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ABSTRACT

We propose in this paper a new approach to train the Generative Adversarial Nets
(GANs) with a mixture of generators to overcome the mode collapsing problem.
The main intuition is to employ multiple generators, instead of using a single one
as in the original GAN. The idea is simple, yet proven to be extremely effective at
covering diverse data modes, easily overcoming the mode collapsing problem and
delivering state-of-the-art results. A minimax formulation was able to establish
among a classifier, a discriminator, and a set of generators in a similar spirit with
GAN. Generators create samples that are intended to come from the same distribu-
tion as the training data, whilst the discriminator determines whether samples are
true data or generated by generators, and the classifier specifies which generator a
sample comes from. The distinguishing feature is that internal samples are created
from multiple generators, and then one of them will be randomly selected as final
output similar to the mechanism of a probabilistic mixture model. We term our
method Mixture Generative Adversarial Nets (MGAN). We develop theoretical
analysis to prove that, at the equilibrium, the Jensen-Shannon divergence (JSD)
between the mixture of generators’ distributions and the empirical data distribu-
tion is minimal, whilst the JSD among generators’ distributions is maximal, hence
effectively avoiding the mode collapsing problem. By utilizing parameter sharing,
our proposed model adds minimal computational cost to the standard GAN, and
thus can also efficiently scale to large-scale datasets. We conduct extensive exper-
iments on synthetic 2D data and natural image databases (CIFAR-10, STL-10 and
ImageNet) to demonstrate the superior performance of our MGAN in achieving
state-of-the-art Inception scores over latest baselines, generating diverse and ap-
pealing recognizable objects at different resolutions, and specializing in capturing
different types of objects by the generators.

1 INTRODUCTION

Generative Adversarial Nets (GANs) (Goodfellow et al., 2014) are a recent novel class of deep
generative models that are successfully applied to a large variety of applications such as image, video
generation, image inpainting, semantic segmentation, image-to-image translation, and text-to-image
synthesis, to name a few (Goodfellow, 2016). From the game theory metaphor, the model consists of
a discriminator and a generator playing a two-player minimax game, wherein the generator aims to
generate samples that resemble those in the training data whilst the discriminator tries to distinguish
between the two as narrated in (Goodfellow et al., 2014). Training GAN, however, is challenging as
it can be easily trapped into the mode collapsing problem where the generator only concentrates on
producing samples lying on a few modes instead of the whole data space (Goodfellow, 2016).
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Many GAN variants have been recently proposed to address this problem. They can be grouped into
two main categories: training either a single generator or many generators. Methods in the former
include modifying the discriminator’s objective (Salimans et al., 2016; Metz et al., 2016), modifying
the generator’s objective (Warde-Farley & Bengio, 2016), or employing additional discriminators to
yield more useful gradient signals for the generators (Nguyen et al., 2017; Durugkar et al., 2016).
The common theme in these variants is that generators are shown, at equilibrium, to be able to
recover the data distribution, but convergence remains elusive in practice. Most experiments are
conducted on toy datasets or on narrow-domain datasets such as LSUN (Yu et al., 2015) or CelebA
(Liu et al., 2015). To our knowledge, only Warde-Farley & Bengio (2016) and Nguyen et al. (2017)
perform quantitative evaluation of models trained on much more diverse datasets such as STL-10
(Coates et al., 2011) and ImageNet (Russakovsky et al., 2015).

Given current limitations in the training of single-generator GANs, some very recent attempts have
been made following the multi-generator approach. Tolstikhin et al. (2017) apply boosting tech-
niques to train a mixture of generators by sequentially training and adding new generators to the
mixture. However, sequentially training many generators is computational expensive. Moreover,
this approach is built on the implicit assumption that a single-generator GAN can generate very
good images of some modes, so reweighing the training data and incrementally training new gener-
ators will result in a mixture that covers the whole data space. This assumption is not true in practice
since current single-generator GANs trained on diverse datasets such as ImageNet tend to generate
images of unrecognizable objects. Arora et al. (2017) train a mixture of generators and discrimina-
tors, and optimize the minimax game with the reward function being the weighted average reward
function between any pair of generator and discriminator. This model is computationally expen-
sive and lacks a mechanism to enforce the divergence among generators. Ghosh et al. (2017) train
many generators by using a multi-class discriminator that, in addition to detecting whether a data
sample is fake, predicts which generator produces the sample. The objective function in this model
punishes generators for generating samples that are detected as fake but does not directly encourage
generators to specialize in generating different types of data.

We propose in this paper a novel approach to train a mixture of generators. Unlike aforementioned
multi-generator GANs, our proposed model simultaneously trains a set of generators with the objec-
tive that the mixture of their induced distributions would approximate the data distribution, whilst
encouraging them to specialize in different data modes. The result is a novel adversarial architecture
formulated as a minimax game among three parties: a classifier, a discriminator, and a set of gener-
ators. Generators create samples that are intended to come from the same distribution as the training
data, whilst the discriminator determines whether samples are true data or generated by generators,
and the classifier specifies which generator a sample comes from. We term our proposed model
as Mixture Generative Adversarial Nets (MGAN). We provide analysis that our model is optimized
towards minimizing the Jensen-Shannon Divergence (JSD) between the mixture of distributions in-
duced by the generators and the data distribution while maximizing the JSD among generators.

Empirically, our proposed model can be trained efficiently by utilizing parameter sharing among
generators, and between the classifier and the discriminator. In addition, simultaneously training
many generators while enforcing JSD among generators helps each of them focus on some modes
of the data space and learn better. Trained on CIFAR-10, each generator learned to specialize in
generating samples from a different class such as horse, car, ship, dog, bird or airplane. Overall,
the models trained on the CIFAR-10, STL-10 and ImageNet datasets successfully generated diverse,
recognizable objects and achieved state-of-the-art Inception scores (Salimans et al., 2016). The
model trained on the CIFAR-10 even outperformed GANs trained in a semi-supervised fashion
(Salimans et al., 2016; Odena et al., 2016).

In short, our main contributions are: (i) a novel adversarial model to efficiently train a mixture
of generators while enforcing the JSD among the generators; (ii) a theoretical analysis that our
objective function is optimized towards minimizing the JSD between the mixture of all generators’
distributions and the real data distribution, while maximizing the JSD among generators; and (iii)
a comprehensive evaluation on the performance of our method on both synthetic and real-world
large-scale datasets of diverse natural scenes.
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Figure 1: MGAN’s architecture with K generators, a binary discriminator, a multi-class classifier.

