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ABSTRACT

Much recent research has been devoted to video prediction and generation, yet a
lot of previous work has been focused on short-scale time horizons. The hierar-
chical video prediction method by Villegas et al. (2017) is an example of a state of
the art method for long term video prediction. However, their method has limited
applicability in practical settings as it requires a ground truth pose (e.g., poses of
joints of a human) at training time. This paper presents a long term hierarchical
video prediction model that does not have such a restriction. We show that the net-
work learns its own higher level structure (e.g., pose-equivalent hidden variables)
that works better in cases where the ground truth pose does not fully capture all
of the information needed to predict the next frame. This method gives sharper
results than other video prediction methods which do not require a ground truth
pose, and its efficiency is shown on the Humans 3.6M and Robot Pushing datasets.

1 INTRODUCTION

It is hypothesized that learning to predict the future and the effect of their actions is an important
quality for intelligent agents that interact with their environment. This is a complicated task, as
typical use cases require predicting the outcome of interactions between the agent and objects over
multiple timesteps.

In this work we are looking at the task of predicting the pixels of future video frames given the first
few observed frames. We also consider the action conditional setting, in which we are given the
action that the agent is taking and are tasked to predict the pixel level outcome of that action in the
future.

The method of Villegas et al. (2017) is a novel way to generate long term video predictions, but
requires ground truth human pose annotations. In this work we explore ways to generate videos
using a hierarchical model without requiring a ground truth pose or other high level structure anno-
tations for each frame. The method is hierarchical in the sense that it learns to generate a high level
structure, then makes next frame predictions based on that structure.

2 RELATED WORK

Patch level prediction The video prediction problem was initially studied at the patch
level (Sutskever et al., 2009; Michalski et al., 2014; Mittelman et al., 2014; Srivastava et al., 2015).
This work showed promising results on synthetic data (e.g. bouncing balls), but did not scale to
predicting higher resolution videos.

Frame level prediction on realistic videos. More recently, the video prediction problem has been
formulated at the entire frame level. Most of the recent work is based on the convolutional en-
coder/decoder framework. Finn et al. (2016) proposed a network that can perform next level video
frame prediction by explicitly predicting movement. For each pixel in the previous frame, the net-
work outputs a distribution over locations that pixel is predicted to move. The movements are
averaged to get the final prediction. The network is trained end to end to minimize L2 loss. Math-
ieu et al. (2016) proposed adversarial training with multiscale convolutional networks to generate
sharper pixel level predictions in comparison to conventional L2 loss. Villegas et al. (2017) pro-
posed a network that decomposes motion and content in video prediction and showed improved
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performance over Mathieu et al. (2016). Lotter et al. (2017) proposed a deep predictive coding net-
work in which each layer learns to predict the lower-level difference between the future frame and
current frame. As an alternative approach to convolutional encoder/decoder networks, Kalchbrenner
et al. (2016) proposed an autoregressive generation scheme for improved prediction performance.
Despite their promise, these work have not been demonstrated for long term prediction on high
resolution natural videos beyond ≈ 20 frames.

Long-term prediction. Oh et al. (2015) proposed action conditional convolutional encoder-
decoder architecture that has demonstrated impressive long-term prediction performance on video
games (e.g., Atari games), but it has not been applied for predicting challenging real-world videos.

2.1 HIERARCHICAL VIDEO PREDICTION (VILLEGAS ET AL., 2017)

Villegas et al. (2017) demonstrated a long-term prediction method using hierarchical prediction
where the ground truth human pose is assumed to be given as supervision. Our method is based off
of that work, so we describe it in detail in the following section.

2.1.1 INFERENCE AND ARCHITECTURE

To generate the image at timestep t, the following procedure is used. First, a convolutional neural
network encoder generates an embedding vector from the previous ground truth image: et−1 =
CNN(imgt−1). This encoding represents the pose of a person.

