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ABSTRACT

Sum-Product Networks (SPNs) are deep density estimators allowing exact and
tractable inference. While up to now SPNs have been employed as black-box
inference machines, we exploit them as feature extractors for unsupervised Rep-
resentation Learning. Representations learned by SPNs are rich probabilistic and
hierarchical part-based features. SPNs converted into Max-Product Networks
(MPNs) provide a way to decode these representations back to the original input
space. In extensive experiments, SPN and MPN encoding and decoding schemes
prove highly competitive for Multi-Label Classification tasks.

1 INTRODUCTION AND MOTIVATION

Sum-Product Networks (SPNs) (Poon & Domingos, 2011) are deep generative models that, by
decomposing a probability distribution into sums and products, allow exact and tractable compu-
tation of a range of queries such as the partition function, marginals and conditionals. SPNs have
been successfully applied to computer vision (Gens & Domingos, 2012; Amer & Todorovic, 2015),
speech (Peharz et al., 2014) and language modeling (Cheng et al., 2014), however always as “black
box” inference machines. Here look at the inner workings of SPNs and exploit them as feature extrac-
tors for Representation Learning (RL), showing how they learn rich and hierarchical representations
that can be effectively employed in several learning schemes for predictive tasks.

Generative models trained in an unsupervised way have been largely employed as feature extractors.
This is the case of many seminal works with Restricted Boltzmann Machines (Ranzato & Hinton,
2010; Coates et al., 2011; Marlin et al., 2010) in which the extracted representations are then employed
for supervised learning, e.g. fed into a Logistic Regressor (LR) or SVM classifier, or used to initialize
another neural architecture (Hinton & Salakhutdinov, 2006). More recent examples of this two-stage
learning approach for RL can be found in several computer vision works (Girshick et al., 2014;
Simonyan & Zisserman, 2014; Kümmerer et al., 2014).

By having a mechanism to decode back the learned representation to the original space, one could
employ such RL approaches to more complex tasks such as Multi-label classification (MLC): first
by learning a model to predict label embeddings and then decoding this model predictions into the
actual label values (Bhatia et al., 2015; Akata et al., 2013). The advantage would lie in learning an
easier to predict target space (the one of label embeddings) instead of the original one.

By turning an SPN into a Max-Product Network (MPN), we show how Most Probable Explanation
(MPE) inference (Poon & Domingos, 2011; Peharz et al., 2016) can be leveraged to build such a
decoding procedure. In such a way, without training the network with the aim to reconstruct its
input, we are able to use them as a kind of autoencoders in the aforementioned learning scenarios.
Moreover, we extend this procedure to decode embeddings with missing components.We empirically
evaluate the features extracted by SPNs and MPNs by visualizing them back into the input space and
the proposed decoding procedure and its resilience by employing them for MLC when encoding the
feature space, the target space, or both.

Figure 1: Visualizing features
learned by an SPN trained on a bina-
rized version of MNIST clustered
by similar scope lengths.
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2 ENCODING AND DECODING

An SPN S over a set of random variables (RVs) X = {Xi}pi=1 is a computational graph defined by a
rooted DAG. Let n be an input node of S, also called leaf node, it defines a tractable distribution φn
over its scope sc(n) ⊆ X. If n is an inner node, it computes either a weighted sum, parametrized
by a set of non-negative weights wn, or a product over its children, denoted as ch(n). We assume
S to be complete, decomposable and normalized (Poon & Domingos, 2011; Peharz et al., 2015),
hence the output value of its root, after X = x is observed as the network input, is a valid evaluation
for p(X = x). Moreover, for each node n ∈ S, Sn, the sub-network rooted at node n, defines
a valid probability distribution pwn

over the scope of n, defined as sc(n) = ∪c∈ch(n)sc(c). Such
a probability is the output value (activation) of the node n, denoted as Sn(x|sc(n)). An MPN M
over X can be built from S by replacing each sum node in S by a max node in M and each leaf
distribution by a maximizing distribution (Poon & Domingos, 2011; Peharz et al., 2016). SPNs and
MPNs can be interpreted as peculiar neural networks (ANNs) in which nodes are labelled by the
scope function, enabling a direct encoding of the input, connections are sparse due to their topology
being constrained and each node retains a fully probabilistic semantics (Vergari et al., 2016).