2 GENERATIVE ADVERSARIAL NETS

Given the discriminator D and generator G, both parameterized via neural networks, training GAN
can be formulated as the following minimax objective function:

min
G

max
D

Ex∼Pdata(x) [logD (x)] + Ez∼Pz [log (1−D (G (z)))] (1)

where x is drawn from data distribution Pdata, z is drawn from a prior distribution Pz. The mapping
G (z) induces a generator distribution Pmodel in data space. GAN alternatively optimizes D and G
using stochastic gradient-based learning. As a result, the optimization order in 1 can be reversed,
causing the minimax formulation to become maximin. G is therefore incentivized to map every z to a
single x that is most likely to be classified as true data, leading to mode collapsing problem. Another
commonly asserted cause of generating less diverse samples in GAN is that, at the optimal point of
D, minimizing G is equivalent to minimizing the JSD between the data and model distributions,
which has been empirically proven to prefer to generate samples around only a few modes whilst
ignoring other modes (Huszár, 2015; Theis et al., 2015).

3 PROPOSED MIXTURE GANS

We now present our main contribution of a novel approach that can effectively tackle mode collapse
in GAN. Our idea is to use a mixture of many distributions rather than a single one as in the standard
GAN, to approximate the data distribution, and simultaneously we enlarge the divergence of those
distributions so that they cover different data modes.

To this end, an analogy to a game among K generators G1:K, a discriminator D and a classifier C
can be formulated. Each generator Gk maps z to x = Gk (z), thus inducing a single distribution
PGk

; and K generators altogether induce a mixture over K distributions, namely Pmodel in the data
space. An index u is drawn from a multinomial distribution Mult (π) where π = [π1, π2, ..., πK]
is the coefficients of the mixture; and then the sample Gu (z) is used as the output. Here, we use
a predefined π and fix it instead of learning. The discriminator D aims to distinguish between this
sample and the training samples. The classifier C performs multi-class classification to classify
samples labeled by the indices of their corresponding generators. We term this whole process and
our model the Mixture Generative Adversarial Nets (MGAN).

Fig. 1 illustrates the general architecture of our proposed MGAN, where all components are param-
eterized by neural networks. Gk (s) tie their parameters together except the input layer, whilst C and
D share parameters except the output layer. This parameter sharing scheme enables the networks
to leverage their common information such as features at low-level layers that are close to the data
layer, hence helps to train model effectively. In addition, it also minimizes the number of parameters
and adds minimal complexity to the standard GAN, thus the whole process is still very efficient.

More formally, D, C and G1:K now play the following multi-player minimax optimization game:
min
G1:K,C

max
D
J (G1:K, C,D) = Ex∼Pdata

[logD (x)] + Ex∼Pmodel
[log (1−D (x))]

− β

{
K∑
k=1

πkEx∼PGk
[logCk (x)]

}
(2)
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whereCk (x) is the probability that x is generated byGk and β > 0 is the diversity hyper-parameter.
The first two terms show the interaction between generators and the discriminator as in the standard
GAN. The last term should be recognized as a standard softmax loss for a multi-classification set-
ting, which aims to maximize the entropy for the classifier. This represents the interaction between
generators and the classifier, which encourages each generator to produce data separable from those
produced by other generators. The strength of this interaction is controlled by β. Similar to GAN,
our proposed network can be trained by alternatively updating D, C and G1:K. We refer to Ap-
pendix A for the pseudo-code and algorithms for parameter learning for our proposed MGAN.

3.1 THEORETICAL ANALYSIS

Assuming all C, D and G1:K have enough capacity, we show below that at the equilibrium point
of the minimax problem in Eq. (2), the JSD between the mixture induced by G1:K and the data
distribution is minimal, i.e. pdata = pmodel, and the JSD among K generators is maximal, i.e. two
arbitrary generators almost never produce the same data. In what follows we present our mathemat-
ical statement and the sketch of their proofs. We refer to Appendix B for full derivations.
Proposition 1. For fixed generators G1, G2, ..., GK and their mixture weights π1, π2, ..., πK, the
optimal solution C∗ = C∗1:K and D∗ for J (G1:K, C,D) in Eq. (2) are:

C∗k (x) =
πkpGk

(x)∑K
j=1 πjpGj (x)

and D∗ (x) =
pdata (x)

pdata (x) + pmodel (x)

Proof. It can be seen that the solution C∗k is a general case of D∗ when D classifies samples from
two distributions with equal weight of 1/2. We refer the proofs for D∗ to Prop. 1 in (Goodfellow
et al., 2014), and our proof for C∗k to Appendix B in this manuscript.

Based on Prop. 1, we further show that at the equilibrium point of the minimax problem in
Eq. (2), the optimal generator G∗ = [G∗1, ..., G

∗
K] induces the generated distribution p∗model (x) =∑K

k=1 πkpG∗
k
(x) which is as closest as possible to the true data distribution pdata (x) while main-

taining the mixture components pG∗
k
(x)(s) as furthest as possible to avoid the mode collapse.

Theorem 2. At the equilibrium point of the minimax problem in Eq. (2), the optimal G∗, D∗, and
C∗ satisfy

G∗ = argmin
G

(2 · JSD (Pdata‖Pmodel)− β · JSDπ (PG1
, PG2

, ..., PGK
)) (3)

C∗k (x) =
πkpG∗

k
(x)∑K

j=1 πjpG∗
j
(x)

and D∗ (x) =
pdata (x)

pdata (x) + pmodel (x)

Proof. Substituting C∗1:K and D∗ into Eq. (2), we reformulate the objective function for G1:K as
follows:

L (G1:K) = Ex∼Pdata

[
log

pdata (x)

pdata (x) + pmodel (x)

]
+ Ex∼Pmodel

[
log

pmodel (x)

pdata (x) + pmodel (x)

]
− β

{
K∑

k=1

πkEx∼PGk

[
log

πkpGk (x)∑K
j=1 πjpGj (x)

]}

=2 · JSD (Pdata‖Pmodel)− log 4− β

{
K∑

k=1

πkEx∼PGk

[
log

pGk (x)∑K
j=1 πjpGj (x)

]}
− β

K∑
k=1

πk log πk

=2 · JSD (Pdata‖Pmodel)− β · JSDπ (PG1 , PG2 , ..., PGK)− log 4− β
K∑

k=1

πk log πk (4)

Since the last two terms in Eq. (4) are constant, that concludes our proof.

This theorem shows that progressing towards the equilibrium is equivalently to minimizing
JSD (Pdata‖Pmodel) while maximizing JSDπ (PG1

, PG2
, ..., PGK

). In the next theorem, we fur-
ther clarify the equilibrium point for the specific case wherein the data distribution has the form
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pdata (x) =
∑K
k=1 πkqk (x) where the mixture components qk (x)(s) are well-separated in the

sense that Ex∼Qk
[qj (x)] = 0 for j 6= k, i.e., for almost everywhere x, if qk (x) > 0 then

qj (x) = 0, ∀j 6= k.