Next, a multilayer LSTM predictor network predicts what the encoding will be in a future timestep.
For some number of context frames, the predictor makes its prediction based off of the encoding
from the ground truth image. After the predictor network has enough context, it makes its predictions
based off of its previous predictions (Fig. 1 provides a helpful visual). For example, if there are C
context frames, the following is used to generate the encoding at step t.

{
[pt, Ht] = LSTM(et−1, Ht−1) if t <= C

[pt, Ht] = LSTM(pt−1, Ht−1) if t > C
(1)

Ht is the hidden state of the LSTM at timestep t. Note that only the encoding of the context frames
are used, not the subsequent frames. Similar to et in the above, pt represents the predicted pose.

Once pt is obtained, a visual analogy network (VAN) (Reed et al., 2015) is used to generate the
corresponding image at time t. The VAN applies the transformation that occurred between two
images to a given query image. In this case the first frame of the video should be transformed in the
same way as the encoding was transformed from the first to t-th timestep. The VAN does this by
mapping images to a space where analogies can be represented by additions and subtractions, and
then mapping the result back to image space. To obtain the predicted image at timestep t using the
VAN one needs to use îmgt = V AN(e1, pt, img1), where the VAN is defined as

V AN(e1, pt, img1) = fdec(fenc(g(pt))− fenc(g(e1)) + fimg(img1)) (2)

Where g is a hardcoded function to transform the pose into a 2 dimensional representation of the
pose. The weights of fenc and fimg are shared.

2.1.2 TRAINING

The disadvantage of this method is that the training relies on ground truth pose annotations. The
encoder is trained to produce the pose given the image, the predictor is trained to predict that pose
into the future and the VAN is trained to generate the image given the pose.

3 PROPOSED METHOD

Our method uses a similar network architecture to Villegas et al. (2017) but we present ways of
training the network that do not require a ground truth pose. In our method, et and pt have the same
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dimensionality and represent the network’s own higher level structure (e.g., pose equivalent hidden
variables) which the network learns as it is trained.

In our case, there is no straightforward way to transform the encoding into a 2 dimensional repre-
sentation of the pose. Therefore, the part of the VAN that maps the encoding is a fully connected
network instead of a convolutional neural network. As a result, the weights are not shared between
the fully connected network which processes the encoding, and the ConvNet which processes the
image.

The equation for the VAN becomes:

V AN(e1, pt, img1) = fdec(fenc(pt)− fenc(e1) + fimg(img1)) (3)

Note that fenc is a fully connected network, and fimg is a conv net. fdec is a deconv network.

3.1 TRAINING

There are several ways these networks can be trained. In Villegas et al. (2017), they are each trained
separately with the ground truth human pose. In this work, we explore alternative ways of training
these networks in the absence of any ground truth pose or other high level structure annotations. We
use the same procedure as Villegas et al. (2017) at inference time.

3.1.1 END TO END

One option is to connect the networks the same way as in inference time and train them
end to end (E2E). In this method, the L2 loss of of the predicted image is optimized:
min(

∑T
t=1 L2(îmgt, imgt)).

There are no constraints on what kind of encoding the encoder produces, or what kind of predictions
the predictor makes. Because of how the networks are connected, the encoder will produce an
encoding whose future state is easily predicted by the predictor. Likewise, the predictor will make
predictions which the VAN can use to produce images which are similar to the ground truth. The
encoder and predictor will not have to represent information that is present in the first ground truth
frame, since the VAN will have access to the first frame. The size of et and pt is a hyper parameter
of this approach. Figure 1 represents a diagram of this method.

