing best or near best each time, and both resnet models Bid(1, w) and Bid(2, w)
at or near the bottom. The tandem model B3×3(1, w) performed better than the model B1×1(2, w)
in the shallower networks (14 and 20 layers), but B1×1(2, w) did better in the deeper (26-layer)
network. Average final accuracy for the five runs is listed in Table 2.
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Figure 4: Plots of the test accuracy by epoch from the third-best of each architecture’s five runs for all
SVHN experiments. Again, in all three cases the tandem models B1×1(1, w) performed best or near
best, and outperformed the resnet models Bid(1, w) and Bid(2, w), although in the last experiment,
all the models—both resnet and more general tandem—have similar performance. Average final
accuracy for the five runs is listed in Table 2.

5 represent what these runs actually look like, we plotted the test accuracy from the third-best of
each architecture’s five runs. The results for standard resblocks were very close to those published
by He et al. (2015) and Zagoruyko & Komodakis (2016).

In all four challenges on CIFAR-10 (Figure 2), the B1×1(1, w) variant (which uses learnable pro-
jections instead of identity maps) excelled while the Bid variants, with their more standard identity
connections, lagged behind.
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Figure 5: Plots of the test accuracy by epoch from the third-best of each architecture’s five runs for
all Fashion-MNIST experiments. Again the tandem model B1×1(1, w) performed at or near best,
although the tandem model B3×3(1, w) did best in the deeper (14-layer) experiment. The models
with two nonlinear layers Bid(2, w) and B1×1(2, w) performed worst. Average final accuracy for
the five runs is listed in Table 2.

Dataset Layers Params Bid(2) Bid(1) B1×1(2) B1×1(1) B3×3(1)
CIFAR-10 14 300k 90.91 91.30 91.43 92.14 91.44
CIFAR-10 14 1.2m 92.48 93.12 92.18 93.83 93.24
CIFAR-10 20 470k 91.91 91.51 91.99 92.82 92.07
CIFAR-10 26 640k 92.19 91.81 92.45 92.84 91.98
CIFAR-100 14 300k 64.28 64.66 65.31 67.74 67.25
CIFAR-100 14 1.2m 67.31 68.87 68.13 72.34 72.69
CIFAR-100 20 470k 64.73 64.54 66.75 69.17 68.02
CIFAR-100 26 640k 65.52 63.40 67.20 68.42 65.89
SVHN 8 130k 94.86 94.82 95.07 95.37 94.81
SVHN 14 300k 96.18 96.31 96.12 96.51 96.33
SVHN 20 470k 96.50 96.24 96.60 96.67 96.74
Fashion-MNIST 8 130k 91.08 91.52 90.85 91.62 91.42
Fashion-MNIST 14 300k 92.74 93.23 93.16 93.71 93.65

Table 2: The average test accuracy achieved with each tandem block in five repetitions of each
experiment. In every case both standard residual blocks Bid(2, w) and Bid(1, w) were outperformed
by at least one of the more general tandem blocks. In all but one case (FAshion-MNIST, 8 layers)
both of the standard residual blocks were outperformed by at least two of the more general tandem
networks.

The results for CIFAR-100 (Figure 3) were similar to those for CIFAR-10 in that the tandem block
B1×1(1, w) performed at or near the top and consistently outperformed all the traditional resnet
blocks. The two-layer blocks improved their relative performance as depth increased and B3×3

actually got worse. However, B3×3(1, w) shined with the mid-depth architectures, particularly on
the wider one with 1.2m parameters. This suggests that B3×3 might be even better suited to building
relatively wide networks than the resblocks used to achieve state-of-the-art results by Zagoruyko &
Komodakis (2016).

On SVHN (Figure 4), the tandem net B1×1(1, w) once again excelled while the traditional resblocks
Bid(2, w) and Bid(1, w) stayed behind. Interestingly, B3×3(1, w) improved as the networks became
deeper, even beating B1×1(1, w) in the 20-layer network.
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On the Fashion-MNIST dataset (Figure 5), B1×1(1, w) again had the strongest performance, but
the resnet Bid(1, w) was not terribly far behind. The tandem block B3×3(1, w) did better on the
deeper network. In these tests the blocks with two nonlinear layers Bid(2, w) and B1×1(2, w) were
significantly behind.

5 NON-IDENTITY MAPS

The use of learnable parameters for the linear convolutions in tandem blocks naturally invites several
questions. Will linear convolutions with randomly initialized weights learn something similar to an
identity map? Will linear convolutions initialized to an identity map stay there, or learn something
else? If not identity maps, what do the optimal linear transformations for tandem blocks look like?
To explore these questions, we looked at the singular value decompositions of the weight matrices
of blocks with 1 × 1 linear convolutions. Figure 6 shows that the linear convolutions did not learn
identity maps, regardless of initialization scheme.
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Figure 6: These plots show the singular values of the weight matrix of the linear 1× 1 convolution
in a B1×1(1, w) block. We tried initializing these weights with identity matrices, zero matrices, and
random matrices. All the singular values of the identity matrix are equal to 1, as seen in the initial
epoch of the far left panel. Similarly all the singular values for the zero matrix are 0, as seen in the
initial epoch of the middle panel. In each case, the network learned a weight matrix that was quite
different from any of the initializations. In particular, this shows that identity maps are not even
locally optimal in these applications.

6 CONCLUSIONS

We generalized residual blocks (which use identity shortcut connections) to tandem blocks (which
can learn any linear connection, not just the identity). We found that general linear connections
with learnable weights, have the same benefits as the identity maps in residual blocks, and they
actually increase performance compared to identity maps. We also showed that linear connections
do not learn identity maps, even when initialized with identity weight matrices. These results seem to
confirm that the success of residual networks and related architectures is not due to special properties
of identity maps, but rather is simply a result of using linear maps to complement nonlinear ones.

The additional flexibility gained by replacing identity maps with convolutions led to better results in
every one of our experiments. This was not due to extra parameters, as we adjusted layer widths to
keep parameter counts as close to equal as possible. Instead, general linear convolutions appear to
do a better job than identity maps of working together with nonlinear convolutions.

Our results further suggest that tandem blocks with a single nonlinear convolution tend to outperform
those with two, but blocks that use 3 × 3 convolutions for their linear connections may be better in
wide networks than those with 1× 1s.

Finally, we note that there are many more possible types of tandem block than those we have con-
sidered here, and many more applications in which to test them.
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