Theorem 3. If the data distribution has the form: pdata (x) =
∑K
k=1 πkqk (x) where the mix-

ture components qk (x)(s) are well-separated, the minimax problem in Eq. (2) or the optimization
problem in Eq. (3) has the following solution:

pG∗
k
(x) = qk (x) , ∀k = 1, . . . ,K and pmodel (x) =

K∑
k=1

πkqk (x) = pdata (x)

, and the corresponding objective value of the optimization problem in Eq. (3) is −βH (π) =

−β
∑K
k=1 πk log

1
πk

, where H (π) is the Shannon entropy.

Proof. Please refer to our proof in Appendix B of this manuscript.

Thm. 3 explicitly offers the optimal solution for the specific case wherein the real data are gen-
erated from a mixture distribution whose components are well-separated. This further reveals
that if the mixture components are well-separated, by setting the number of generators as the
number of mixtures in data and maximizing the divergence between the generated components
pGk

(x)(s), we can exactly recover the mixture components qk (x)(s) using the generated com-
ponents pGk

(x)(s), hence strongly supporting our motivation when developing MGAN. In prac-
tice, C, D, and G1:K are parameterized by neural networks and are optimized in the parameter
space rather than in the function space. As all generators G1:K share the same objective func-
tion, we can efficiently update their weights using the same backpropagation passes. Empirically,
we set the parameter πk = 1

K ,∀k ∈ {1, ...,K}, which further minimizes the objective value
−βH (π) = −β

∑K
k=1 πk log

1
πk

w.r.t π in Thm. 3. To simplify the computational graph, we as-
sume that each generator is sampled the same number of times in each minibatch. In addition, we
adopt the non-saturating heuristic proposed in (Goodfellow et al., 2014) to trainG1:K by maximizing
logD (Gk (z)) instead of minimizing logD (1−Gk (z)) .

4 RELATED WORK

Recent attempts to address the mode collapse by modifying the discriminator include minibatch
discrimination (Salimans et al., 2016), Unrolled GAN (Metz et al., 2016) and Denoising Feature
Matching (DFM) (Warde-Farley & Bengio, 2016). The idea of minibatch discrimination is to al-
low the discriminator to detect samples that are noticeably similar to other generated samples. Al-
though this method can generate visually appealing samples, it is computationally expensive, thus
normally used in the last hidden layer of discriminator. Unrolled GAN improves the learning by
unrolling computational graph to include additional optimization steps of the discriminator. It could
effectively reduce the mode collapsing problem, but the unrolling step is expensive, rendering it
unscalable up to large-scale datasets. DFM augments the objective function of generator with one
of a Denoising AutoEncoder (DAE) that minimizes the reconstruction error of activations at the
penultimate layer of the discriminator. The idea is that gradient signals from DAE can guide the
generator towards producing samples whose activations are close to the manifold of real data activa-
tions. DFM is surprisingly effective at avoiding mode collapse, but the involvement of a deep DAE
adds considerable computational cost to the model.

An alternative approach is to train additional discriminators. D2GAN (Nguyen et al., 2017) employs
two discriminators to minimize both Kullback-Leibler (KL) and reverse KL divergences, thus plac-
ing a fair distribution across the data modes. This method can avoid the mode collapsing problem
to a certain extent, but still could not outperform DFM. Another work uses many discriminators to
boost the learning of generator (Durugkar et al., 2016). The authors state that this method is robust
to mode collapse, but did not provide experimental results to support that claim.

Another direction is to train multiple generators. The so-called MIX+GAN (Arora et al., 2017) is
related to our model in the use of mixture but the idea is very different. Based on min-max theorem
(Neumann, 1928), the MIX+GAN trains a mixture of multiple generators and discriminators with
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different parameters to play mixed strategies in a min-max game. The total reward of this game is
computed by weighted averaging rewards over all pairs of generator and discriminator. The lack
of parameter sharing renders this method computationally expensive to train. Moreover, there is no
mechanism to enforce the divergence among generators as in ours.

Some attempts have been made to train a mixture of GANs in a similar spirit with boosting algo-
rithms. Wang et al. (2016) propose an additive procedure to incrementally train new GANs on a
subset of the training data that are badly modeled by previous generators. As the discriminator is
expected to classify samples from this subset as real with high confidence, i.e. D (x) is high, the
subset can be chosen to include x where D (x) is larger than a predefined threshold. Tolstikhin
et al. (2017), however, show that this heuristic fails to address the mode collapsing problem. Thus
they propose AdaGAN to introduce a robust reweighing scheme to prepare training data for the next
GAN. AdaGAN and boosting-inspired GANs in general are based on the assumption that a single-
generator GAN can learn to generate impressive images of some modes such as dogs or cats but fails
to cover other modes such as giraffe. Therefore, removing images of dogs or cats from the training
data and train a next GAN can create a better mixture. This assumption is not true in practice as
current single-generator GANs trained on diverse data sets such as ImageNet (Russakovsky et al.,
2015) tend to generate images of unrecognizable objects.

The most closely related to ours is MAD-GAN (Ghosh et al., 2017) which trains many generators
and uses a multi-class classifier as the discriminator. In this work, two strategies are proposed to ad-
dress the mode collapse: (i) augmenting generator’s objective function with a user-defined similarity
based function to encourage different generators to generate diverse samples, and (ii) modifying dis-
criminator’s objective functions to push different generators towards different identifiable modes by
separating samples of each generator. Our approach is different in that, rather than modifying the
discriminator, we use an additional classifier that discriminates samples produced by each generator
from those by others under multi-class classification setting. This nicely results in an optimiza-
tion problem that maximizes the JSD among generators, thus naturally enforcing them to generate
diverse samples and effectively avoiding mode collapse.

5 EXPERIMENTS

In this section, we conduct experiments on both synthetic data and real-world large-scale datasets.
The aim of using synthetic data is to visualize, examine and evaluate the learning behaviors of
our proposed MGAN, whilst using real-world datasets to quantitatively demonstrate its efficacy
and scalability of addressing the mode collapse in a much larger and wider data space. For fair
comparison, we use experimental settings that are identical to previous work, and hence we quote
the results from the latest state-of-the-art GAN-based models to compare with ours.

We use TensorFlow (Abadi et al., 2016) to implement our model, and the source code is available
at: https://github.com/qhoangdl/MGAN. For all experiments, we use: (i) shared parameters among
generators in all layers except for the weights from the input to the first hidden layer; (ii) shared
parameters between discriminator and classifier in all layers except for the weights from the penulti-
mate layer to the output; (iii) Adam optimizer (Kingma & Ba, 2014) with learning rate of 0.0002 and
the first-order momentum of 0.5; (iv) minibatch size of 64 samples for training discriminators; (v)
ReLU activations (Nair & Hinton, 2010) for generators; (vi) Leaky ReLU (Maas et al., 2013) with
slope of 0.2 for discriminator and classifier; and (vii) weights randomly initialized from Gaussian
distribution N (0, 0.02I) and zero biases. We refer to Appendix C for detailed model architectures
and additional experimental results.

