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Abstract

Bias discovery is critical for black-box generative mod-
els, especially text-to-image (TTI) models. Existing works
predominantly focus on output-level demographic distribu-
tions, which do not necessarily guarantee concept repre-
sentations to be disentangled post-mitigation. We propose
BiasMap, a model-agnostic framework for uncovering la-
tent concept-level representational biases in stable diffu-
sion models. BiasMap leverages cross-attention attribu-
tion maps to reveal structural entanglements between de-
mographics (e.g., gender, race) and semantics (e.g., pro-
fessions) concepts going deeper into representational bias
within the image generation. Using attribution maps of
these concepts, we quantify the spatial entanglement via In-
tersection over Union (IoU), offering a lens into bias that
remains hidden in the individual generation process. Our
findings show that existing fairness interventions may re-
duce the output distributional gap but often fail to disen-
tangle concept-level coupling, which is identifiable through
our bias discovery method.

1. Introduction

“With great power, comes great responsibility.” While
the iconic quote from Spider-Man’s Uncle Ben Parker was
meant for superheroes, it applies just as equivalently to gen-
erative models. Stable Diffusion (SD) models [5, 22, 27]
hold significant power in creating highly realistic images
from input text. However, much like Spider-Man’s webs,
their outputs are often entangled with inherent biases [37]
that frequently go unnoticed. Recent SD models achieve
their impressive capabilities by learning statistical patterns
from massive internet-sourced datasets comprising billions
of images and captions [29]. Yet, these datasets inher-
ently reflect societal biases [2, 6], implicitly perpetuating
or amplifying stereotypes involving sensitive demographic
attributes such as gender and race . Such biases pose
significant ethical and fairness challenges, as these gener-

ative models actively shape public perception. Moreover,
due to SD’s internal opacity [32], precisely identifying or
addressing biases at a representational level remains diffi-
cult. Generally, biases originate from two primary sources:
data-level imbalances in training sets [15, 31] and latent
representational entanglements [42] which are hidden inter-
nal correlations between demographic (e.g., gender , race
) and semantic (e.g., professions ) concepts learned im-
plicitly. Even when data-level issues are corrected, latent
entanglements often persist, subtly embedding stereotypes
conceptually [14]. We explicitly define latent entanglement
as internal representational overlaps between demographic
and semantic concepts, signifying implicit associations that
remain independent of explicit textual conditioning.

Prior works [1, 16] have primarily focused on output-level
observation in SD, examining skews in demographic dis-
tributions at the generated image level. While these ap-
proaches provide valuable insights, they offer limited un-
derstanding of the internal representational structures that
underpin these biases. Recently, some efforts [10, 17] have
been made to inspect biases within the diffusion process it-
self. However, these studies lack fine-grained spatial-level
indicators, offering no direct method to identify precisely
which regions or pixels are impacted by bias or how deeply
demographic concepts become entangled with semantic at-
tributes. To overcome these limitations and move beyond
superficial, output-level bias audits, it is essential to in-
spect and quantify the latent representational entanglement
spatially within generative models. A deeper understand-
ing of how demographic concepts intertwine internally with
semantic roles would enable more targeted and effective
bias mitigation interventions, going beyond merely adjust-
ing output distributions to structurally addressing biases at
the representational level. Therefore, our work explicitly
targets this crucial research gap and poses the following
central research questions:

RQ1: How can we leverage attribution mapping to ex-
plain the source of bias for generation in SD?



RQ2: How do we quantify the bias in SD in the form of
concept entanglement and evaluate existing SD models?

To address these questions, we propose BiasMap, a
model-agnostic framework utilizing cross-attention attribu-
tion maps to quantify latent representational entanglements
in text-to-image diffusion models. Our primary contribu-
tions include:
• A novel block-wise localization method that precisely

identifies and quantifies representational entanglement
between demographic attributes and semantic concepts.

• The introduction of Intersection-over-Union (IoU) as a
metric for effectively quantifying concept-level biases

• Empirical evidence demonstrating that mIoU provides
deeper insights into structural biases, complementing tra-
ditional distribution-based metrics to highlighting the ne-
cessity of addressing latent representational biases be-
yond mere demographic parity.

2. BiasMap
2.1. Preliminary
Let f denote a stable diffusion model. Given a prompt P
and noise z, the model generates the corresponding image
I = f(P, z) with shape W ×H × C.

In generative TTI models, cross-attention integrates text
into image synthesis. Open-Vocabulary Attention Maps
(OVAM) [19] attribute spatial influence to arbitrary con-
cepts, even those absent from input prompts. For an arbi-
trary concept a, which does not need to be in the original
prompt P used to generate the image I, OVAM generates
an attention attribution map Ma(I) to interpret the spatial
region related to the concept a. To construct OVAM, the
attribution prompt P ′ with a ∈ P ′ is converted by CLIP
encoder as X ′ ∈ RdE×dX′ , where dE is the embedding di-
mension and dX′ is the number of tokens. Without loss
of generality, the concept a is expressed as a single to-
ken a. For generating the open-vocabulary attention ma-
trices for even concept a /∈ P , OVAM uses ℓ

(i)
K as key

projection at each block i to compute the attribution keys:
K ′

i = ℓ
(i)
K (X ′). During denoising, pixel-space queries are

extracted at block i, timestep t: Qi,t = ℓ
(i)
Q (hi,t) , where

hi,t is the i-th convolutional block output at time step t

and ℓ
(i)
Q , is learned projection at each block i. The cross-

attention matrix A ∈ RW (i)×H(i)×d
(i)
H ×dX′ is computed for

each block i and time step t:

A(Qi,t,K
′
i) = softmax

(
Qi,tK

′⊤
i√

d

)
, (1)

where d is the query/key dimensionality, W (i)×H(i) is the
reduced latent space shape at block i, d(i)H is the number of
attention heads at block i.

