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ABSTRACT

We propose a framework for training multiple neural networks simultaneously.
The parameters from all models are regularised by the tensor trace norm, so that
each neural network is encouraged to reuse others’ parameters if possible – this is
the main motivation behind multi-task learning. In contrast to many deep multi-
task learning models, we do not predefine a parameter sharing strategy by specify-
ing which layers have tied parameters. Instead, our framework considers sharing
for all shareable layers, and the sharing strategy is learned in a data-driven way.

1 INTRODUCTION AND RELATED WORK

Multi-task learning (MTL) (Caruana, 1997) aims to learn multiple tasks jointly, so that knowledge
obtained from one task can be reused by others. We first briefly review some studies in this area.

Matrix-based Multi-Task Learning Matrix-based MTL is usually built on linear models, i.e.,
each task is parameterised by a D-dimensional weight vector w, and the model prediction is ŷ =
x · w = xTw, where x is a D-dimensional feature vector representing an instance. The objective
function for matrix-based MTL can be written as

∑T
i=1

∑N(i)

j=1 `(y
(i)
j , x

(i)
j · w(i)) + λΩ(W ). Here

`(y, ŷ) is a loss function of the true label y and predicted label ŷ. T is the number of tasks, and for
the i-th task there are N (i) training instances. Assuming the dimensionality of every task’s feature
is the same, the models – w(i)s – are of the same size. Then the collection of w(i)s forms a D × T
matrix W of which the i-th column is the linear model for the i-t task. To achieve MTL we exploit a
regulariser Ω(W ) that couples the learning problems, typically by encouraging W to be a low-rank
matrix. Some choices include the `2,1 norm (Argyriou et al., 2008), and trace norm (Ji & Ye, 2009).
An alternative approach (Kumar & Daumé III, 2012) is to explicitly formulate W as a low-rank
matrix, i.e., W = LS where L is a D ×K matrix and S is a K × T matrix with K < min(D,T )
as a hyper-parameter (matrix rank).

Tensor-based Multi-Task Learning In the classic MTL setting, each task is indexed by a single
factor. But in many real-world problems, tasks are indexed by multiple factors. For example, to
build a restaurant recommendation system, we want a regression model that predicts the scores for
different aspects (food quality, environment) by different customers. Then the task is indexed by
aspects × customers. The collection of linear models for all tasks is then a 3-way tensorW of size
D × T1 × T2, where T1 and T2 is the number of aspects and customers respectively. Consequently
Ω(W) has to be a tensor regulariser (Tomioka et al., 2010). For example, sum of the trace norms on
all matriciations1 (Romera-paredes et al., 2013), and scaled latent trace norm (Wimalawarne et al.,
2014). An alternative solution is to concatenate the one-hot encodings of the two task factors and
feed it as input into a two-branch neural network model (Yang & Hospedales, 2015).

Multi-Task Learning for Neural Networks With the success of deep learning, many studies have
investigated deep multi-task learning. Zhang et al. (2014) use a convolutional neural network to find
facial landmarks as well as recognise face attributes (e.g., emotions). Liu et al. (2015) propose a
neural network for query classification and information retrieval (ranking for web search). A key
commonality of these studies is that they use a predefined sharing strategy. A typical design is to use

1Matriciation is also known as tensor unfolding or flattening.
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the same parameters for the bottom layers of the deep neural network and task-specific parameters
for the top layers. This kind of architecture can be traced back to 2000s (Bakker & Heskes, 2003).
However, modern neural network architectures contain a large number of layers, which makes the
decision of ‘at which layer to split the neural network for different tasks?’ extremely hard.

2 METHODOLOGY

Instead of predefining a parameter sharing strategy, we propose the following framework: For T
tasks, each is modelled by a neural network of the same architecture. We collect the parameters in
a layer-wise fashion, and put a tensor norm on every collection. We illustrate the idea by a simple
example: assume that we have T = 2 tasks, and each is modelled by a 4-layer convolution neural
network (CNN). The CNN architecture is: (1) convolutional layer (‘conv1’) of size 5× 5× 3× 32,
(2) ‘conv2’ of size 3 × 3 × 32 × 64, (3) fully-connected layer (‘fc1’) of size 256 × 256, (4) fully-
connected layer ‘fc2’(1) of size 256×10 for the first task and fully-connected layer (‘fc2’(2)) of size
256× 20 for the second task. Since the two tasks have different numbers of outputs, the potentially
shareable layers are ‘conv1’, ‘conv2’, and ‘fc1’, excluding the final layer of different dimensionality.

For single task learning, the parameters are ‘conv1’(1), ‘conv2’(1), ‘fc1’(1), and ‘fc2’(1) for the first
task; ‘conv1’(2), ‘conv2’(2), ‘fc1’(2), and ‘fc2’(2) for the second task. We can see that there is not
any parameter sharing between these two tasks. In one possible predefined deep MTL architecture,
the parameters could be ‘conv1’, ‘conv2’, ‘fc1’(1), and ‘fc2’(1) for the first task; ‘conv1’, ‘conv2’,
‘fc1’(2), and ‘fc2’(2) for the second task, i.e., the first and second layer are fully shared in this case.
For our proposed method, the parameter setting is the same as single task learning mode, but we put
three tensor norms on the stacked {‘conv1’(1), ‘conv1’(2)} (a tensor of size 5× 5× 3× 32× 2), the
stacked {‘conv2’(1), ‘conv2’(2)} (a tensor of size 3 × 3 × 32 × 64 × 2), and the stacked {‘fc1’(1),
‘fc1’(2)} (a tensor of size 256× 256× 2) respectively.