5.1 SYNTHETIC DATA

In the first experiment, following (Nguyen et al., 2017) we reuse the experimental design proposed
in (Metz et al., 2016) to investigate how well our MGAN can explore and capture multiple data
modes. The training data is sampled from a 2D mixture of 8 isotropic Gaussian distributions with a
covariance matrix of 0.02I and means arranged in a circle of zero centroid and radius of 2.0. Our
purpose of using such small variance is to create low density regions and separate the modes.

We employ 8 generators, each with a simple architecture of an input layer with 256 noise units
drawn from isotropic multivariate Gaussian distribution N (0, I), and two fully connected hidden
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Figure 2: The comparison of our MGAN and GAN’s variants on 2D synthetic dataset.

layers with 128 ReLU units each. For the discriminator and classifier, one hidden layer with 128
ReLU units is used. The diversity hyperparameter β is set to 0.125.

Fig. 2c shows the evolution of 512 samples generated by our model and baselines through time. It
can be seen that the regular GAN generates data collapsing into a single mode hovering around the
valid modes of data distribution, thus reflecting the mode collapse in GAN as expected. At the same
time, UnrolledGAN (Metz et al., 2016), D2GAN (Nguyen et al., 2017) and our MGAN distribute
data around all 8 mixture components, and hence demonstrating the abilities to successfully learn
multimodal data in this case. Our proposed model, however, converges much faster than the other
two since it successfully explores and neatly covers all modes at the early step 15K, whilst two
baselines produce samples cycling around till the last steps. At the end, our MGAN captures data
modes more precisely than UnrolledGAN and D2GAN since, in each mode, the UnrolledGAN
generates data that concentrate only on several points around the mode’s centroid, thus seems to
produce fewer samples than ours whose samples fairly spread out the entire mode, but not exceed
the boundary whilst the D2GAN still generates many points scattered between two adjacent modes.

Next we further quantitatively compare the quality of generated data. Since we know the true dis-
tribution Pdata in this case, we employ two measures, namely Wasserstein distance and symmetric
Kullback-Leibler (KL) divergence, which is the average of KL and reverse KL. These measures
compute the distance between the normalized histograms of 10,000 points generated from the model
to true Pdata. Figs. 2a and 2b again clearly demonstrate the superiority of our approach over GAN,
UnrolledGAN and D2GAN w.r.t both distances (lower is better); notably the Wasserstein distances
from ours and D2GAN’s to the true distribution almost reduce to zero, and at the same time, our
symmetric KL metric is significantly better than that of D2GAN. These figures also show the sta-
bility of our MGAN (black curves) and D2GAN (red curves) during training as they are much less
fluctuating compared with GAN (green curves) and UnrolledGAN (blue curves).

Lastly, we perform experiments with different numbers of generators. The MGAN models with 2, 3,
4 and 10 generators all successfully explore 8 modes but the models with more generators generate
fewer points scattered between adjacent modes. We also examine the behavior of the diversity
coefficient β by training the 4-generator model with different values of β. Without the JSD force
(β = 0), generated samples cluster around one mode. When β = 0.25, the JSD force is weak and
generated data cluster near 4 different modes. When β = 0.75 or 1.0, the JSD force is too strong and
causes the generators to collapse, generating 4 increasingly tight clusters. When β = 0.5, generators
successfully cover all of the 8 modes. Please refer to Appendix C.1 for experimental details.
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5.2 REAL-WORLD DATASETS

Next we train our proposed method on real-world databases from natural scenes to investigate its
performance and scalability on much more challenging large-scale image data.

Datasets. We use 3 widely-adopted datasets: CIFAR-10 (Krizhevsky & Hinton, 2009), STL-10
(Coates et al., 2011) and ImageNet (Russakovsky et al., 2015). CIFAR-10 contains 50,000 32×32
training images of 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
STL-10, subsampled from ImageNet, is a more diverse dataset than CIFAR-10, containing about
100,000 96×96 images. ImageNet (2012 release) presents the largest and most diverse consisting of
over 1.2 million images from 1,000 classes. In order to facilitate fair comparison with the baselines
in (Warde-Farley & Bengio, 2016; Nguyen et al., 2017), we follow the procedure of (Krizhevsky
et al., 2012) to resize the STL-10 and ImageNet images down to 48×48 and 32×32, respectively.

Evaluation protocols. For quantitative evaluation, we adopt the Inception score proposed in (Sal-
imans et al., 2016), which computes exp (Ex [KL (p (y|x) ‖p (y))]) where p (y|x) is the conditional
label distribution for the image x estimated by the reference Inception model (Szegedy et al., 2015).
This metric rewards good and varied samples and is found to be well-correlated with human judg-
ment (Salimans et al., 2016). We use the code provided in (Salimans et al., 2016) to compute the
Inception scores for 10 partitions of 50,000 randomly generated samples. For qualitative demonstra-
tion of image quality obtained by our proposed model, we show samples generated by the mixture as
well as samples produced by each generator. Samples are randomly drawn rather than cherry-picked.

Model architectures. Our generator and discriminator architectures closely follow the DCGAN’s
design (Radford et al., 2015). The only difference is we apply batch normalization (Ioffe & Szegedy,
2015) to all layers in the networks except for the output layer. Regarding the classifier, we empir-
ically find that our proposed MGAN achieves the best performance (i.e., fast convergence rate and
high inception score) when the classifier shares parameters of all layers with the discriminator ex-
cept for the output layer. The reason is that this parameter sharing scheme would allow the classifier
and discriminator to leverage their common features and representations learned at every layer, thus
helps to improve and speed up the training progress. When the parameters are not tied, the model
learns slowly and eventually yields lower performance.

During training we observe that the percentage of active neurons chronically declined (see Ap-
pendix C.2). One possible cause is that the batch normalization center (offset) is gradually shifted
to the negative range, thus deactivating up to 45% of ReLU units of the generator networks. Our
ad-hoc solution for this problem is to fix the offset at zero for all layers in the generator networks.
The rationale is that for each feature map, the ReLU gates will open for about 50% highest inputs in
a minibatch across all locations and generators, and close for the rest.

We also experiment with other activation functions of generator networks. First we use Leaky ReLU
and obtain similar results with using ReLU. Then we use MaxOut units (Goodfellow et al., 2013)
and achieves good Inception scores but generates unrecognizable samples. Finally, we try SeLU
(Klambauer et al., 2017) but fail to train our model.