To generate the attribution map Ma(I), OVAM aggre-
gates the matrices across blocks, timestamps, and attention
heads for the slices associated with token a:

Ma(I) =
∑
i,t,l

resize (Al,a(Qi,t,K
′
i)) ∈ RW×H , (2)

where Ah,k refers to the slice associated with the l-th atten-
tion head and token a, and resize(·) normalizes resolution
by bilinear interpolation. The map Ma(I) ∈ RW×H local-
izes token influence for concept probing. When both P and
P ′ are identical, the heatmaps are equivalent to directly ex-
tracting and aggregating the cross-attention matrices com-
puted during image synthesis.

2.2. Methodology
To interpret biased concept association during image syn-
thesis, we propose BIASMAP , as seen in Figure 1 which
spatially localizes concept entanglement during image gen-
eration via concept attribution maps.
Bias Localization. To evaluate the generation of I =
f(P, z), we define two attribution prompts with embed-
dings P ′

a and P ′
b containing concepts a and b, respectively.

In the context of bias discovery, concept a denotes the de-
mographics (e.g., gender or race ) and concept b denotes
the semantics (e.g., profession ). In a common TTI setting
explored in previous works, a /∈ P and b ∈ P . Using Eq. 2,
we compute the aggregated attribution maps Ma and Hb

indicating spatial attribution for each concept. We model
concept entanglement as the similarity of cross-attention
attribution maps in the pixel space between two concepts.
More specifically, we focus on the attribution maps of the
high cross-attention regions in the pixel space. We localize
the high attention regions with at a threshold τ and generate
binary masks:

M̄a[x, y] =

{
1, if Ma[x, y] ≥ τ,

0, otherwise,
(3)

where [x, y] denotes the 2D spatial coordinates in the atten-
tion heatmap of resolution W × H , and Ma[x, y] ∈ [0, 1].
This yields binary masks M̄a and M̄b representing regions
most influenced by the respective concepts.

We compute the Intersection over Union (IoU) between
these masks to quantify entanglement:

IoU(M̄a, M̄b) =

∑
x,y M̄a[x, y] · M̄b[x, y]∑

x,y max(M̄a[x, y], M̄b[x, y])
. (4)

Intuition

If concept entanglement exists between demographics and se-
mantics, the attention maps should have substantial intersec-
tion over spatial regions. That is, the same pixels are influ-
enced by both concepts during generation.
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Figure 1. BiasMap Visualization and Block-wise Entanglement Analysis. Left panels show BiasMap visualizations across three models
(SD 1.5, FairDiffusion, ITIGEN) with attention masks for profession(firefighter), race, and their overlaps (yellow). Right panels display
block-level analysis of spatial entanglement (measured by mBIoU) between: profession and race tokens across critical UNet blocks. The
visualizations highlight attention overlap at different resolutions, particularly at down-16×16 (middle network blocks), and up-64×64
and down-64×64 blocks (early encoding and final decoding blocks), revealing where demographic-semantic concept entanglement occurs
most prominently in the diffusion process. IoU scores are shown in blue.

Lower IoU indicates better separation of demographics and
semantics concepts in image generation.
Block-wise Bias Localization. Eq. 2 shows the aggregated
attribution map across all blocks. Since concepts are gener-
ated in different blocks, we further dive into the block-wise
attribution map at block i:

M (i)
a (I) =

∑
t,l

resize (Al,a(Qi,t,K
′
i)) ∈ RW×H . (5)

Similarly, we obtain the block-wise binary masks M̄ (i)
a and

M̄
(i)
b for two concepts and compute the Block-wise Inter-

section over Union (BIoU) to analyze at what depth entan-
glement occurs.

BIoU(i)(M̄ (i)
a , M̄

(i)
b ) =

∑
x,y M̄

(i)
a [x, y] · M̄ (i)

b [x, y]∑
x,y max(M̄

(i)
a [x, y], M̄

(i)
b [x, y])

.

For each I, an average BIoU over all blocks is computed.

BIoU(a, b) =
1

N

N∑
i=1

BIoU(i)(M̄ (i)
a , M̄

(i)
b ), (6)

where N is the number of blocks.
Difference from Risk Difference. Previous works only
focus on group fairness in generation output distribution.
The Risk Difference (RD), defined as RD(a1, a2) =
|Pr(a1)− Pr(a2)|, where a1, a2 are different demographic
groups (e.g., “male” and “female”), measures group-level
bias through demographic parity across samples, address-
ing distributional fairness. Conversely, IoU or BIoU quan-
tifies representational entanglement by measuring spatial

co-activation patterns for each individual generation. it re-
veals how demographics become structurally coupled with
semantics concept in the latent space. We can also extend
concept entanglement to a group setting. We evaluate the
mIoU (or mBIoU) for different images generated by f with
the same instruction prompt P but different noises z.

3. Evaluation Setup

Setup. We evaluate bias discovery on 20 occupation
prompts selected from the US Bureau of Labor Statistics
[36]. Generation prompts P follow the template: “A photo
of the face of a [profession]”. We evaluate bias against
race and gender separately. The attribution prompts P ′

for BiasMap analysis use: “A photo of the face of a [pro-
fession] and [race/gender]”. For each profession , we gen-
erate 100 images using Stable Diffusion v1.5 (SD 1.5) and
two debiasing models based on RD: FairDiffusion (FG) [7]
and ITI-GEN (IG) [41]. For race debiasing, FD modifies
the text prompt to alternate the specified race for roughly
half the samples, ensuring a balance between white and
black depictions. IG operates via latent guidance, condi-
tioning generation on skin tone using the six-point Fitz-
patrick scale (1=lightest, 6=darkest) to produce a spectrum
of ethnic appearances. For gender debiasing, FD alter-
nates prompts between male and female subjects, whereas
IG applies latent guidance to balance masculine vs. femi-
nine features without explicit prompt keywords. We quan-
tify group fairness using RD, where for race, we compute
|Pr(“white”) − Pr(“black”)|. For gender, we calculate
|Pr(“male”) − Pr(“female”)|. We use a CLIP ViT-L/14



Table 1. Quantitative results on gender bias. Lower mIoU indi-
cates better disentanglement.