We are interested in encoding a sample xi ∼ X into a continuous d-dimensional embedding ei ∈
EX ⊆ Rd. To find a function fS : X → EX we consider SPNs, but similar considerations hold
also for MPNs. By interpreting an SPN S as an ANN, and given a set of its nodes N = {nj}dj=1,
we construct our embedding as eij = Snj

(x|sc(nj)) = pwnj
(x|sc(nj)). Each embedding component

(feature) represents the probability to see that sample according to a marginal distribution over a node
scope. SPN features can also be seen as part-based filters operating over sub-spaces given by the node
scopes. This is clearly visible if such features are visualized in the input space. By solving an inverse
problem similar to Erhan et al. (2009) by approximate MPE inference on SPNs learned on image
samples, the features learned by an SPN appear as meaningful hierarchical representations at different
levels of complexity. In Figure 1 blobs, shape contours and parts, associated to nodes extracted from
an SPN learned on a binary version of MNIST (Vergari et al., 2016), are easily recognizable. These
visualizations suggest that it is the scope information that correlates to the level of abstraction of a
feature, rather than the simple depth of a node, as it happens for classical ANNs. In this work, to
build N , we consider either all the nodes in the network (full embeddings) or only the inner ones. In
the second case we discard the potentially uninformative univariate distribution at the leaves.

For the decoding phase we need to find an inverse function g : EX → X such that xi ≈ x̂i =
g(f(xi)). To do so we exploit an MPN M and devise gM to mimic the algorithm to compute the
MPE assignment of a probabilistic query over M . We note that when a sample xi is fully observed,
then the computation of M(xi) activates only one maximal path in the network that can be traced
back by a Viterbi-like procedure to a set of leaves whose scopes are a partition of X (Peharz et al.,
2016). Therefore, if a full embedding eiM is available, and if we follow the same procedure to
trace the maximal path and equip the reached leaves by a decoder procedure, then we can obtain
x̂i (see Appendix). In practice, we are interested in decoding embeddings that have been predicted
by some learned model. We define the decoded state for a leaf n as the configuration over its
scope that minimizes some distance D over the leaf activation value and its encoded representation:
x̃i
|sc(n) = argminu∼sc(n)D(φn(u)||eiMn

). In our experiments we will employ an L1 distance
|φn(u)− eiMn

|. While it is a cheap heuristics, it proved surprisingly effective in our experiments.

When not all components of ei are available, it would be possible to decode it back completely
if the missing components are associated to nodes whose children components are available. The
imputation can be done by evaluating these nodes in M by a forward pass. Otherwise, we suggest
missing activation of a node n to be imputed by applying MPE inference to estimate Mn(x

i). For
example, when dealing with inner embeddings we impute leaf node values by their MPE state.

3 EXPERIMENTS

We evaluate the feature extracted unsupervisedly by SPNs/MPNs and the proposed decoding schemes
on MLC tasks: for each sample x ∼ X one has to predict binary label array y ∼ Y. In the simplest
case one would learn a predictive model p, to predict the labels given the original features, X

p
=⇒ Y.

We define three more learning scenarios in which to employ embeddings: I) learning p on the features
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encoded by a model m, (X m−→ EX)
p
=⇒ Y; II) learning p to predict the label space EY encoded by a

model n, then use n to decode them back to actual Y: (X p
=⇒ EY)

n−→ Y; III) combining the previous
two approaches: ((X m−→ EX)

p
=⇒ EY)

n−→ Y. We employ for p linear predictors to show the ability
of the learned embeddings to disentangle the represented spaces. For scenario I) p is a L2-regularized
logistic regressor (LR) while for II) and III) it is a ridge regressor (RR).

Concerning models m, we employ RBMs with up to 5000 hidden units, tractable probabilistic
autoencoders as MADEs (Germain et al., 2015) up to 3 layers deep, and SPNs with inner embeddings.
For the n models, we exploit the corresponding routines for MADEs, and up to 3 layers of non-
probabilistic autoencoders (AEs) like stacked AEs for label embeddings (SDA) (Wicker et al., 2016),
contractive AEs (CAE) (Rifai et al., 2011) and denoising AEs (DAE) (Vincent et al., 2010). Lastly,
we use MPNs with either full or inner embeddings (in which case we compute the leaf MPE state).

