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ABSTRACT

This work explores hypernetworks: an approach of using one network, also known
as a hypernetwork, to generate the weights for another network. We apply hy-
pernetworks to generate adaptive weights for recurrent networks. In this case,
hypernetworks can be viewed as a relaxed form of weight-sharing across layers.
In our implementation, hypernetworks are are trained jointly with the main net-
work in an end-to-end fashion. Our main result is that hypernetworks can gener-
ate non-shared weights for LSTM and achieve state-of-the-art results on a variety
of sequence modelling tasks including character-level language modelling, hand-
writing generation and neural machine translation, challenging the weight-sharing
paradigm for recurrent networks.

1 INTRODUCTION

In this work, we consider an approach of using a small network (called a “hypernetwork") to generate
the weights for a larger network (called a main network). The behavior of the main network is the
same as with any usual neural network: it learns to map some raw inputs to their desired targets;
whereas the hypernetwork takes a set of inputs that contain information about the structure of the
weights and generates the weights for that layer.

The focus of this work is to use hypernetworks to generate weights for recurrent networks (RNN).
In this case, the weights Wt for the main RNN at step t is a function of the input to the hidden
state of the main RNN at the previous step ht−1 and the input at the current time step xt. This
weight-generation scheme allows approximate weight-sharing across layers of the main RNN.

We perform experiments to investigate the behaviors of hypernetworks in a range of contexts and
find that hypernetworks mix well with other techniques such as batch normalization and layer nor-
malization. Our main result is that hypernetworks can generate non-shared weights for LSTM that
work better than the standard version of LSTM (Hochreiter & Schmidhuber, 1997). On language
modelling tasks with character Penn Treebank, Hutter Prize Wikipedia datasets, hypernetworks for
LSTM achieve near state-of-the-art results. On a handwriting generation task with IAM handwrit-
ing dataset, hypernetworks for LSTM achieves good quantitative and qualitative results. On ma-
chine translation, hypernetworks for LSTM also obtain state-of-the-art performance on the WMT’14
en→fr benchmark.

2 RELATED WORK

Our approach is inspired by methods in evolutionary computing, where it is difficult to directly op-
erate in large search spaces consisting of millions of weight parameters. A more efficient method
is to evolve a smaller network to generate the structure of weights for a larger network, so that
the search is constrained within the much smaller weight space. An instance of this approach is
the work on the HyperNEAT framework (Stanley et al., 2009). In the HyperNEAT framework,
Compositional Pattern-Producing Networks (CPPNs) are evolved to define the weight structure of
the much larger main network. Closely related to our approach is a simplified variation of Hyper-
NEAT, where the structure is fixed and the weights are evolved through Discrete Cosine Transform
(DCT), called Compressed Weight Search (Koutnik et al., 2010). Even more closely related to our
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approach are Differentiable Pattern Producing Networks (DPPNs), where the structure is evolved
but the weights are learned (Fernando et al., 2016), and ACDC-Networks (Moczulski et al., 2015),
where linear layers are compressed with DCT and the parameters are learned. Most reported results
using these methods, however, are in small scales, perhaps because they are both slow to train and
require heuristics to be efficient. The main difference between our approach and HyperNEAT is that
hypernetworks in our approach are trained end-to-end with gradient descent together with the main
network, and therefore are more efficient.

Another closely related idea to hypernetworks is the concept of fast weights Schmidhuber (1992;
1993) in which one network can produce context-dependent weight changes for a second network.
Small scale experiments were conducted to demonstrate fast weights for feed forward networks at
the time, but perhaps due to the lack of modern computational tools, the recurrent network version
was mentioned mainly as a thought experiment (Schmidhuber, 1993). A subsequent work demon-
strated practical applications of fast weights (Gomez & Schmidhuber, 2005), where a generator
network is learnt through evolution to solve an artificial control problem.

The focus of this work is to apply our method to recurrent networks. In this context, our method
has a connection to second-order or multiplicative networks (Goudreau et al., 1994; Sutskever et al.,
2011; Wu et al., 2016), where the hidden state of the last step and the input vector of the current time
step interact in a multiplicative fashion. The key difference between our approach and second-order
networks is that our approach is more memory efficient because we only learn the scaling factors in
the interaction matrix. Furthermore, in second-order or multiplicative networks, the weights of the
RNN are not fixed, but a linear function of the previous hidden state. In our work, we explore the
use of a smaller RNN, rather than a linear function, to produce the weights of the main RNN.