Method RD ↓ mIoU ↓ mBIoU ↓
SD1.5 0.59 0.3634 0.4291
FairDiffusion (FD) 0.14 0.3932 0.4591
ITIGEN (IG) 0.17 0.3579 0.4391

Table 2. Quantitative results on race bias. Lower mIoU indicates
better disentanglement.

Method RD ↓ mIoU ↓ mBIoU ↓
SD1.5 0.75 0.4135 0.4391
FairDiffusion 0.21 0.4384 0.4394
ITIGEN 0.22 0.4034 0.4498

model for demographics classification [23], with race clas-
sifications on white, black, Hispanic, and Asian. We quan-
tify concept entanglement using mIoU and mBIoU over 100
images. We set the threshold τ in Eq. 3 to 70% to gener-
ate our binarized heatmaps. All experiments were run on a
single NVIDIA A100 GPU.

4. Quantitative Evaluation
Performance Analysis. Tables 1 and 2 reveal two criti-
cal observations: (1) Both FairDiffusion and ITIGEN ef-
fectively mitigate demographic disparities, significantly re-
ducing RD by 70-75% for both gender and race attributes
across occupational contexts based on t-test, (2) Despite
this distributional improvement, the mIoU remains virtu-
ally unchanged or even slightly increases post intervention
(no significant changes). This is consistent across both de-
mographic concepts and both variants of mIoU. Extended
experiment results are included in Supp. C to F.
Structural Implications. The observed divergence be-
tween demographic parity and persistent concept entangle-
ment indicates an interesting limitation in present debias-
ing methods. While interventions successfully rebalance
output distributions, they fail to disentangle the underlying
representational structures where demographic and seman-
tic concepts become spatially coupled in the model’s inter-
nal representations. This observation suggests that effec-
tive bias mitigation requires addressing not only the class of
the output but also how concepts are structurally associated
within the generation process itself.

5. Findings
5.1. RQ1: Latent Bias Beyond Outputs
Our results reveal that SD’s internal representations encode
demographic–semantic entanglements beyond what output-

level audits capture. Even when prompts do not specify
gender or race , cross-attention maps show substantial spa-
tial overlap (mIoU) between demographic tokens and cer-
tain professions . For instance, nurse strongly co-activates
in heatmap with gender in the early attention blocks (refer
to Supp. B), aligning with stereotypical output biases.We
notice this bias emerges within the U-Net, well before final
image generation or any demographic balancing. Hence, re-
ducing output skew alone, say by adjusting sampling, does
not necessarily alter how the model internally associates de-
mographic attributes with semantic ones.

Key Finding 1

The inception of bias is in the U-Net, way before final im-
age generation. Activated heatmaps highlight the source of
bias lies in early high-resolution blocks and resurfaces in fi-
nal decoding blocks.In particular we notice high mBIoU in
the first downsampling 64×64 and last upsampling 64×64
blocks, showing a convex non-monotonic trend akin to the
U-shape of the subnetwork.

5.2. RQ2: Concept Entanglement Quantified
In our study we reduce the abstraction in the idea of con-
cept entanglement to a quantifiable paradigm using cross-
attention based activation maps as discussed in Section 2.
In particular we represent entanglement as pixel-wise over-
lap in attention outputs for our two concepts, using mIoU
as the representing metric. For our distributional metric we
propose Risk Difference (RD) to denote group-level bias.
This dual-measurement paradigm enables both macro-level
fairness evaluation and micro-level interpretability of em-
bedded demographic markers, providing a more compre-
hensive framework for generative model bias analysis.

Key Finding 2

Output-level parity does not imply latent fairness. SD’s
cross-attention confirms that professions remain gendered or
racialized within the network, indicating that mere output bal-
ancing fails to remove deeper conceptual bias.

6. Conclusion
BiasMap uncovers latent conceptual biases in Stable Dif-
fusion by measuring spatial entanglement between demo-
graphics and semantic concepts using cross-attention. We
show that distribution based mitigation is not sufficient by
highlighting persisting entangled concept correlations even
in the debiased models. Currently, we focus on single-axis
bias and do not explore intersectional biases where mul-
tiple demographic attributes co-occur. This leaves open
questions about how compounding identities influence in-
ternal representations. We aim to develop mitigation tech-
niques that directly reduce entanglement during generation
by guiding models toward concept disentanglement.
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Supplementary Material

The supplementary material is divided as follows: Sec-
tion A discusses existing literature in depth regarding image
generation, bias discovery, interpretability and bias mitiga-
tion. Section B provides a deeper discussion into block-
wise entanglement analysis in the denoising step of diffu-
sion. Section C highlights extended experiments and their
quantitative results. In our final sections, we strengthen our
proposal of mIoU as a metric: Section E validates mIoU
as a correct measure for understanding entanglement, and
Section F discusses the faithfulness of mIoU.