We learn all models independently for X and Y. We use LearnSPN-b (Vergari et al., 2015) to learn
both the structure and weights of our SPNs, and hence MPNs. We employ ten standard benchmark
datasets for MLC (Di Mauro et al., 2016) and perform a 5-fold cross validation. We score all the
models by 3 differently forgiving metrics: jaccard, hamming and exact match scores (Dembczyński
et al., 2012) and we report the average relative improvement of each model w.r.t. the X

LR
=⇒ Y

baseline. In Table 1 we also report the performance of a fully supervised method for MLC such as
max-margin structured SVMs employing CRFs (SSVM). For all settings and measures the MPN
and SPN embeddings prove to be highly competitive against all other models. Either inner or
full embeddings achieve the highest improvements in many cases. Overall, the proposed decoding
procedure outperforms several of the autoencoder architectures used; employing MPE inference to
cope with missing leaf activations helps expecially for the jaccard score.

Additionally, we evaluate the resilience of our decoding procedure to handle missing data more in
detail for scenario II). We increase the percentage of missing components from 0 (full embeddings) to
90 and we employ two strategies: either impute a node activation by its MPE value only or evaluate
the MPN forward before performing MPE with the updated activations (eval). Figure 2 depicts the
exact match score performances for these increasingly missing embeddings for 9 datasets (on one
all models score 0). Evaluating the MPN again before imputing a node value not only consistently
achieves the best performances than not doing it, but shows a quite slow performance decrease
up to 40% missing components, on the majority of datasets. This suggests that the redundancy of
activations not present in the maximal decoding path can still help the decoding procedure.

Table 1: Average relative test set improvement in
scores w.r.t the LR baseline (values are
percentages). For each setting, best results in bold.

JAC HAM EXA

X
LR
=⇒ Y 0.00 0.00 0.00

X
SSVM
===⇒ Y +15.83 +9.94 +103.90

(X
RBM−−−→ EX)

LR
=⇒ Y +1.46 +0.20 -1.62

(X
MADE−−−→ EX)

LR
=⇒ Y +2.57 +0.60 +2.99

(X
CAE−−→ EX)

LR
=⇒ Y -0.15 -0.69 +4.13

(X
DAE−−→ EX)

LR
=⇒ Y +0.70 -0.05 +4.17

(X
SPNinner−−−−−→ EX)

LR
=⇒ Y +3.54 +0.50 +17.18

(X
RR
=⇒ EY)

MADE−−−→ Y -30.42 +7.04 -28.02

(X
RR
=⇒ EY)

SDA−−→ Y +5.96 +5.07 +95.78

(X
RR
=⇒ EY)

CAE−−→ Y +7.60 +9.53 +78.81

(X
RR
=⇒ EY)

DAE−−→ Y +13.39 +9.78 +102.22

(X
RR
=⇒ EY)

MPNfull−−−−→ Y +11.65 +10.45 +96.30

(X
RR
=⇒ EY)

MPNinner−−−−−→ Y +15.19 +7.61 +98.58

((X
MADE−−−→ EX)

RR
=⇒ EY)

MADE−−−→ Y -27.15 +6.94 -25.14

((X
CAE−−→ EX)

RR
=⇒ EY)

CAE−−→ Y +5.21 +9.27 +79.20

((X
DAE−−→ EX)

RR
=⇒ EY)

DAE−−→ Y +13.97 +9.88 +98.25

((X
SPNfull−−−−→ EX)

RR
=⇒ EY)

MPNfull−−−−→ Y +14.52 +9.97 +106.62

((X
SPNfull−−−−→ EX)

RR
=⇒ EY)

MPNinner−−−−−→ Y +15.98 +7.50 +106.65
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Figure 2: exact match scores (y axis) while
increasing the percentage of missing
components (x axis) for the
(X

RR
=⇒ EY)

MPNfull−−−→ Y setting, on 9 datasets,
while imputing the missing embedding
components only by MPE inference or
re-evaluating the network before (eval).
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A DECODING ALGORITHM

Algorithm 1 lists the pseudocode for our decoding procedure as illustrated in Section 2.