Hyperparameters. Three key hyperparameters of our model are: number of generators K, coef-
ficient β controlling the diversity and the minibatch size. We use a minibatch size of [128/K] for
each generator, so that the total number of samples for training all generators is about 128. We
train models with 4 generators and 10 generators corresponding with minibatch sizes of 32 and 12
each, and find that models with 10 generators performs better. For ImageNet, we try an additional
setting with 32 generators and a minibatch size of 4 for each. The batch of 4 samples is too small
for updating sufficient statistics of a batch-norm layer, thus we drop batch-norm in the input layer
of each generator. This 32-generator model, however, does not obtain considerably better results
than the 10-generator one. Therefore in what follows we only report the results of models with 10
generators. For the diversity coefficient β, we observe no significant difference in Inception scores
when varying the value of β but the quality of generated images declines when β is too low or too
high. Generated samples by each generator vary more when β is low, and vary less but become less
realistic when β is high. We find a reasonable range for β to be (0.01, 1.0), and finally set to 0.01
for CIFAR-10, 0.1 for ImageNet and 1.0 for STL-10.
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Inception results. We now report the Inception scores obtained by our MGAN and baselines in
Tab. 1. It is worthy to note that only models trained in a completely unsupervised manner without
label information are included for fair comparison; and DCGAN’s and D2GAN’s results on STL-
10 are available only for the models trained on 32×32 resolution. Overall, our proposed model
outperforms the baselines by large margins and achieves state-of-the-art performance on all datasets.
Moreover, we would highlight that our MGAN obtains a score of 8.33 on CIFAR-10 that is even
better than those of models trained with labels such as 8.09 of Improved GAN (Salimans et al.,
2016) and 8.25 of AC-GAN (Odena et al., 2016). In addition, we train our model on the original
96×96 resolution of STL-10 and achieve a score of 9.79±0.08. This suggests the MGAN can be
successfully trained on higher resolution images and achieve the higher Inception score.

Table 1: Inception scores on different datasets. All models are trained in an unsupervised manner.
“–” denotes unavailable result.

Model CIFAR-10 STL-10 ImageNet
Real data 11.24±0.16 26.08±0.26 25.78±0.47
WGAN (Arjovsky et al., 2017) 3.82±0.06 – –
MIX+WGAN (Arora et al., 2017) 4.04±0.07 – –
Improved-GAN (Salimans et al., 2016) 4.36±0.04 – –
ALI (Dumoulin et al., 2016) 5.34±0.05 – –
BEGAN (Berthelot et al., 2017) 5.62 – –
MAGAN (Wang et al., 2017) 5.67 – –
GMAN (Durugkar et al., 2016) 6.00±0.19 – –
DCGAN (Radford et al., 2015) 6.40±0.05 7.54 7.89
DFM (Warde-Farley & Bengio, 2016) 7.72±0.13 8.51±0.13 9.18±0.13
D2GAN (Nguyen et al., 2017) 7.15±0.07 7.98 8.25
MGAN 8.33±0.10 9.22±0.11 9.32±0.10

Fréchet Inception Distance results. One disadvantage of the Inception score is that it does not
compare the statistics of real world samples and those of synthetic examples. Therefore, we further
evaluate MGAN using the Fréchet Inception Distance (FID) proposed in (Heusel et al., 2017). Let
p and q be the distributions of the representations obtained by projecting real and synthetic samples
to the last hidden layer in Inception model (Szegedy et al., 2015). Assuming that p and q are both
multivariate Gaussian distributions, FID measures the Fréchet distance (Dowson & Landau, 1982),
which is also the 2-Wasserstein distance, between the two distributions. Tab. 2 compares the FIDs
obtained by MGAN with baselines collected in (Heusel et al., 2017). It is noteworthy that lower FID
is better, and that WGAN-GP and WGAN-GP + TTUR uses the ResNet architecture while MGAN
employs the DCGAN architecture. In terms of FID, MGAN is roughly 28% better than DCGAN
and DCGAN + TTUR, 9% better than WGAN-GP and 8% weaker than WGAN-GP + TTUR. This
result further proves that MGAN helps address the mode collapsing problem.

Table 2: FIDs (lower is better) on CIFAR-10.
Model FID
DCGAN (Radford et al., 2015) 37.7
DCGAN + TTUR (Heusel et al., 2017) 36.9
WGAN-GP (Gulrajani et al., 2017) 29.3
WGAN-GP + TTUR (Heusel et al., 2017) 24.8
MGAN 26.7

Image generation. Next we present samples randomly generated by our proposed model trained
on the 3 datasets for qualitative assessment. Fig. 3a shows CIFAR-10 32×32 images containing a
wide range of objects in such as airplanes, cars, trucks, ships, birds, horses or dogs. Similarly, STL-
10 48×48 generated images in Fig. 3b include cars, ships, airplanes and many types of animals, but
with wider range of different themes such as sky, underwater, mountain and forest. Images generated
for ImageNet 32×32 are diverse with some recognizable objects such as lady, old man, birds, human
eye, living room, hat, slippers, to name a few. Fig. 4a shows several cherry-picked STL-10 96×96
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images, which demonstrate that the MGAN is capable of generating visually appealing images with
complicated details. However, many samples are still incomplete and unrealistic as shown in Fig. 4b,
leaving plenty of room for improvement.

(a) CIFAR-10 32×32. (b) STL-10 48×48. (c) ImageNet 32×32.

Figure 3: Images generated by our proposed MGAN trained on natural image datasets. Due to the
space limit, please refer to the appendix for larger plots.

(a) Cherry-picked samples. (b) Incomplete, unrealistic samples.

Figure 4: Images generated by our MGAN trained on the original 96×96 STL10 dataset.

Finally, we investigate samples generated by each generator as well as the evolution of these samples
through numbers of training epochs. Fig. 5 shows images generated by each of the 10 generators in
our MGAN trained on CIFAR-10 at epoch 20, 50, and 250 of training. Samples in each row corre-
spond to a different generator. Generators start to specialize in generating different types of objects
as early as epoch 20 and become more and more consistent: generator 2 and 3 in flying objects
(birds and airplanes), generator 4 in full pictures of cats and dogs, generator 5 in portraits of cats
and dogs, generator 8 in ships, generator 9 in car and trucks, and generator 10 in horses. Generator
6 seems to generate images of frog or animals in a bush. Generator 7, however, collapses in epoch
250. One possible explanation for this behavior is that images of different object classes tend to
have different themes. Lastly, Wang et al. (2016) noticed one of the causes for non-convergence in
GANs is that the generators and discriminators constantly vary; the generators at two consecutive
epochs of training generate significantly different images. This experiment demonstrates the effect
of the JSD force in preventing generators from moving around the data space.
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(a) Epoch #20. (b) Epoch #50. (c) Epoch #250.

Figure 5: Images generated by our MGAN trained on CIFAR10 at different epochs. Samples in each
row from the top to the bottom correspond to a different generator.