A. Related Works

Image Synthesis and Stable Diffusion. Image synthesis
at its earliest stages relied heavily on deterministic algo-
rithms and feature engineering [4, 9] limiting realism and
flexibility. The introduction of deep learning [12] brought
about new paradigms like such as Variational Autoencoders
(VAEs) [11] and Generative Adversarial Networks (GANs)
[8]. While these significantly improved generation qual-
ity, [11] used objective functions that often led to blurry
images, and [8] faced challenges such as training instabil-
ity and mode collapse. The earliest works of text-to-image
(TTI) used VAEs with text sequences [18]. At this point,
the idea of diffusion came into being [33], leading to the ap-
proach of generation being treated as a process of denoising
, starting from pure noise. Latent Diffusion Models intro-
duced an efficient mechanism by operating in a compressed
latent space, significantly reducing computational require-
ments without compromising on image fidelity. Stable Dif-
fusion [26] emerged as the foundational model for TTI syn-
thesis. The earliest versions of SD were trained on 512 X
512 images with a CLIP ViT-L/14 text encoder and later,
with a CLIP ViT-H/14 variant. SDXL [22] featured a base
model with 3.5B parameters, significantly larger than its
predecessors and introduced native support for 1024 X1024
images with improved generation of complex features. [5]
stands as the latest SD series of models offering variants
upto 8B parameters.

Other TTI models. OpenAI’s DALL-E [24] introduced
an approach using the transformer architecture with a dis-
crete variational autoencoder (dVAE). Building upon its
predecessor, DALL-E 2 [25] introduced a two stage frame-
work having a prior network generating CLIP image em-
beddings from text, followed by a decoder that produces
images conditioned on these embeddings. Incorporating
CLIP notably improved the model’s understanding of se-
mantic concepts resulting to better generation quality. In

terms of frontier models, Google introduced Imagen [28]
utilized a pretrained text encoder to process textual descrip-
tions, which were then used to condition a series of diffu-
sion models leading to image generation in a cascaded man-
ner. This led to production of photorealistic images and nu-
anced language understanding. Google also introduced the
Pathways Autoregressive Text-to-Image model (Parti) [40]
, approaching TTI generation as a sequence-to-sequence
problem akin to machine translation. It employed an au-
toregressive transformer model that generates sequences of
image tokens based on input text, facilitating the creation
of complex and content-rich images. This method enabled
Parti to handle intricate compositions and incorporate ex-
tensive world knowledge into the generated imagery.

Interpretability and Bias Discovery in SD. The inter-
pretability of diffusion models, particularly those in the SD
model family, has been the focus of recent studies aiming
to elucidate the internal mechanisms of generation. This
also aims to discover internal biases withiin the TTI models.
Diffusion Attentive Attribution Maps (DAAM) [34] gener-
ates pixel-level attribution maps by upscaling and aggre-
gating cross-attention scores from SD’s denoising network.
Diffusion Lens[35] focuses on the text encoder component
of text-to-image pipelines. By generating images condi-
tioned on intermediate text representations, it provides in-
sights into how textual information is processed and utilized
during image synthesis. This method sheds light on the
compositional understanding of complex prompts. How-
ever, it primarily examines the text encoder in isolation, po-
tentially overlooking the interplay between text and image
components in the diffusion process. Open Vocabulary At-
tention Maps (OVAM) [19]is a training-free method that en-
ables the generation of attention maps for arbitrary words,
extending beyond the original text prompts used in image
synthesis. It includes a lightweight token optimization pro-
cess that enhances the accuracy of these attention maps with
minimal supervision.
Recent bias discovery methods [13, 30, 32, 38] for SD
models primarily focus on intermediate representational ob-
servations to gain insights into inherent biases within the
model. [13] proposed a self-supervised technique to extract
interpretable latent directions corresponding to semantic at-
tributes without labeled supervision, enabling attribute dis-
entanglement and surfaced latent bias axes. However, its
focus was restricted to binary-aligned semantic traits and
not arbitrary concepts. [30] introduces a bias amplifica-
tion paradox framework, comparing the distribution of at-
tributes in generated image against those implied in train-



ing captions. This revealed that SD disproportionately am-
plified biases even when prompts are neutral, underscor-
ing the role of both training data priors and model prompt
alignment mismatches. Recently, OpenBias [3] introduced
a flexible pipeline for open-set bias discovery without re-
quiring pre-specified demographic categories. Leveraging
a combination of image generation, large vision-language
models (VLMs), and question-answering modules, Open-
Bias identified both known and emergent biases across di-
verse prompts. [39] highlighted that gendered associations
not only influence face and body generation but also bias
object placement and compositional structure, suggesting
entrenched priors in both the text encoder and image gen-
erator. To our knowledge, the most recent work is [32]
which uncovered localized structures in the generative pro-
cess responsible for encoding bias-correlated concepts and
proposed patching interventions to mitigate these pathways,
enabling bias-aware control without architectural retrain-
ing.

Bias Mitigation. Fair Diffusion [7] introduced a strategy
that allows users to guide model outputs via human in-
structions, effectively adjusting biases to achieve desired
demographic representations by leveraging concepts cap-
tured during training . Inclusive Text-to-Image Generation
(ITI-GEN) [41] proposed using reference images to guide
the generation process, ensuring the inclusion of diverse at-
tributes without necessitating model fine-tuning . Concur-
rently, Text-to-Image Model Editing (TIME) [20] was de-
veloped to modify implicit assumptions in diffusion mod-
els by updating cross-attention layers based on source and
destination prompts, allowing for the correction of outdated
or biased assumptions .Recently, [21] introduced distribu-
tion guidance to condition the reverse diffusion process on
a reference attribute distribution, effectively reducing bi-
ases without additional data or model retraining . These
methodologies represent significant advancements in pro-
moting fairness and inclusivity in generated content by of-
fering diverse strategies to mitigate biases within text-to-
image diffusion models.