Figure 1: The E2E method. The first few frames are encoded and fed into the predictor as context.
The predictor predicts the subsequent encodings, which the VAN uses to produce the pixel level
predictions. The average of the losses is minimized. This is also the configuration of every method
at inference time, even if the predictor and VAN are trained separately.
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3.1.2 ENCODER PREDICTOR WITH ENCODER VAN

An alternative way to train the combined network is to explicitly train the encoder so that et is easy
to predict into the future, and so that the VAN can use et to produce the next frame. We call this
method Encoder Predictor with Encoder VAN, or EPEV. The encoder and predictor are trained
together so the et is easy to predict and the predictor predicts that encoding into the future. To
accomplish this, the difference between et and pt, L2(et, pt) is minimized. The encoder is also
trained with the VAN so the VAN can use et to produce the image and so that the encoder generates
an informative encoding. This is done by minimizing the loss of the VAN given the encoder output:
L2(îmget , imgt) where îmget = V AN(e1, et, img1). The network is trained to minimize the sum
of these two losses: min(

∑T
t=1 L2(îmget , imgt) +αL2(et, pt)), where α is a hyper-parameter that

controls the degree to which the et will be easy to predict vs. informative enough so the VAN can
produce a good image.

See figure 2 for a diagram of the encoder and predictor trained together, and figure 3 for the encoder
and VAN trained together.

Figure 2: The segment of the EPEV
method in which the encoder and pre-
dictor are trained together. The encoder
is trained to produce an encoding that
is easy to predict, and the predictor is
trained to predict that encoding into the
future. The average of the losses is min-
imized.

Figure 3: The segment of the EPEV method
in which the encoder and VAN are trained
together. The encoder is trained to produce
an encoding that is informative to the VAN,
while the VAN is trained to output the im-
age given the encoding. The average of the
losses is minimized. This method is similar
to an autoencoder.

Separate gradient descent procedures (or optimizers, in TensorFlow parlance) could be used to min-
imize L2(îmget , imgt) and L2(et, pt), but we find that minimizing the sum works better experi-
mentally.

With this method, the predictor will predict the encoder outputs in future timesteps, and the VAN
will use the encoder output to produce the frame.

3.1.3 E2E WITH POSE

The end to end approach can also be augmented if the dataset has information about the ground truth
pose or any other high level frame annotations. In this method, the et and pt vectors would be split
into two: the first path is optimized to represent the pose, and the rest of et and pt is trained the same
way as the E2E approach. At each training step a separate optimizer minimizes each loss. In this
method, we can think of et and pt as the concatenation of two vectors, one representing the pose, and
the other containing additional information the network can represent. If et = [eposet , eremainingt ]
and pt = [pposet , premainingt ], the following losses are minimized:

4



Under review as a conference paper at ICLR 2018

The loss representing how well the encoder infers the pose: min(
∑T

t=1 L2(eposet , poset)). The loss
representing how well the predictor predicts the pose: min(

∑T
t=1 L2(pposet , poset)). The end to

end loss: min(
∑T

t=1 L2(îmgt, imgt)).

These losses are minimized with separate optimizers in this method. Minimizing the end to end
loss ensures that the VAN will learn to use the pose provided by the predictor network, and that the
encoder and predictor will learn to produce additional information besides the pose that is useful to
the VAN.

3.1.4 INDIVIDUAL

In order to compare to a baseline, we also implemented the method where each of the networks
are trained individually, as in Villegas et al. (2017). The main difference between this method and
Villegas et al. (2017) is that we do not use an adversarial loss (Goodfellow et al., 2014). See section
5 for a discussion of how an adversarial loss could be added to our method.

4 EXPERIMENTS

These methods were tested on two different datasets, the Robot Push dataset (Finn et al., 2016) and
the Humans 3.6M dataset (Ionescu et al., 2014; Catalin Ionescu, 2011). Videos of the results of our
method are available by visiting the following URL: https://goo.gl/WA8uxc.

The EPEV method works best experimentally if α starts small, around 1e-7, and is gradually in-
creased to around .1 during training. As a result, the encoder will first be optimized to produce an
informative encoding, then gradually optimized to also make that encoding easy to predict.

4.1 ROBOT PUSH DATASET

This dataset contains videos of a robot arm pushing objects on a table. The current joint angles and
the location of the end effector are given, and we use these as the pose for the methods which require
it. The action the robot arm is taking is fed into the predictor.