The concept of a network interacting with another network is central to the work of (Jaderberg et al.,
2016; Andrychowicz et al., 2016), and especially (Denil et al., 2013; Yang et al., 2015; Bertinetto
et al., 2016; De Brabandere et al., 2016), where certain parameters in a convolutional network are
predicted by another network. These studies however did not explore the use of this approach to
recurrent networks, which is a main contribution of our work.

3 METHODS

Though it is possible to use hypernetworks to generate weights for feedforward or convolutional
networks, in this paper, our focus is on using hypernetworks with recurrent networks. As can be
seen below, when they are applied to recurrent networks, hypernetworks can be seen as a form of
relaxed weight-sharing in the time dimension.

3.1 HYPERRNN

Our hypernetworks can be used to generate weights for the RNN and LSTM. When a hypernetwork
is used to generate the weights for an RNN, we refer to it as the HyperRNN. At every time step t,
a HyperRNN takes as input the concatenated vector of input xt and the hidden states of the main
RNN ht−1, it then generates as output the vector ĥt. This output vector is then used to generate the
weights for the main RNN at the same timestep. Both the HyperRNN and the main RNN are trained
jointly with backpropagation and gradient descent. In the following, we will give a more formal
description of the model.

The standard formulation of a Basic RNN is given by:

ht = φ(Whht−1 +Wxxt + b) (1)

where ht is the hidden state, φ is a non-linear operation such as tanh or relu, and the weight
matrices and bias Wh ∈ RNh×Nh ,Wx ∈ RNh×Nx , b ∈ RNh is fixed each timestep for an input
sequence X = (x1, x2, . . . , xT ).

In HyperRNN, we allow Wh and Wx to float over time by using a smaller hypernetwork to generate
these parameters of the main RNN at each step (see Figure 1). More concretely, the parameters
Wh,Wx, b of the main RNN are different at different time steps, so that ht can now be computed as:
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Figure 1: An overview of HyperRNNs. Black connections and parameters are associated basic
RNNs. Orange connections and parameters are introduced in this work and associated with Hyper-
RNNs. Dotted arrows are for parameter generation.

ht = φ
(
Wh(zh)ht−1 +Wx(zx)xt + b(zb)

)
, where

Wh(zh) = 〈Whz, zh〉
Wx(zx) = 〈Wxz, zx〉
b(zb) =Wbzzb + b0

(2)

Where Whz ∈ RNh×Nh×Nz ,Wxz ∈ RNh×Nx×Nz ,Wbz ∈ RNh×Nz , b0 ∈ RNh and zh, zx, zz ∈
RNz . We use a recurrent hypernetwork to compute zh, zx and zb as a function of xt and ht−1:

x̂t =

(
ht−1

xt

)
ĥt = φ(Wĥĥt−1 +Wx̂x̂t + b̂)

zh =Wĥhĥt−1 + bĥh

zx =Wĥxĥt−1 + bĥx

zb =Wĥbĥt−1

(3)

Where Wĥ ∈ RNĥ×Nĥ ,Wx̂ ∈ RNĥ×(Nh+Nz), b ∈ RNĥ , and Wĥh,Wĥx,Wĥb ∈ RNz×Nĥ and
bĥh, bĥx ∈ RNz . This HyperRNN cell has Nĥ hidden units. Typically Nĥ is much smaller than Nh.

As the embeddings zh, zx and zb are of dimensions Nz , which is typically smaller than the hidden
state size Nĥ of the HyperRNN cell, a linear network is used to project the output of the HyperRNN
cell into the embeddings in Equation 3. After the embeddings are computed, they will be used to
generate the full weight matrix of the main RNN.

The above is a general formulation of HyperRNN. However, Equation 2 is not practical because
the memory usage becomes too large for real problems. We modify the HyperRNN described in
Equation 2 so that it can be more memory efficient. We will use an intermediate hidden vector
d(z) ∈ RNh to parametrize each weight matrix, where d(z) will be a linear function of z. To
dynamically modify a weight matrix W , we will allow each row of this weight matrix to be scaled
linearly by an element in vector d. We refer d as a weight scaling vector. Below is the modification
to W (z):

W (z) =W
(
d(z)

)
=

 d0(z)W0

d1(z)W1

...
dNh

(z)WNh

 (4)