B. Block-level Analysis

We present a detailed quantitative block-level analysis of
conceptual entanglement across the U-Net architecture in
diffusion models. We focus specifically on examining
five representative professions as a case study: nurse,
firefighter, journalist, chef, and doctor, analyzing how
demographic-semantic concept coupling manifests at dif-
ferent resolutions throughout the network. Figures 2 and 3
present mean Block-wise Intersection-over-Union (mBIoU)
measurements across critical U-Net blocks. As highlighted
in Key Finding 2 in Section 5.1, the observed pattern

Figure 2. Profession -Gender Concept Entanglement (mBIoU)
across UNet Blocks.

Figure 3. Profession -Race Concept Entanglement (mBIoU)
across UNet Blocks.

follows a characteristic U-shaped distribution across net-
work depth, with significantly higher entanglement at high-
resolution blocks and lower entanglement at intermediate
representations. This suggests that demographic-semantic
associations are encoded primarily during initial feature ex-
traction and final image synthesis stages. In further subsec-
tions, we provide detailed observations into U-Net layers
over profession -gender entanglement with mBIoU values
reported as shown in Figure 2.

B.1. High-Resolution Encoding Blocks

The down-64×64 block exhibits pronounced concept en-
tanglement across all analyzed professions .For profes-
sions with strong societal gender associations, such as
nurse, entanglement reaches 0.46, while firefighter shows
even higher coupling at 0.48.This indicates that initial fea-
ture extraction stages immediately encode demographic at-
tributes as intrinsically linked to profession -based seman-
tics.Notably, our subset of strongly stereotyped professions
demonstrate the highest entanglement at this early stage.
The firefighter profession shows maximal demographic-
semantic coupling (0.48), significantly higher than less
stereotypically gendered professions like chef (0.42).



B.2. Intermediate Representation Blocks
As information flows deeper into the network, we observe
progressive disentanglement of demographic and semantic
concepts. The down-32×32 block shows moderate reduc-
tions in mBIoU across all professions , with values ranging
from 0.36 (doctor) to 0.39 (firefighter). Most significantly,
the down-16×16 block corresponding to the network’s bot-
tleneck demonstrates substantially reduced entanglement,
with mBIoU values dropping to 0.15–0.19 range. This rep-
resents a reduction of approximately 60% compared to the
initial encoding blocks, suggesting that abstract latent repre-
sentations partially disentangle demographic attributes from
profession semantics.

B.3. Generative Upsampling Blocks
In the upsampling phase, we notice that entanglement pro-
gressively increases through successive upsampling blocks.
Beginning with the up-16×16 block, mIoU values rise to
the 0.24–0.29 range, already showing re-entanglement com-
pared to the bottleneck. The up-32×32 block continues this
trend with further increased coupling (0.29–0.33), while
the up-64×64 block exhibits substantially higher entangle-
ment, particularly for stereotyped professions . The fire-
fighter profession shows the highest terminal entanglement
(0.47), closely followed by nurse (0.44). This progressive
re-entanglement during upsampling suggests that the diffu-
sion model reconstructs demographic-semantic associations
during image synthesis, even when these associations were
partially disentangled in abstract latent representations.

B.4. Professional Variation in Entanglement Dy-
namics

Different professions exhibit characteristic entanglement
signatures across the network architecture. The firefighter
profession consistently shows the highest entanglement at
both extremes of the network (0.48 at down-64×64 and
0.47 at up-64×64), suggesting deeply encoded gender and
race associations. The nurse profession demonstrates
the second-highest overall entanglement, with particularly
strong coupling during final image synthesis (0.44 at up-
64×64) shown in Figure 3. Interestingly, chef and journalist
show more moderate terminal entanglement (0.35 and 0.38
respectively), suggesting potentially weaker but still signif-
icant stereotypical associations.

C. Quantitative Results
We show further quantitative results in Table 3 and 4, and
highlight some observations apart from the main findings
discussed in Section 5. Importantly the trends observed in
this section reinforce our original argument presented ini-
tially regarding output level distribution not being enough
for bias mitigation and/or discovery. We also perform
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Figure 4. Profession -Gender Concept Entanglement (BIoU)
across UNet blocks. Note that the yellow mask(s) denote over-
lap between demographic( gender ) and semantic( profession :
Nurse) concepts. BIoU scores are shown in blue.

cross-model validation with the v2 variant of SD and con-
clude that the trends in bias remain oddly consistent after
a marked improvement in architecture design from v1.5.
Both discussions highlight the emerging need for better mit-
igation paradigms to diminish concept-level entanglement
within the model.

Asymmetry Between Gender and Race Bias. We ob-
serve distinct patterns of conceptual entanglement across
demographic dimensions. For instance, firefighter exhibits
high gender entanglement (mIoU = 0.566) but moderate
race entanglement (mIoU = 0.353), while musician shows
comparable values for both gender (mIoU = 0.519) and
race (mIoU = 0.466). This suggests that bias dimensions
operate independently rather than uniformly across demo-
graphic categories.

Counterintuitive Intervention Effects. For certain pro-
fessions , FD paradoxically increases race entanglement
despite reducing distributional bias. This is most pro-
nounced for journalist (mIoU increasing from 0.434 to
0.483, an 11.3% increase) and artist (from 0.349 to 0.430,
a 23.2% increase). This suggests that intervention methods
may inadvertently strengthen internal representational cou-
pling while achieving surface-level distributional fairness.

Disconnect Between Distributional and Representa-
tional Bias. Professions demonstrating near-perfect dis-
tributional balance often maintain substantial concept en-
tanglement. Journalist exhibits near-zero race distribu-
tional bias (RD = 0.020) yet maintains high race-profession
entanglement (mIoU = 0.434). This discrepancy is also evi-
dent for athlete (gender RD = 0.140, gender mIoU = 0.526),
revealing a hidden layer of bias that output-level metrics fail
to detect.