Each of the methods considered was given two frames of context, and then trained to predict 17
subsequent frames. An encoding size of 16 was used for the E2E method. The size of the pose is
12, so the encoding size of the INDIVIDUAL method is 12. The other methods used an encoding size
of 32.

Additionaly, we randomly split the dataset into training, validation and test. We used 64x64 im-
ages, and the same frame rate as the original dataset. Results from our test set are shown in this
section. Note that our experimental protocol is different from Finn et al. (2016), where the test set
is composed of novel objects.

We hypothesized that the methods where the network could learn its own pose equivalent would
predict the movement of the objects the robot arm pushes more accurately than the INDIVIDUAL
method. To test this, we manually compared the E2E and EPEV methods to the INDIVIDUAL
method and evaluated where the movement of predicted objects most closely matched the ground
truth. We evaluated 40 videos in which objects move. The results are in Table 1.

Table 1: Results from manual comparison of object predictions in 40 videos. The methods perform
similarly in the remaining videos.

Comparison Number of videos

EPEV better than INDIVIDUAL 6
INDIVIDUAL better than EPEV 3
E2E better than INDIVIDUAL 6
INDIVIDUAL better than E2E 6

In the INDIVIDUAL method, the predictor network can only produce the pose, so the VAN has to infer
how the objects will move based on the start and end state of the arm. We were surprised by how
well the VAN could infer this. However, from examining the videos, the EPEV method had better
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object predictions than the INDIVIDUAL method, which supports our hypothesis. The magnified part
of ground truth frame 19 in figure 4 shows that the robot arm pushed the yellow object. The EPEV
and E2E methods correctly predict this, but in the INDIVIDUAL method, the robot arm covers up the
yellow object instead of moving it. Additional analysis is in appendix section F.

Figure 4: A visual comparison of the different methods on the robot push dataset. In the E2E and
EPEV methods, the yellow object moves, but it does not in the INDIVIDUAL method.

The average Peak Signal to Noise Ratio (PSNR) of the different methods we introduce are similar
on this dataset. In this data set, the model from Finn et al. (2016) gets a better PSNR than our
model. The movement in this dataset can easily be represented by the movement of pixels, and
it is relatively deterministic. So the model from Finn et al. (2016) which explicitly predicts the
movement of objects and directly minimizes the L2 loss works well here.

4.2 LONG TERM PREDICTION ON A TOY DATASET

To confirm our claim that our method works well for long term predictions, we trained our method
on a toy task with known factors of variation. We used a dataset with a generated shape that bounces
around the image and changes size deterministically. We trained the EPEV method and the CDNA
method in Finn et al. (2016) to predict 16 frames, given the first 3 frames as context. We do not show
the E2E method since it usually predicts blurrier images than the EPEV method. Both methods
are evaluated on predicting approximately 1k frames. We added noise to the LSTM states of the
predictor network during training to help predict reasonable motion further into the future. Results
form a held out test set are described in the following.

After visually inspecting the results of both methods, we found that when the CDNA fails, the
shape disappears entirely, however when the EPEV method fails, the shape changes color. To
quantitatively evaluate both methods, we used a script to measure whether a shape was present
frames 1012 to 1022, and if that shape has the appropriate color. See table 2 for the results averaged
over 1k runs. The CDNA method predicts a shape with the correct color about 25% of the time,
and the EPEV method predicts a shape with the correct color about 97% of the time. The EPEV
method sometimes fails by predicting the shape in the same location from frame to frame. This does
not happen very often, as the reader can confirm by examining the randomly sampled predictions
in appendix section E. It is unrealistic to expect the methods to predict the location of the shape
accurately in frame 1000, since small errors propagate in each prediction step.
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Figure 5: A visual comparison of the EPEV method and CDNA from Finn et al. (2016) as the
baseline. This example is cherry picked to show the typical quality of predictions from both methods.
See appendix section E for non-cherry picked results.