6 CONCLUSION

We have presented a novel adversarial model to address the mode collapse in GANs. Our idea is
to approximate data distribution using a mixture of multiple distributions wherein each distribution
captures a subset of data modes separately from those of others. To achieve this goal, we propose a
minimax game of one discriminator, one classifier and many generators to formulate an optimization
problem that minimizes the JSD between Pdata and Pmodel, i.e., a mixture of distributions induced
by the generators, whilst maximizes JSD among such generator distributions. This helps our model
generate diverse images to better cover data modes, thus effectively avoids mode collapse. We term
our proposed model Mixture Generative Adversarial Network (MGAN).

The MGAN can be efficiently trained by sharing parameters between its discriminator and clas-
sifier, and among its generators, thus our model is scalable to be evaluated on real-world large-
scale datasets. Comprehensive experiments on synthetic 2D data, CIFAR-10, STL-10 and ImageNet
databases demonstrate the following capabilities of our model: (i) achieving state-of-the-art Incep-
tion scores; (ii) generating diverse and appealing recognizable objects at different resolutions; and
(iv) specializing in capturing different types of objects by the generators.
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A APPENDIX: FRAMEWORK

In our proposed method, generators G1, G2, ... GK are deep convolutional neural networks param-
eterized by θG. These networks share parameters in all layers except for the input layers. The input
layer for generator Gk is parameterized by the mapping fθG,k (z) that maps the sampled noise z to
the first hidden layer activation h. The shared layers are parameterized by the mapping gθG

(h) that
maps the first hidden layer to the generated data. The pseudo-code of sampling from the mixture is
described in Alg. 1. Classifier C and classifier D are also deep convolutional neural networks that
are both parameterized by θCD. They share parameters in all layers except for the last layer. The
pseudo-code of alternatively learning θG and θCD using stochastic gradient descend is described in
Alg. 2.
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Algorithm 1 Sampling from MGAN’s mixture of generators.
1: Sample noise z from the prior Pz.
2: Sample a generator index u from Mult (π1, π2, ..., πK) with predefined mixing probability π =

(π1, π2, ..., πK).
3: h = fθG,u (z)
4: x = gθG

(h)
5: Return generated data x and the index u.

Algorithm 2 Alternative training of MGAN using stochastic gradient descent.
1: for number of training iterations do
2: Sample a minibatch of M data points

(
x(1),x(2), ...,x(M)

)
from the data distribution Pdata.

3: Sample a minibatch of N generated data points
(
x′

(1)
,x′

(2)
, ...,x′

(N)
)

and N indices
(u1, u2, ..., uN) from the current mixture.

4: LC = − 1
N

∑N
n=1 logCun

(
x′

(n)
)

5: LD = − 1
M

∑M
m=1 logD

(
x(m)

)
− 1

N

∑N
n=1 log

[
1−D

(
x′

(n)
)]

6: Update classifier C and discriminator D by descending along their gradient:
∇θCD

(LC + LD).
7: Sample a minibatch of N generated data points

(
x′

(1)
,x′

(2)
, ...,x′

(N)
)

and N indices
(u1, u2, ..., uN) from the current mixture.

8: LG = − 1
N

∑N
n=1 logD

(
x′

(n)
)
− β

N

∑N
n=1 logCun

(
x′

(n)
)

9: Update the mixture of generators G by ascending along its gradient: ∇θG
LG .

10: end for

B APPENDIX: PROOFS FOR SECTION 3.1

Proposition 1 (Prop. 1 restated). For fixed generators G1, G2, ..., GK and mixture weights
π1, π2, ..., πK, the optimal classifier C∗ = C∗1:K and discriminator D∗ for J (G,C,D) are:

C∗k (x) =
πkpGk

(x)∑K
j=1 πjpGj

(x)

D∗ (x) =
pdata (x)

pdata (x) + pmodel (x)

Proof. The optimal D∗ was proved in Prop. 1 in (Goodfellow, 2016). This section shows a similar
proof for the optimal C∗. Assuming that C∗ can be optimized in the functional space, we can
calculate the functional derivatives of J (G,C,D)with respect to each Ck (x) for k ∈ {2, ...,K}
and set them equal to zero:

δJ
δCk (x)

= −β δ

δCk (x)

ˆ (
π1pG1

(x) log

(
1−

K∑
k=2

Ck (x)

)
+

K∑
k=2

πkpGk
(x) logCk (x)

)
dx

= −β
(
πkpGk

(x)

Ck (x)
− π1pG1

(x)

C1 (x)

)
(5)

Setting δJ (G,C,D)
δCk(x)

to 0 for k ∈ {2, ...,K}, we get:

π1pG1
(x)

C∗1 (x)
=
π2pG2

(x)

C∗2 (x)
= ... =

πKpGK
(x)

C∗K (x)
(6)

C∗k (x) =
πkpGk

(x)∑K
j=1 πjpGj

(x)
results from Eq. (6) due to the fact that

∑K
k=1 C

∗
k (x) = 1.
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Reformulation of L (G1:K). Replacing the optimal C∗ and D∗ into Eq. (2), we can reformulate
the objective function for the generator as follows:

L (G1:K) = J (G,C∗, D∗)

= Ex∼Pdata

[
log

pdata (x)

pdata (x) + pmodel (x)

]
+ Ex∼Pmodel

[
log

pmodel (x)

pdata (x) + pmodel (x)

]
− β

{
K∑
k=1

πkEx∼PGk

[
log

πkpGk
(x)∑K

j=1 πjpGj (x)

]}
(7)

The sum of the first two terms in Eq. (7) was shown in (Goodfellow et al., 2014) to be 2 ·
JSD (Pdata‖Pmodel) − log 4. The last term β{∗} of Eq. (7) is related to the JSD for the K dis-
tributions:

∗ =
K∑
k=1

πkEx∼PGk

[
log

πkpGk
(x)∑K

j=1 πjpGj
(x)

]

=

K∑
k=1

πkEx∼PGk
[log pGk

(x)]−
K∑
k=1

πkEx∼PGk

log K∑
j=1

πjpGj (x)

+

K∑
k=1

πk log πk

= −
K∑
k=1

πkH (pGk
) +H

 K∑
j=1

πjpGj (x)

+

K∑
k=1

πk log πk

= JSDπ (PG1
, PG2

, ..., PGK
) +

K∑
k=1

πk log πk (8)

where H (P ) is the Shannon entropy for distribution P . Thus, L (G1:K) can be rewritten as:

L (G1:K) = − log 4 + 2 · JSD (Pdata‖Pmodel)− β · JSDπ (PG1
, PG2

, ..., PGK
)− β

K∑
k=1

πk log πk

Theorem 3 (Thm. 3 restated). If the data distribution has the form: pdata (x) =
∑K
k=1 πkqk (x)

where the mixture components qk (x)(s) are well-separated, the minimax problem in Eq. (2) or the
optimization problem in Eq. (3) has the following solution:

pG∗
k
(x) = qk (x) , ∀k = 1, . . . ,K and pmodel (x) =

K∑
k=1

πkqk (x) = pdata (x)

, and the corresponding objective value of the optimization problem in Eq. (3) is −βH (π) =

−β
∑K
k=1 πk log

1
πk

.