Demographic-Specific Entanglement Patterns. The
discrepancy between aggregation methods varies markedly



Table 3. Gender based Metrics Comparison. FD denotes FairDiffusion and IG denotes ITI-GEN.

profession mIoU ↓ mBIoU ↓ RD ↓
SD v1.5 FD IG SD 1.5 FD IG SD 1.5 FD IG

architect 0.490 0.492 0.492 0.409 0.408 0.437 0.940 0.120 0.100
artist 0.493 0.501 0.501 0.459 0.460 0.465 0.860 0.140 0.340
athlete 0.526 0.524 0.524 0.481 0.481 0.475 0.140 0.120 0.260
cashier 0.443 0.435 0.435 0.389 0.390 0.386 0.920 0.180 0.120
chef 0.421 0.417 0.417 0.457 0.458 0.462 0.900 0.300 0.080
doctor 0.341 0.336 0.336 0.451 0.451 0.451 0.920 0.320 0.360
driver 0.403 0.403 0.403 0.385 0.384 0.397 0.900 0.200 0.020
engineer 0.440 0.434 0.434 0.426 0.426 0.454 0.900 0.220 0.160
firefighter 0.566 0.572 0.572 0.410 0.409 0.417 0.980 0.260 0.000
journalist 0.524 0.524 0.524 0.447 0.447 0.457 0.980 0.240 0.040
lawyer 0.474 0.475 0.475 0.433 0.433 0.444 0.900 0.240 0.220
mechanic 0.430 0.427 0.427 0.361 0.361 0.363 0.960 0.120 0.180
musician 0.519 0.527 0.527 0.462 0.462 0.476 0.480 0.120 0.460
nurse 0.338 0.338 0.338 0.474 0.474 0.477 0.600 0.020 0.580
officer 0.407 0.394 0.394 0.472 0.471 0.467 0.760 0.080 0.140
pilot 0.430 0.406 0.406 0.439 0.438 0.442 0.980 0.400 0.180
scientist 0.399 0.393 0.393 0.458 0.458 0.479 0.980 0.480 0.400
teacher 0.414 0.405 0.405 0.485 0.485 0.508 0.900 0.100 0.300
waiter 0.469 0.467 0.467 0.464 0.463 0.470 1.000 0.440 0.020
worker 0.298 0.299 0.299 0.461 0.462 0.482 0.480 0.080 0.520

Table 4. Race based Metrics Comparison.FD denotes FairDiffusion and IG denotes ITI-GEN.

profession mIoU ↓ mBIoU ↓ RD ↓
SD 1.5 FD IG SD 1.5 FD IG SD 1.5 FD IG

architect 0.431 0.472 0.454 0.424 0.426 0.436 0.700 0.160 0.120
artist 0.349 0.430 0.368 0.437 0.438 0.443 0.280 0.060 0.100
athlete 0.487 0.505 0.451 0.479 0.479 0.491 0.320 0.020 0.240
cashier 0.292 0.315 0.251 0.419 0.420 0.423 0.540 0.100 0.300
chef 0.433 0.455 0.346 0.435 0.437 0.452 0.780 0.200 0.180
doctor 0.362 0.378 0.327 0.435 0.434 0.427 0.220 0.140 0.260
driver 0.214 0.238 0.164 0.449 0.451 0.471 0.680 0.020 0.060
engineer 0.396 0.430 0.469 0.417 0.418 0.414 0.800 0.200 0.100
firefighter 0.353 0.381 0.328 0.482 0.482 0.480 0.980 0.040 0.260
journalist 0.434 0.483 0.432 0.427 0.428 0.429 0.020 0.100 0.120
lawyer 0.370 0.406 0.366 0.442 0.443 0.437 0.420 0.240 0.120
mechanic 0.175 0.173 0.171 0.175 0.173 0.171 0.880 0.100 0.020
musician 0.466 0.503 0.475 0.420 0.420 0.435 0.240 0.120 0.080
nurse 0.404 0.419 0.353 0.454 0.455 0.458 1.000 0.620 0.840
officer 0.347 0.355 0.351 0.485 0.484 0.487 0.880 0.080 0.040
pilot 0.335 0.337 0.331 0.478 0.476 0.488 0.560 0.020 0.160
scientist 0.375 0.423 0.394 0.433 0.433 0.432 0.560 0.220 0.120
teacher 0.334 0.363 0.383 0.474 0.473 0.486 0.440 0.160 0.140
waiter 0.370 0.400 0.319 0.463 0.462 0.471 1.000 0.120 0.000
worker 0.346 0.398 0.426 0.346 0.398 0.426 0.520 0.100 0.100



Image Profession Gender Overlap

IT
IG

EN
Fa

ir
D

iff
us

io
n

SD
 1

.5

m
B

Io
U

U-Net Blocks

0.
35

0.
35

0.
32

Figure 5. Left panels show BiasMap visualizations for three models (SD 1.5, FairDiffusion, ITIGEN) with attention masks for profes-
sion(firefighter), gender, and their overlaps (yellow). Right panels show spatial entanglement (mBIoU) between profession and gender
tokens across key UNet blocks, highlighting attention overlap at different resolutions. IoU scores are shown in blue.

across demographic dimensions. For gender bias, differ-
ences appear most pronounced in stereotypically gendered
professions like firefighter (gap of 0.156 between layer-
wise and block-aggregated values) and nurse (gap of
0.136). Conversely, for race bias, chef shows a minimal
gap of 0.002 between measurements, suggesting more uni-
form distribution of race bias across network components.

Resilience of Deeply Entrenched Biases. Professions
with extreme initial distributional bias show varying de-
grees of improvement under interventions, suggesting a
ceiling effect in current bias mitigation approaches. For
waiter with gender bias, we observe perfect distributional
bias in SD v1.5 (RD = 1.000), which improves substan-
tially with FD (RD = 0.440) and dramatically with IG (RD
= 0.020). However, for nurse with race bias, we see com-
plete bias in SD v1.5 (RD = 1.000) that only moderately
improves with FD (RD = 0.620) and actually worsens with
IG (RD = 0.840). Even when distributional metrics improve
dramatically (as with firefighter gender bias going from RD
= 0.980 to RD = 0.000), the entanglement metrics remain
high (mIoU = 0.572), indicating that internal representa-
tions maintain stereotypical associations despite balanced
output.