While we sacrifice the ability to construct an entire weight matrix from a linear combination of Nz

matrices of the same size, we are able to linearly scale the rows of a single matrix withNz degrees of
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freedom. We find this change to have a good trade-off, as this formulation of converting W (z) into
W (d(z)) decreases the amount of memory required by the HyperRNN. Rather than requiring Nz

times the memory of a Basic RNN, we will only be using memory in the order Nz times the number
of hidden units, which is an acceptable amount of extra memory usage that is often available in many
applications. In addition, the row-level operation in Equation 4 can be shown to be equivalent to an
element-wise multiplication operator and hence computationally much more efficient in practice.
Below is the more memory efficient version of the setup of Equation 2:

ht = φ
(
dh(zh)�Whht−1 + dx(zx)�Wxxt + b(zb)

)
, where

dh(zh) =Whzzh

dx(zx) =Wxzzx

b(zb) =Wbzzb + b0

(5)

In our experiments, we focus on the use of hypernetworks with the Long Short-Term Memory
(LSTM) architecture (Hochreiter & Schmidhuber, 1997) because LSTM often works better than
the Basic RNN. In such case, an LSTM will have more weight matrices and biases, and thus our
main change is to have many more d’s, each d is being associated with each weight matrix or bias.

3.2 RELATED APPROACHES

The formulation of the HyperRNN in Equation 5 has similarities to Recurrent Batch Normalization
(Cooijmans et al., 2016) and Layer Normalization (Ba et al., 2016). The central idea for the nor-
malization techniques is to calculate the first two statistical moments of the inputs to the activation
function, and to linearly scale the inputs to have zero mean and unit variance. After the normaliza-
tion, an additional set of fixed parameters are learned to unscale the inputs if required.

Since the HyperRNN cell can indirectly modify the rows of each weight matrix and also the bias of
the main RNN, it is implicitly also performing a linear scaling to the inputs of the activation function.
The difference here is that the linear scaling parameters will be learned by the HyperRNN cell, and
not based on statistical-moments. We note that the existing normalization approaches can work
together with the HyperRNN approach, where the HyperRNN cell will be tasked with discovering a
better dynamical scaling policy to complement normalization. We also explore this combination in
our experiments.

The element-wise operation also has similarities to the Multiplicative RNN and its extensions
(mRNN, mLSTM) (Sutskever et al., 2011; Krause et al., 2016) and Multiplicative Integration RNN
(MI-RNN) (Wu et al., 2016). In the case of the mRNN, the hidden-to-hidden weight matrix is re-
placed with a factorized matrix, to allow the weights to be input dependent. The factorization is
described below in Equation 6 (Krause et al., 2016).

ht = φ(Whm(Wmxxt)� (Wmhht−1) +Wxxt + b) (6)

For the MI-RNN approach, a second order term is added to the Basic RNN formulation, along with
scaling vectors for each term, as described in Equation 7. The addition of the scaling vectors allow
parameters to be shared more efficiently.

ht = φ(α�Wxxt �Whht−1 + β1 �Whht−1 + β2 �Wxxt + b) (7)

In the HyperRNN approach, the weights are also input dependent. However, unlike mRNN, both
weight matrices and also the bias term will be dependent to not only to the inputs, but also to the
hidden states. In the MI-RNN approach, the weights are also be augmented by both the input and
hidden states, via the second order term in Equation 7. In both mRNN and MI-RNN approaches, the
weight augmentation terms are produced by a linear operation, while in the HyperRNN approach,
the weight scaling vectors d are dynamically produced by another RNN with its own hidden states
and non-linearities.
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4 EXPERIMENTS

In the following experiments, we will benchmark the performance of HyperLSTM on language
modelling with Penn Treebank, and Hutter Prize Wikipedia. We will also benchmark the method
on the tasks of handwriting generation with IAM On-Line Handwriting Database, and machine
translation with WMT’14 en→fr.

4.1 CHARACTER-LEVEL PENN TREEBANK LANGUAGE MODELLING

We first evaluation the HyperLSTM model on a character level prediction task with the Penn Tree-
bank corpus (Marcus et al., 1993) using the train/validation/test split outlined in (Mikolov et al.,
2012). As the dataset is quite small, we apply dropout on both input and output layers with a keep
probability of 90%. Unlike previous approaches (Graves, 2013; Ognawala & Bayer, 2014) of apply-
ing weight noise during training, we instead also apply dropout to the recurrent layer (Henaff et al.,
2016) with the same dropout probability.

We compare our model to the basic LSTM cell, stacked LSTM cells (Graves, 2013), and LSTM with
layer normalization applied. In addition, we also experimented with applying layer normalization
to HyperLSTM. Using the setup in (Graves, 2013), we use networks with 1000 units and train
the network to predict the next character. In this task, the HyperLSTM cell has 128 units and an
embedding size of 4. As the HyperLSTM cell has more trainable parameters compared to the basic
LSTM cell, we also experimented with an LSTM cell with 1250 units.