Tensor Norm We choose to use the trace norm, the sum of a matrix’s singular values ||X||∗ =∑
i=1 σi. It has a nice property that it is the tightest convex relation of matrix rank (Recht et al.,

2010). When directly restricting the rank of a matrix is challenging, trace norm serves as a good
proxy. The extension of trace norm from matrix to tensor is not unique, just like tensor rank has
multiple definitions. How to define tensor rank depends on how we assume the tensor is factorised,
e.g., Tucker (Tucker, 1966) and Tensor-Train Oseledets (2011) decompositions. We propose three
tensor trace norm designs here, which correspond to three variants of the proposed method.

For an N -way tensorW of size D1 ×D2 × · · · ×DN . We define

(Tensor Trace Norm) Last Axis Flattening ||W||∗ = γ||W(N)||∗ (1)

W(i) := reshape(permute(W, [i, 1, . . . , i − 1, i + 1 . . . , N ]), [Di,
∏

j¬iDj ]) is the mode-i tensor
flattening. This is the simplest definition. Given that in our framework, the last axis of tensor indexes
the tasks, i.e., DN = T , it is the most straightforward way to adapt the technique of matrix-based
MTL – reshape the D1 ×D2 × · · · × T tensor to D1D2 · · · × T matrix.

To advance, we define two kinds of tensor trace norm that are closely connected with Tucker-rank
(obtained by Tucker decomposition) and TT-rank (obtained by Tensor Train decomposition).

(Tensor Trace Norm) Tucker ||W||∗ =

N∑
i=1

γi||W(i)||∗ (2)

(Tensor Trace Norm) TT ||W||∗ =

N−1∑
i=1

γi||W[i]||∗ (3)

Here W[i] is yet another way to unfold the tensor, which is obtained by W[i] =
reshape(W, [D1D2 . . . Di, Di+1Di+2 . . . DN ]). It is interesting to note that unlike LAF, Tucker
and TT also encourage within-task parameter sharing, e.g, sharing across filters in a neural network
context.

Optimisation Using gradient-based methods for optimisation involving trace norm is not a com-
mon choice, as there are better solutions based on semi-definite programming or proximal gra-
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Figure 1: Top-left: Testing accuracy. Top-mid: Training loss. Top-right: sharing strength by layer.
Bottom: Norms when optimising LAF (left), Tucker (middle), TT (right).

dients since the trace norm is essentially non-differentiable. However, deep neural networks are
usually trained by gradient descent, and we prefer to keep the standard training process. There-
fore we use (sub-)gradient descent. The sub-gradient for trace norm can be derived as ∂||X||∗

∂X =

X(XTX)−
1
2 . A more numerical stable method instead of computing the inverse matrix square root

is X(XTX)−
1
2 = UV T where U and V are obtained from SVD: X = UΣV T (Watson, 1992).

3 EXPERIMENT

Our method is implemented in TensorFlow (Abadi et al., 2015), and released on Github2. We ex-
periment on the Omniglot dataset (Lake et al., 2015). Omniglot contains handwritten letters in 50
different alphabets (e.g., Cyrillic, Korean, Tengwar), each with its own number of unique characters
(14 ∼ 55). In total, there are 1623 unique characters, each with 20 instances. Each task is a multi-
class character recognition problem for the corresponding alphabet. The images are monochrome
of size 105× 105. We design a CNN with 3 convolutional and 2 FC layers. The first conv layer has
8 filters of size 5× 5; the second conv layer has 12 filters of size 3× 3, and the third convolutional
layer has 16 filters of size 3 × 3. Each convolutional layer is followed by a 2 × 2 max-pooling.
The first FC layer has 64 neurons, and the second FC layer has size corresponding to the number of
unique classes in the alphabet. The activation function is tanh. We compare the three variants of the
proposed framework – LAF (Eq. 1), Tucker (Eq. 2), and TT (Eq. 3) with single task learning (STL).
For every layer, there are one (LAF) or more (Tucker and TT) γ that control the trade-off between
the classification loss (cross-entropy) and the trace norm terms, for which we set all γ = 0.01.

The experiments are repeated 10 times, and every time 10% training data and 90% testing data
are randomly selected. We plot the change of cross-entropy loss in training set and the values of
norm terms with the neural networks’ parameters updating. As we can see in Fig 1, STL has the
lowest training loss, but worst testing performance, suggesting over-fitting. Our methods alleviate
the problem with multi-task regularisation. We roughly estimate the strength of parameter sharing
by calculating 1 − Norm of Optimised Param

Norm of Initialised Param , we can see the pattern that with bottom layers share more
compared to the top ones. This reflects the common design intuition that the bottom layers are more
data/task independent. Finally, it appears that the choice on LAF, Tucker, or TT may not be very
sensitive as we observe that when optimising one, the loss of the other norms still reduces.

This technique provides a data-driven solution to the branching architecture design problem in deep
multi-task learning. It is a flexible norm regulariser-based alternative to explicit factorisation-based
approaches to the same problem (Yang & Hospedales, 2017).

2https://github.com/wOOL/TNRDMTL
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