Summary. The findings validate our hypothesis dis-
cussed in Section 1 that simply balancing output dis-
tribution might not be enough for mitigation tech-
niques to ensure that bias is no more present. Rather,
internal learning representations may increase entan-
glement of biases as discussed above.

Cross-Model Validation with SDv2. Tables 5 and 6
present compelling evidence for the model-agnostic na-
ture of our BiasMap framework, demonstrating that con-
cept entanglement is a persistent phenomenon across dif-
ferent model architectures and training paradigms. The
data reveals that SDv2, despite architectural improvements
over SD 1.5, exhibits remarkably similar patterns of bias
in both distributional metrics and representational entan-
glement, validating our approach as a generalizable bias
discovery method. Examining SDv2’s baseline gender
bias in Table 5, we observe that distributional bias (RD)
patterns closely mirror those in SD 1.5, with professions
like waiter (RD = 1.000), firefighter (RD = 0.980), and sci-
entist (RD = 0.980) showing extreme gender imbalance.
This consistency across model generations suggests that de-
mographic skews originate primarily from training data bi-
ases rather than model-specific architectural features. How-
ever, when comparing representational entanglement mea-
surements, SDv2 demonstrates notable differences, with
professions like artist showing substantially lower gen-
der entanglement (mIoU = 0.245) compared to SD 1.5
(mIoU = 0.493). This architectural variation in concept
coupling, despite similar distributional biases, confirms that
our mIoU measurement captures model-internal representa-
tional properties that are distinct from output-level statistics.

The effectiveness of FairDiffusion intervention remains
consistent across model generations, with comparable re-
ductions in distributional bias despite architectural differ-
ences. For instance, firefighter gender bias decreases from
0.980 to 0.260 in both SD 1.5 and SDv2, demonstrating that
text-prompt interventions operate effectively regardless of
model architecture. However, the intervention’s impact on
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Figure 6. An overview of spatial concept overlap using a generated image of a doctor. Heatmaps highlighted show the effects of attributes:
Doctor, Race and Overlapping concepts. IoU scores are shown in blue.

representational entanglement varies by model, with SDv2
showing greater resilience to change in entanglement mea-
surements post-intervention. This disparity further validates
our framework’s ability to detect architectural differences
in bias representation that remain invisible to traditional de-
mographic parity metrics.

Particularly striking in Table 6 is the dramatic increase in
racial entanglement for certain professions in SDv2 com-
pared to SD 1.5. The firefighter profession exhibits race
-concept entanglement of 0.552 in SDv2 versus 0.353 in
SD 1.5, despite identical distributional bias (RD = 0.980).
Similar patterns emerge for engineer (0.539 vs. 0.396) and
officer (0.540 vs. 0.347). This systematic increase suggests
that architectural changes in SDv2 may have inadvertently
strengthened internal coupling between racial attributes and
certain profession concepts, despite no deterioration in dis-
tributional metrics—a finding that would remain undetected

without our spatial entanglement analysis.

The relationship between initial bias severity and mitiga-
tion potential observed in SD 1.5 persists in SDv2, further
confirming the model-agnostic nature of this phenomenon.
Profession with extreme initial racial bias like nurse (RD
= 1.000) show substantial improvements in RD (to 0.620)
but negligible changes in mIoU (0.404 to 0.400), reinforc-
ing our thesis that distributional interventions fail to address
deeper representational entanglement regardless of model
architecture. Conversely, professions with lower initial bias
like artist show minimal changes in both metrics, suggest-
ing a consistent pattern of intervention effectiveness across
model generations.

A compelling finding emerges when comparing entan-
glement patterns across demographic dimensions within
SDv2. While certain professions exhibit high entanglement
for both gender and race (musician: 0.481/0.496), oth-
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Figure 7. An overview of spatial concept overlap using a generated image of a chef. Heatmaps highlighted show the effects of attributes:
Chef, Race and Overlapping concepts. IoU scores are show in blue.

ers show pronounced asymmetry (mechanic: 0.264/0.466).
This asymmetric pattern persists across model generations
but manifests differently—mechanic showed the lowest
racial entanglement in SD 1.5 (0.175) but moderate values
in SDv2 (0.466), while maintaining relatively low gender
entanglement in both models. This architectural variation
in demographic-specific entanglement validates our frame-
work’s sensitivity to nuanced differences in how models in-
ternally represent different types of demographic attributes.

The profession -specific intervention sensitivities ob-
served in SD 1.5 reappear in SDv2 with remarkable con-
sistency. FairDiffusion again demonstrates superior per-
formance for nurse gender bias (RD = 0.020) and pilot
racial bias (RD = 0.020), suggesting that certain profession
concepts interact with demographic representations in con-
sistent ways regardless of model architecture. This cross-

model consistency in intervention effectiveness patterns fur-
ther validates BiasMap as a generalizable framework for
bias discovery and characterization across diverse text-to-
image models, capable of capturing both architectural in-
variants and model-specific entanglement signatures.

D. Qualitative Results
We also performed qualitative analysis on individual gener-
ations. The results are shown in Figure 5, 6, and 7. SDv2
results are shown in 8 and 9.