Proof. We first recap the optimization problem for finding the optimal G∗:

min
G

(2 · JSD (Pdata‖Pmodel)− β · JSDπ (PG1
, PG2

, ..., PGK
))

The JSD in Eq. (8) is given by:

JSDπ (PG1
, PG2

, ..., PGK
) =

K∑
k=1

πkEx∼PGk

[
log

πkpGk
(x)∑K

j=1 πjpGj
(x)

]
−

K∑
k=1

πk log πk (9)

The i-th expectation in Eq. (9) can be derived as follows:

Ex∼PGk

[
log

πkpGk
(x)∑K

j=1 πjpGj
(x)

]
≤ Ex∼PGk

[log 1] ≤ 0

and the equality occurs if πkpGk
(x)∑K

j=1 πjpGj
(x)

= 1 almost everywhere or equivalently for almost every x

except for those in a zero measure set, we have:

pGk
(x) > 0 =⇒ pGj (x) = 0, ∀j 6= k (10)
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Therefore, we obtain the following inequality:

JSDπ (PG1
, PG2

, ..., PGK
) ≤ −

K∑
k=1

πk log πk =

K∑
k=1

πk log
1

πk
= H (π)

and the equality occurs if for almost every x except for those in a zero measure set, we have:

∀k : pGk
(x) > 0 =⇒ pGj

(x) = 0, ∀j 6= k

It follows that

2 · JSD (Pdata‖Pmodel)− β · JSDπ (PG1
, PG2

, ..., PGK
) ≥ 0− βH (π) = −βH (π)

and we peak the minimum if pGk
= qk, ∀k since this solution satisfies both

pmodel (x) =

K∑
k=1

πkqk (x) = pdata (x)

and the conditions depicted in Eq. (10). That concludes our proof.

C APPENDIX: ADDITIONAL EXPERIMENTS

C.1 SYNTHETIC 2D GAUSSIAN DATA

The true data is sampled from a 2D mixture of 8 Gaussian distributions with a covariance matrix
0.02I and means arranged in a circle of zero centroid and radius 2.0. We use a simple architecture
of 8 generators with two fully connected hidden layers and a classifier and a discriminator with one
shared hidden layer. All hidden layers contain the same number of 128 ReLU units. The input layer
of generators contains 256 noise units sampled from isotropic multivariate Gaussian distribution
N (0, I). We do not use batch normalization in any layer. We refer to Tab. 3 for more specifications
of the network and hyperparameters. “Shared” is short for parameter sharing among generators or
between the classifier and the discriminator. Feature maps of 8/1 in the last layer for C andD means
that two separate fully connected layers are applied to the penultimate layer, one for C that outputs
8 logits and another for D that outputs 1 logit.

Table 3: Network architecture and hyperparameters for 2D Gaussian data.
Operation Feature maps Nonlinearity Shared?

G (z) : z ∼ N (0, I) 256
Fully connected 128 ReLU ×
Fully connected 128 ReLU

√

Fully connected 2 Linear
√

C (x) , D (x) 2
Fully connected 128 Leaky ReLU

√

Fully connected 8/1 Softmax/Sigmoid ×
Number of generators 8

Batch size for real data 512
Batch size for each generator 128

Number of iterations 25,000
Leaky ReLU slope 0.2

Learning rate 0.0002
Regularization constants β = 0.125

Optimizer Adam(β1 = 0.5, β2 = 0.999)
Weight, bias initialization N (µ = 0, σ = 0.02I), 0

The effect of the number of generators on generated samples. Fig. 6 shows samples produced
by MGANs with different numbers of generators trained on synthetic data for 25,000 epochs. The
model with 1 generator behaves similarly to the standard GAN as expected. The models with 2,
3 and 4 generators all successfully cover 8 modes, but the ones with more generators draw fewer
points scattered between adjacent modes. Finally, the model with 10 generators also covers 8 modes
wherein 2 generators share one mode and one generator hovering around another mode.
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(a) 1 generator. (b) 2 generators. (c) 3 generators. (d) 4 generators. (e) 10 generators.

Figure 6: Samples generated by MGAN models trained on synthetic data with 2, 3, 4 and 10 gener-
ators. Data samples from the 8 Gaussians are in red, and generated data by each generator are in a
different color.

The effect of β on generated samples. To examine the behavior of the diversity coefficient β,
Fig. 7 compares samples produced by our MGAN with 4 generators after 25,000 epochs of training
with different values of β. Without the JSD force (β = 0), generated samples cluster around one
mode. When β = 0.25, generated data clusters near 4 different modes. When β = 0.75 or 1.0,
the JSD force is too strong and causes the generators to collapse, generating 4 increasingly tight
clusters. When β = 0.5, generators successfully cover all of the 8 modes.

(a) β = 0 (b) β = 0.25 (c) β = 0.5 (d) β = 0.75 (e) β = 1.0

Figure 7: Samples generated by MGAN models trained on synthetic data with different values of
diversity coefficient β. Generated data are in blue and data samples from the 8 Gaussians are in red.

C.2 REAL-WORLD DATASETS

Fixing batch normalization center. During training we observe that the percentage of active
neurons, which we define as ReLU units with positive activation for at least 10% of samples in
the minibatch, chronically declined. Fig. 8a shows the percentage of active neurons in generators
trained on CIFAR-10 declined consistently to 55% in layer 2 and 60% in layer 3. Therefore, the
quality of generated images, after reaching the peak level, started declining. One possible cause is
that the batch normalization center (offset) is gradually shifted to the negative range as shown in the
histogram in Fig. 8b. We also observe the same problem in DCGAN. Our ad-hoc solution for this
problem, i.e., we fix the offset at zero for all layers in the generator networks. The rationale is that for
each feature map, the ReLU gates will open for about 50% highest inputs in a minibatch across all
locations and generators, and close for the rest. Therefore, batch normalization can keep ReLU units
alive even when most of their inputs are otherwise negative, and introduces a form of competition
that encourages generators to “specialize” in different features. This measure significantly improves
performance but does not totally solve the dying ReLUs problem. We find that late in the training,
the input to generators’ ReLU units became more and more right-skewed, causing the ReLU gates
to open less and less often.

Parameter sharing. We conduct experiment on CIFAR-10 without parameter sharing among gen-
erators. Surprisingly, 4 generators, each with 128 feature maps in the penultimate layer, fail to learn
even when beta is set to 0.0. When the number of feature maps in the penultimate layer of each
generator is set to 32, the model achieved an Inception Score of 7.42. Therefore, we hypothesize
that added benefit of our parameter sharing scheme is to balance the capacity of generators and that
of the discriminator/classifier.
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(a) % of active neurons in layer 2
and 3.