Algorithm 1 decodeEmbedding(M , e, a)

1: Input: an MPN M over X, an embedding e ∈ Rd and a map a : Me ⊆M→ {1, . . . , d}
2: Output: a sample x̃ ∼ X decoded from e, according to M
3: x̃← 0|X|
4: Qx root(M) . top-down traversal of M by using a queueQ
5: while not empty(Q) do
6: nx Q . process current node
7: if n ∈Mmax then . max node
8: cmax ← argmaxc∈ch(n) wncvc such that vc ← ea(c) if c ∈Me else maxu∼sc(c)Mc(u)
9: Qx cmax

10: else if n ∈M⊗ then . product node
11: ∀c ∈ ch(n) : Qx c
12: else . leaf node
13: if n ∈Me then
14: x̃sc(n) ← argminu∼(sc(n))D(φn(u)||ea(n))

15: else . MPEAssignment (inner embedding)
16: x̃|sc(n) ← argmaxu∼sc(n)Mn(u)

17: return x̃

B DATASETS

The 10 datasets employed come from the freely accessible MULAN1, MEKA2, and LABIC3 reposi-
tories. They are real world standard benchmarks for MLC from text, image, sound and biological
domains. Subsets of them have been also used in Dembczyński et al. (2012); Antonucci et al. (2013);
Kong et al. (2013). They have been binarized as in (Di Mauro et al., 2016) by implementing the
Label-Attribute Interdependence Maximization (LAIM) (Cano et al., 2016) discretization method4.

Table 1 reports the information about the adopted datasets, where N , M and L represent the number
of attributes, instances, and possible labels respectively. They are divided into five standard folds.
Furthermore, for each dataset D = {xi,yi}Mi=1 the following statistics are also reported: label
cardinality: card(D) = 1

M

∑M
i=1

∑L
j=1 y

i
j , label density: dens(D) = card(D)

L and distinct labels:
dist(D) = |{y|∃(xi,y) ∈ D}|.

Table 1: Dataset descriptions: number of attributes (N ), instances (M ), and labels (L).

domain N M L card dens dist

Arts text 500 7484 26 1.653 0.063 599
Business text 500 11214 30 1.598 0.053 233
Cal music 68 502 174 26.043 0.149 502
Emotions music 72 593 6 1.868 0.311 27
Flags images 19 194 7 3.391 0.484 54
Health text 500 9205 32 1.644 0.051 335
Human biology 440 3106 14 1.185 0.084 85
Plant biology 440 978 12 1.078 0.089 32
Scene images 294 2407 6 1.073 0.178 15
Yeast biology 103 2417 14 4.237 0.302 198

1http://mulan.sourceforge.net/.
2http://meka.sourceforge.net/.
3http://computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html.
4The processed versions are freely available at https://github.com/nicoladimauro/dcsn.
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C LEARNING SPNS

To learn the structure and weights of our SPNs (and hence MPNs), we employ LearnSPN-b Vergari
et al. (2015), a variant of LearnSPN. LearnSPN-b splits the data matrix slices always into two,
while performing row clustering or checking for RVs independence. With the purpose of slowing
down the greedy hierarchical clustering processes, it has proven to obtain simpler and deeper networks
without limiting their expressiveness as density estimators. Based on the datasets statistics reported
above in Appendix B, we define the same ranges for LearnSPN-b hyperparameters both when we
learn our SPNs for the X and the Y. We set the G-test independence test threshold to 5, we limit the
minimum number of instances in a slice to split to 10 and we performed a grid search for the best leaf
distribution Laplace smoothing value in {0.1, 0.2, 0.5, 1.0, 2.0}. We perform all computations in the
log space to avoid numerical issues.

For the SPN learned on the binarized version of MNIST in Figure 1 we set the G-test independence
test threshold to 20 and the instance threshold to 50 in order to reduce the network size. We then
applied the same grid search as above for the leaf Laplace smoothing coefficient.

D SPN MODEL STATISTICS

Statistics for the reference SPN models learned with LearnSPN-b on the X RVs only are reported in
Table 2. Their average (and standard deviations) values over the dataset folds provide information
about the network topology and quality: how many nodes are in there (edges + 1), how are they
divided into leaves and sum and products and their max depth (as the longest path from the root).
The same statistics are reported for the SPNs over RVs Y, then turned in MPNs, in Table 3.

Table 2: Statistics for the SPN models learned by LearnSPN-b on the X RVs on the ten datasets.
Average and standard deviation values across the five folds reported.

edges depth leaves inner sum prod scopes

Arts 9241.8 20.2 7412.6 1830.2 605.4 1224.8 1053.6
±175.4 ±1.1 ±151.7 ±56.2 ±19.5 ±36.8 ±18.6

Business 8569.6 23.4 7029.0 1541.6 507.6 1034.0 971.4
±228.8 ±1.7 ±170.7 ±73.7 ±24.7 ±49.1 ±22.6