E. Does mIoU capture conceptual entangle-
ment?

To validate mIoU as a measure of conceptual entanglement,
we examine the correlation between cross-attention map
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Figure 8. An overview of spatial concept overlap using a generated image of a musician, for SD2 and FD generations. Heatmaps highlighted
show the effects of attributes: Musician, Race and Overlapping concepts. IoU scores are shown in blue.
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Figure 9. An overview of spatial concept overlap using a generated image of a engineer, for SD2 and FD generations. Heatmaps highlighted
show the effects of attributes: Engineer, Race and Overlapping concepts. IoU scores are shown in blue.

overlap and semantic proximity in embedding space. Fig-
ure 10 presents this relationship for concepts related to race
.We carefully select eight comparison concepts spanning a

semantic gradient from closely related (“ethnicity”) to dis-
tant (“quantum”). For each concept, we compute cosine
similarity with the race anchor using a CLIP text encoder



Table 5. SDv2 gender -based Metrics with FairDiffusion

profession mIoU ↓ RD ↓
SDv2 FD SDv2 FD

firefighter 0.367 0.366 0.980 0.260
teacher 0.427 0.426 0.900 0.100
nurse 0.422 0.421 0.600 0.020
engineer 0.449 0.447 0.900 0.220
doctor 0.395 0.391 0.920 0.320
chef 0.312 0.310 0.900 0.300
officer 0.289 0.289 0.760 0.080
pilot 0.327 0.321 0.980 0.400
architect 0.460 0.465 0.940 0.120
lawyer 0.382 0.382 0.900 0.240
scientist 0.469 0.469 0.980 0.480
journalist 0.448 0.449 0.980 0.240
artist 0.245 0.246 0.860 0.140
musician 0.481 0.486 0.480 0.120
athlete 0.524 0.523 0.140 0.120
cashier 0.297 0.298 0.920 0.180
mechanic 0.264 0.265 0.960 0.120
driver 0.258 0.254 0.900 0.200
worker 0.353 0.352 0.480 0.080
waiter 0.294 0.290 1.000 0.440

Table 6. SDv2 race -based Metrics with FairDiffusion

profession mIoU ↓ RD ↓
SDv2 FD SDv2 FD

firefighter 0.552 0.545 0.980 0.040
teacher 0.435 0.425 0.440 0.160
nurse 0.404 0.400 1.000 0.620
engineer 0.539 0.533 0.800 0.200
doctor 0.438 0.428 0.220 0.140
chef 0.462 0.454 0.780 0.200
officer 0.540 0.524 0.880 0.080
pilot 0.540 0.555 0.560 0.020
architect 0.472 0.467 0.700 0.160
lawyer 0.419 0.411 0.420 0.240
scientist 0.458 0.454 0.560 0.220
journalist 0.466 0.463 0.020 0.100
artist 0.340 0.335 0.280 0.060
musician 0.496 0.490 0.240 0.120
athlete 0.511 0.513 0.320 0.020
cashier 0.347 0.334 0.540 0.100
mechanic 0.466 0.476 0.880 0.100
driver 0.499 0.479 0.680 0.020
worker 0.414 0.412 0.520 0.100
waiter 0.429 0.428 1.000 0.120

and measure attention map overlap using mIoU with the
70th percentile threshold. The results demonstrate that se-
mantically similar concepts consistently exhibit higher spa-

Figure 10. Correlation between semantic similarity (cosine dis-
tance in embedding space) and mean Intersection over Union
(mIoU) for concepts related to “race ”. The positive trend val-
idates mIoU as a meaningful measure of semantic alignment in
cross-attention maps.

tial overlap in attention maps. “Ethnicity” shows both the
highest semantic similarity (0.76) and the highest mIoU
(0.40), while conceptually distant terms like “language”
display minimal overlap (mIoU = 0.25). Intermediate con-
cepts (“nationality,” “skin,” “religion”) form a cluster with
moderate similarity scores (0.67-0.71) and correspondingly
moderate mIoU values (0.33-0.34). This monotonic rela-
tionship confirms that mIoU captures meaningful concep-
tual relationships rather than arbitrary correlations. The val-
idation establishes that cross-attention maps spatially local-
ize concepts in a manner reflecting semantic relationships,
mIoU serves as a reliable proxy for conceptual association
strength, and attention-based measurements capture sub-
stantive semantic associations encoded within the model’s
generative process. This enables confident application of
mIoU for measuring conceptual entanglement between de-
mographic attributes and professions in subsequent analy-
ses, ensuring that our bias measurements reflect meaningful
associations rather than measurement artifacts.

F. Faithfulness of mIoU

To determine the optimal threshold for binarizing atten-
tion maps, we conduct a systematic analysis of mask ac-
curacy across different threshold percentiles, as shown in
Figure 11. When evaluating gender -concept attribution
maps in the SD1.5 model, we observe that gender mask
accuracy remains consistently high (> 98%) for thresholds
between the 10th and 70th percentiles, peaking at 99.67%
at the 30th percentile. However, accuracy declines pre-
cipitously beyond the 70th percentile, dropping to 86% at
the 90th percentile. Conversely, the complement mask ac-
curacy increases steadily with higher thresholds, reaching
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Figure 11. Mask accuracy analysis for gender attribution across
different thresholds. The gender mask maintains high accuracy
(≥ 98%) up to the 70th percentile threshold, after which it de-
clines rapidly. The complement mask shows steadily increasing
accuracy with higher thresholds. The intersection point at approx-
imately threshold 75 provides empirical justification for our selec-
tion of the 70th percentile threshold.

peak performance (99.06%) at the 90th percentile.
The intersection point of these trends occurs at approx-

imately the 75th percentile, suggesting an optimal balance
between gender attribution and its complement. Based on
this analysis, we selected the 70th percentile as our thresh-
old for all subsequent experiments, representing the high-
est threshold value before gender mask accuracy begins to
deteriorate significantly. This threshold ensures robust attri-
bution of demographic concepts while maintaining discrim-
inative power between related concepts.
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