(b) Histogram of batch normalization centers in layer 2 (left) and
3 (right).

Figure 8: Observation of activate neuron rates and batch normalization centers in MGAN’s genera-
tors trained on CIFAR-10.

Experiment settings. For the experiments on three large-scale natural scene datasets (CIFAR-
10, STL-10, ImageNet), we closely followed the network architecture and training procedure of
DCGAN. The specifications of our models trained on CIFAR-10, STL-10 48×48, STL-10 96×96
and ImageNet datasets are described in Tabs. (4, 5, 6, 7), respectively. “BN” is short for batch
normalization and “BN center” is short for whether to learn batch normalization’s center or set it
at zero. “Shared” is short for parameter sharing among generators or between the classifier and the
discriminator. Feature maps of 10/1 in the last layer for C and D means that two separate fully
connected layers are applied to the penultimate layer, one for C that outputs 10 logits and another
for D that outputs 1 logit. Finally, Figs. (9, 10, 11, 12, 13) respectively are the enlarged version of
Figs. (3a, 3b, 3c, 4a, 4b) in the main manuscript.

Table 4: Network architecture and hyperparameters for the CIFAR-10 dataset.
Operation Kernel Strides Feature maps BN? BN center? Nonlinearity Shared?

G (z) : z ∼ Uniform [−1, 1] 100
Fully connected 4×4×512

√
× ReLU ×

Transposed convolution 5×5 2×2 256
√

× ReLU
√

Transposed convolution 5×5 2×2 128
√

× ReLU
√

Transposed convolution 5×5 2×2 3 × × Tanh
√

C (x) , D (x) 32×32×3
Convolution 5×5 2×2 128

√ √
Leaky ReLU

√

Convolution 5×5 2×2 256
√ √

Leaky ReLU
√

Convolution 5×5 2×2 512
√ √

Leaky ReLU
√

Fully connected 10/1 × × Softmax/Sigmoid ×
Number of generators 10

Batch size for real data 64
Batch size for each generator 12

Number of iterations 250
Leaky ReLU slope 0.2

Learning rate 0.0002
Regularization constants β = 0.01

Optimizer Adam(β1 = 0.5, β2 = 0.999)
Weight, bias initialization N (µ = 0, σ = 0.01), 0
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Table 5: Network architecture and hyperparameters for the STL-10 48×48 dataset.
Operation Kernel Strides Feature maps BN? BN center? Nonlinearity Shared?

G (z) : z ∼ Uniform [−1, 1] 100
Fully connected 4×4×1024

√
× ReLU ×

Transposed convolution 5×5 2×2 512
√

× ReLU
√

Transposed convolution 5×5 2×2 256
√

× ReLU
√

Transposed convolution 5×5 2×2 128
√

× ReLU
√

Transposed convolution 5×5 2×2 3 × × Tanh
√

C (x) , D (x) 48×48×3
Convolution 5×5 2×2 128

√ √
Leaky ReLU

√

Convolution 5×5 2×2 256
√ √

Leaky ReLU
√

Convolution 5×5 2×2 512
√ √

Leaky ReLU
√

Convolution 5×5 2×2 1024
√ √

Leaky ReLU
√

Fully connected 10/1 × × Softmax/Sigmoid ×
Number of generators 10

Batch size for real data 64
Batch size for each generator 12

Number of iterations 250
Leaky ReLU slope 0.2

Learning rate 0.0002
Regularization constants β = 1.0

Optimizer Adam(β1 = 0.5, β2 = 0.999)
Weight, bias initialization N (µ = 0, σ = 0.01), 0

Table 6: Network architecture and hyperparameters for the STL96×96 dataset.
Operation Kernel Strides Feature maps BN? BN center? Nonlinearity Shared?

G (z) : z ∼ Uniform [−1, 1] 100
Fully connected 4×4×2046

√
× ReLU ×

Transposed convolution 5×5 2×2 1024
√

× ReLU
√

Transposed convolution 5×5 2×2 512
√

× ReLU
√

Transposed convolution 5×5 2×2 256
√

× ReLU
√

Transposed convolution 5×5 2×2 128
√

× ReLU
√

Transposed convolution 5×5 2×2 3 × × Tanh
√

C (x) , D (x) 32×32×3
Convolution 5×5 2×2 128

√ √
Leaky ReLU

√

Convolution 5×5 2×2 256
√ √

Leaky ReLU
√

Convolution 5×5 2×2 512
√ √

Leaky ReLU
√

Convolution 5×5 2×2 1024
√ √

Leaky ReLU
√

Convolution 5×5 2×2 2048
√ √

Leaky ReLU
√

Fully connected 10/1 × × Softmax/Sigmoid ×
Number of generators 10

Batch size for real data 64
Batch size for each generator 12

Number of iterations 250
Leaky ReLU slope 0.2

Learning rate 0.0002
Regularization constants β = 1.0

Optimizer Adam(β1 = 0.5, β2 = 0.999)
Weight, bias initialization N (µ = 0, σ = 0.01), 0
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Table 7: Network architecture and hyperparameters for the ImageNet dataset.
Operation Kernel Strides Feature maps BN? BN center? Nonlinearity Shared?

G (z) : z ∼ Uniform [−1, 1] 100
Fully connected 4×4×512

√
× ReLU ×

Transposed convolution 5×5 2×2 256
√

× ReLU
√

Transposed convolution 5×5 2×2 128
√

× ReLU
√

Transposed convolution 5×5 2×2 3 × × Tanh
√

C (x) , D (x) 32×32×3
Convolution 5×5 2×2 128

√ √
Leaky ReLU

√

Convolution 5×5 2×2 256
√ √

Leaky ReLU
√

Convolution 5×5 2×2 512
√ √

Leaky ReLU
√

Fully connected 10/1 × × Softmax/Sigmoid ×
Number of generators 10

Batch size for real data 64
Batch size for each generator 12

Number of iterations 50
Leaky ReLU slope 0.2

Learning rate 0.0002
Regularization constants β = 0.1

Optimizer Adam(β1 = 0.5, β2 = 0.999)
Weight, bias initialization N (µ = 0, σ = 0.01), 0

Figure 9: Images generated by MGAN trained on the CIFAR-10 dataset.
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Figure 10: Images generated by MGAN trained on the rescaled 48×48 STL-10 dataset.
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Figure 11: Images generated by MGAN trained on the rescaled 32×32 ImageNet dataset.
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Figure 12: Cherry-picked samples generated by MGAN trained on the 96×96 STL-10 dataset.

23



Published as a conference paper at ICLR 2018

Figure 13: Incomplete, unrealistic samples generated by MGAN trained on the 96×96 STL-10
dataset.
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