Table 2: Results on shapes dataset

Method Shape has correct color Shape has wrong color Shape disappeared
EPEV 96.9% 3.1% 0%
CDNA Baseline 24.6% 5.7% 69.7%

4.3 HUMANS 3.6M

Our method was also tested on the Humans 3.6M Dataset. Only the E2E and EPEV methods were
tested here, since Villegas et al. (2017) has already shown the results using the ground truth pose.

We used subjects 1, 5, 6, 7 and 8 for training, subject 9 for validation. Subject 11 results are reported
in this paper for testing. We used 64 by 64 images. We subsampled the dataset to 6.25 frames per
second. We trained the methods to predict 32 frames and the results in this paper show predicting
64 frames. Each method is given the first 5 frames as context frames. So the in these images, the
model predicts about 10 seconds into the future from .8 seconds of context. We used an encoding
size of 32 for the E2E method and a encoding size of 64 for the EPEV method on this dataset. We
compare our method to the CDNA method in Finn et al. (2016) in Fig. 6.

Figure 6: A visual comparison of the EPEV method and CDNA from Finn et al. (2016) as the
baseline. This example is cherry picked to show results when there is significant movement in the
ground truth. See appendix section G for non cherry picked results. The contrast of these images was
increased to make the humans easier to see. In CDNA from Finn et al. (2016), the person disappeared
part way through the prediction. The EPEV method, produced relatively sharp predictions up until
frame 42, and a blurry human prediction at frame 63.

From visually inspecting the images we found that in images where there is not significant movement
in the first 5 frames of the ground truth it is hard to tell the difference between our method and CDNA
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since both methods predict an image similar to the early ground truth frames. However, when there
is significant movement in the first 5 ground truth frames, the predictions from EPEV are sharper
further into the future than CDNA. See the appendix section G for images where there is significant
movement in the first 5 ground truth frames so the methods can be compared. We also collected
results from the E2E method, but those blur out very quickly and are shown in appendix section G.

The CDNA method from Finn et al. (2016) produces blurry images since it is trained to minimize L2
loss directly (Finn et al., 2016). In the EPEV method, the predictor and VAN are trained separately.
This prevents the VAN from learning to produce blurry images when the predictor is not confident.
The predictions will be sharp as long as the predictor network predicts a valid encoding.

We also compare our method to Villegas et al. (2017). This method gives sharper results than ours.
We think that this is because Villegas et al. (2017) uses a adversarial loss (Goodfellow et al., 2014)
and since nothing besides the human is moving in this dataset, the pose works well as a high level
structure.

4.3.1 PERSON DETECTOR EVALUATION

We propose to compare the methods quantitatively by considering whether the generated videos
contain a recognizable person. To do this in an automated fashion, for each of the generated frames,
we ran a MobileNet (Howard et al., 2017) object detection model pretrained on the MS-COCO (Lin
et al., 2014) dataset. We recorded how confident the detector was that a person (one of the MS-
COCO labels) is in the image. We call this the “person score” (its value ranges from 0 to 1, with a
higher score corresponding to a higher confidence level). The results on each frame averaged over
1k runs are shown in Figure 7.

Figure 7: Confidence of the person detector that a person is in the image (“person score”). The
baseline method is CDNA from Finn et al. (2016).

The person score on the ground truth frames is about 0.4. This is likely due to the mismatch between
the training set images of the model (the MS-COCO dataset images are very different in terms of
image statistics compared to the Humans 3.6M data). The person score is 0.26 on average for the
images generated by the EPEV method, and 0.18 for CDNA from Finn et al. (2016). The person
score degrades very rapidly in the first 8 frames of CDNA, but degrades more slowly in the EPEV
method. The person score of the EPEV method on frame 63 is about the same as on frame 8
of CDNA. This confirms our visual analysis that the EPEV method produces clearer predictions
further into the future. The EPEV method was only trained to predict 32 frames into the future
but there is no significant drop in the person score at frame 32, showing that the EPEV method
generalizes well to predicting longer sequences.