Cal 263.0 7.0 219.8 44.2 14.6 29.6 82.6
±17.0 ±0.0 ±18.5 ±3.6 ±1.1 ±2.5 ±1.1

Emotions 985.8 13.4 724.6 262.2 87.2 175 147.4
±36.4 ±0.9 ±20.2 ±20.2 ±6.9 ±13.3 ±4.7

Flags 74.0 7.0 54.6 20.4 6.8 13.6 25.6
±3.9 ±0.0 ±1.5 ±2.5 ±1.7 ±0.1 ±0.5

Health 7209.2 22.2 5917.0 1293.2 427.8 865.4 899.8
±249.3 ±1.1 ±247.4 ±21.4 ±6.4 ±15.0 ±7.9

Human 15356.6 19.0 11828.6 3529.0 1170.6 2358.4 1479.2
±228.9 ±1.4 ±133.8 ±98.7 ±32.0 ±66.8 ±28.8

Plant 3493.8 13.8 2741.8 753.0 247.4 505.6 681.8
±58.6 ±1.1 ±42.1 ±32.8 ±10.7 ±22.15 ±8.9

Scene 14814.6 15.8 11542.6 3273.0 1089.8 2183.2 1025.6
±169.1 ±1.1 ±122.9 ±59.9 ±20.0 ±40.0 ±21.8

Yeast 2215.0 18.2 1611.2 604.8 199.6 405.2 262.2
±96.1 ±1.1 ±72.4 ±28.3 ±9.4 ±19.0 ±3.9

The length of the embeddings extracted from such models is the number of inner nodes from Table 2
for the inner embeddings over X. For the embeddings over RVs Y, their length in the full setting
shall be considered as the number of all nodes from Table 3.

7



Workshop track - ICLR 2017

Table 3: Statistics for the SPN models learned by LearnSPN-b on the Y RVs on the ten datasets.
Average and standard deviation values across the five folds reported.

edges depth leaves inner sum prod scopes

Arts 495.0 17.8 340.6 155.4 50.2 105.2 74.4
±28.5 ±1.1 ±21.6 ±10.8 ±3.9 ±7.0 ±3.5

Business 414.0 18.6 292.6 122.4 40.2 82.2 65.8
±18.0 ±0.9 ±18.1 ±5.7 ±1.8 ±3.9 ±2.5

Cal 1840.4 12.6 1428.0 413.4 137.8 275.6 293.6
±51.2 ±0.9 ±25.8 ±29.6 ±9.8 ±19.7 ±7.8

Emotions 39.2 7.0 24.6 15.6 5.2 10.4 11.2
±4.5 ±0.0 ±2.2 ±2.5 ±1.7 ±0.1 ±0.8

Flags 25.2 5.4 17.8 8.4 2.8 5.6 9.6
±4.2 ±0.9 ±1.8 ±2.5 ±0.8 ±1.7 ±0.5

Health 504.2 17.4 355.0 150.2 49.2 101.0 76.4
±21.6 ±1.7 ±17.5 ±7.6 ±2.4 ±5.3 ±2.1

Human 118.2 14.2 85.2 34.0 11.0 23.0 25.0
±8.2 ±1.1 ±5.4 ±3.8 ±1.6 ±2.2 ±1.6

Plant 80.0 14.6 57.0 24.0 8.0 16.0 20
±8.2 ±2.2 ±6.2 ±2.1 ±0.7 ±1.4 ±0.7

Scene 38.4 9.0 24.4 15.0 5.0 10.0 11.0
±0.5 ±0.0 ±0.5 ±0.0 ±0.0 ±0.0 ±0.0

Yeast 382.4 14.6 241.2 142.2 46.6 95.6 46.4
±33.4 ±0.9 ±22.6 ±12.8 ±4.1 ±8.8 ±4.2

E MORE EXPERIMENT DETAILS AND RESULTS

E.1 TRAINING DETAILS

E.1.1 LEARNING LINEAR PREDICTORS

We learn to predict each target feature independently from the others, both when we employ the
L2-regularized logistic regressor (LR) to predict RV Y directly and when we use a ridge regressor
(RR) to predict the label embeddings.

To select the best value for the regularization parameter we will perform a grid search for LR in the
space {10−4, 10−3, 10−2, 10−1, 1} and for RR in the space {10−4, 10−3, 10−2, 10−1, 1, 10, 102}5

for each experiment.