4.3.2 HUMAN EVALUATION

We also used a service similar to Mechanical Turk to collect comparisons of 1,000 generated videos
from our EPEV method and the CDNA baseline. The task showed videos generated by the two
methods side by side and asked raters to confirm whether one of the videos is more realistic. The
workers rated the EPEV method as more realistic 53.6% of the time, the CDNA method as more
realistic 11.1% of the time and the videos as being about the same 35.3% of the time. The high
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number of “same” responses could be because of it being difficult to tell the difference between the
methods when there is little movement.

5 CONCLUSION AND FUTURE WORK

On datasets where the pose does not capture all of the information needed to predict future frames,
letting the network define its own high level structure in addition to the pose is an improvement upon
a Villegas et al. (2017). The EPEV method generates sharper images than Finn et al. (2016) on non
deterministic datasets, and can generate further into the future on a toy dataset that we introduced.
We posit an adversarial loss between the predictor and encoder would likely help with potentially
uncertain scenarios and would fix the problem of the EPEV method sometimes generating blurry
images,
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Appendices
A IMPLEMENTATION DETAILS

The convolutional neural net encoder is a VGG-16 network (Simonyan & Zisserman, 2014). In the
EPEV method, the encoder needs to be pre-trained on Imagenet (Deng et al., 2009). If that is not
done, the VAN will ignore the output from the encoder. All other configurations are run without
pretraining.

The predictor network is a 20 layer LSTM, while the analogy network uses the deep analogy trans-
formation described in Reed et al. (2015). The VAN outputs a mask which controls whether to use
its own output, or the pixels of the first frame. This allows the network to focus on learning the
changing parts of the image instead of the background.

The end effector orientation is converted to quaternions (Bousmalis et al., 2016) in order to calculate
the loss if the pose is used. Layer normalization (Lei Ba et al., 2016) is used between every other
layer in the VAN and predictor networks. We used dropout (Srivastava et al., 2014) on the encoder
and VAN to prevent overfitting. The network overfits less in the INDIVIDUAL method, so we used
less dropout.

B HUMAN EVALUATION DETAILS

Each video in the comparison is generated from the same starting sequence. The side that the EPEV
method and the CDNA method are displayed on is changed randomly.
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Figure 8: The screen shown to workers in the human evaluation

C EPEV METHOD WITH ENCODER OUTPUT FED TO VAN

To see what the encoder has learned in the EPEV method, we can obtain results from the visual
analogy network given the input from the encoder. The encoder is given the ground truth image.
The results are shown in figure 9. The results show that the encoder encodes where the person is

Figure 9: Results from the EPEV approach when the VAN is given the output of the encoder on the
ground truth frame.

in the image, as well as the orientation of the arms, legs and head to some extent. The results are
not as good as one would expect from an autoencoder, since the encoder has the constraint that the
encoding also has to be easy to predict.

D TRAINING DETAILS

We trained all of the methods including Finn et al. (2016) for 3 million steps using async SGD,
across 32 worker machines. We used a minibatch size of 8 sequences in each step. The minibatch
size could be so small because there were multiple frames per sequence. In methods with multiple
optimizers, a step is defined as running each optimizer once. The hyperparameters are optimized
separately for both datasets on a validation set. We used the best learning rates for each method.
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E MORE RESULTS ON SHAPES DATAEST.
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F MORE RESULTS ON ROBOT PUSH DATASET.

F.1 FRAMES WHERE EPEV PREDICTS OBJECTS BETTER THAN INDIVIDUAL.
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F.2 FRAMES WHERE INDIVIDUAL PREDICTS OBJECTS BETTER THAN EPEV.
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F.3 FRAMES WHERE EPEV AND INDIVIDUAL PREDICT OBJECTS WITH THE SAME QUALITY.
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G MORE RESULTS ON HUMANS DATAEST.

G.1 SIGNIFICANT MOVEMENT IN THE FIRST 5 GROUND TRUTH FRAMES.
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G.2 NO SIGNIFICANT MOVEMENT IN THE FIRST 5 GROUND TRUTH FRAMES.
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