E.1.2 LEARNING RBMS

Concerning RBMs, we train them on the X alone (or on the Y alone for the kNN experiments)
by using the Persistent Constrastive Divergence (PCD) Marlin et al. (2010) algorithm, leveraging
the implementation available in scikit-learn. For the weight learning hyperparameters we run a
grid search for the learning rate in {0.1, 0.01}, the batch size in {20, 100} and let the number of
epochs range in {10, 20, 30} since no early stopping criterion was available. We then select the
best models according to their pseudo-log likelihoods. To generate embeddings from RBMs, we
evaluate the conditional probabilities of the hidden units given each sample. To make the comparison
fairer we transform these values in the log domain in the same way we do for our SPN and MPN
representations.

E.1.3 LEARNING MADES

For MADEs, following the experimentation reported in (Germain et al., 2015), we employ adadelta
to schedule the learning rate during training and fix its decay rate at 0.95; we set the max number of
worsening iterations on the validation set to 30 as for RBMs and we employed a batch size of 100
samples. We initialize the weights by employing an SVD-based init scheme.

5We leverage the python implementations for LR and RR from the scikit-learn package (http://
scikit-learn.org/). Note that in scikit-learn the grid parameter for LR has to be interpreted as an
inverse regularization coefficient.
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Other hyperparameters are optimized by a log-likelihood-wise grid search. The gradient dumping
coefficient is searched in {10−5, 10−7, 10−9}, and we employ once the shuffling of mask and orders.
Both ReLus and softplus functions are explored as the non-linearities employed for each hidden
neuron. We employ a MADE openly available implementation, ported to python36.

We learn architectures of three hidden layers comprising 500 and 1000 (resp. 200 and 500) hidden
neurons each for the X (resp. Y). For each reference model, we extract EX embeddings by evaluating
all the hidden layer activations (d = 1500 and d = 3000); for the EY case, however, only the last
hidden layer embeddings are actually exploited for the prediction (d = 200 and d = 500).

E.1.4 LEARNING SAE MODELS

Following the experiments in Wicker et al. (2016), we perform a grid search for the following
hyperparameters: the number of layers is chosen in {2, 3, 4} and the compression factor β ∈
{0.7, 0.8, 0.9}. We employ the Java implementation freely available in MEKA.

We were not able to properly learn SAEs for one dataset, Cal, for all measures, as a numerical error
in MEKA prevented the model evaluation, thereby we removed it in the result Table.

We were also not able to train them on the (X
m−→ EX)

LR
=⇒ Y and hence ((X

m−→ EX)
RR
=⇒ EY)

n−→ Y
settings because the learned representations were not available through MEKA.

E.1.5 LEARNING CONTRACTIVE AND DENOISING AUTOENCODERS

For both CAE and DAE models, for all settings, we learned architectures with up to three layers for
both the encoder and the decoder network.

In particular, we looked at architectures with layers each one made of 500 hidden units for the
(X

m−→ EX)
LR
=⇒ Y setting, and 200 hidden units in the case of (X RR

=⇒ EY)
n−→ Y. For the last setting,

((X
m−→ EX)

RR
=⇒ EY)

n−→ Y we exploited the former for the m models and the latter as the n models.
We modeled the size of the representation layer by performing a grid search among network layers of
size compressed by a factor in {0.7, 0.8, 0.9}.
To train them, we employed Adam as the optimized for gradient descent up to 1000 epochs, stopping
it earlier if no improvement was found after 50 epochs on validation data. We looked for the
batch size in {20, 100}. For CAEs we searched for the contractive coefficient in {0.001, 0.01, 0.1}
while we explored the space of 0.1, 0.2, 0.3 as the percentages of flipping a bit (noise) in the input
representation for DAEs.

E.2 MORE RESULTS FOR MISSING EMBEDDING COMPONENTS

Figures 1 and 2 report the resilience of the decoding scheme for missing at random embedding
components for the jaccard and hamming measures, respectively.

6https://github.com/arranger1044/MADE.
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Figure 1: Average test jaccard scores (y axis) obtained by imputing different percentages of missing
random embedding components (x axis) for the (X

RR
=⇒ EY)

n−→ Y setting on all datasets by
employing MPE inference (orange crosses) or the bottom-up evaluation imputation schemes (blue
squares).
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Figure 2: Average test hamming scores (y axis) obtained by imputing different percentages of
missing random embedding components (x axis) for the (X

RR
=⇒ EY)

n−→ Y setting on all datasets by
employing MPE inference (orange crosses) or the bottom-up evaluation imputation schemes (blue
squares).
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