For character-level Penn Treebank, we use mini-batches of size 128, to train on sequences of length
100. We train the model using Adam (Kingma & Ba, 2015) with a learning rate of 0.001 and gradient
clipping of 1.0. During evaluation, we generate the entire sequence, and do not use information
about previous test errors for prediction, e.g., dynamic evaluation (Graves, 2013; Rocki, 2016b). As
mentioned earlier, we apply dropout to the input and output layers, and also apply recurrent dropout
with a keep probability of 90%. For baseline models, orthogonal initialization (Henaff et al., 2016)
is used for all weights.

We also experiment with a version of the model using a larger embedding size of 16, and also with
a lower dropout keep probability of 85%, and report results with this “Large Embedding" model
in Table 1. Lastly, we stack two layers of this “Large Embedding" model together to measure the
benefits of a multi-layer version of HyperLSTM, with a dropout keep probability of 80%.

Model1 Test Validation Param Count

ME n-gram (Mikolov et al., 2012) 1.37
Batch Norm LSTM (Cooijmans et al., 2016) 1.32
Recurrent Dropout LSTM (Semeniuta et al., 2016) 1.301 1.338
Zoneout RNN (Krueger et al., 2016) 1.27
HM-LSTM3 (Chung et al., 2016) 1.27

LSTM, 1000 units 2 1.312 1.347 4.25 M
LSTM, 1250 units2 1.306 1.340 6.57 M
2-Layer LSTM, 1000 units2 1.281 1.312 12.26 M
Layer Norm LSTM, 1000 units2 1.267 1.300 4.26 M
HyperLSTM (ours), 1000 units 1.265 1.296 4.91 M
Layer Norm HyperLSTM, 1000 units (ours) 1.250 1.281 4.92 M
Layer Norm HyperLSTM, 1000 units, Large Embedding (ours) 1.233 1.263 5.06 M
2-Layer Norm HyperLSTM, 1000 units 1.219 1.245 14.41 M

Table 1: Bits-per-character on the Penn Treebank test set.

Our results are presented in Table 1. The key observation here is that 1) HyperLSTM outperforms
standard LSTM and 2) HyperLSTM also achieves similar improvements compared to Layer Normal-
ization. The combination of Layer Normalization and Hyper LSTM achieves the best test perplexity
so far on this dataset.

5



Published as a conference paper at ICLR 2017

4.2 HUTTER PRIZE WIKIPEDIA LANGUAGE MODELLING

We train our model on the larger and more challenging Hutter Prize Wikipedia dataset, also known
as enwik8 (Hutter, 2012) consisting of a sequence of 100M characters composed of 205 unique
characters. Unlike Penn Treebank, enwik8 contains some foreign words (Latin, Arabic, Chinese),
indented XML, metadata, and internet addresses, making it a more realistic and practical dataset to
test character language models.

Our setup is similar in the previous experiment, using the same mini-batch size, learning rate, weight
initialization, gradient clipping parameters and optimizer. We do not use dropout for the input and
output layers, but still apply recurrent dropout with a keep probability of 90%. Similar to (Chung
et al., 2015), we train on the first 90M characters of the dataset, use the next 5M as a validation set
for early stopping, and the last 5M characters as the test set.

As enwik8 is a bigger dataset compared to Penn Treebank, we will use 1800 units for our networks.
We also perform training on sequences of length 250. Our normal HyperLSTM cell consists of 256
units, and we use an embedding size of 64. To improve results, we also experiment with a larger
model where both HyperLSTM and main network both have 2048 hidden units. The HyperLSTM
cell consists of 512 units with an embedding size of 64. We also apply recurrent dropout to this
larger model, with dropout keep probability of 85%, and train on a longer sequence length of 300.

Model1 enwik8 Param Count

Stacked LSTM (Graves, 2013) 1.67 27.0 M
MRNN (Sutskever et al., 2011) 1.60
Grid-LSTM (Kalchbrenner et al., 2016) 1.47 16.8 M
LSTM (Rocki, 2016b) 1.45
MI-LSTM (Wu et al., 2016) 1.44
MLSTM (Krause et al., 2016) 1.42
Recurrent Highway Networks (Zilly et al., 2016) 1.42 8.0 M
Recurrent Memory Array Structures (Rocki, 2016a) 1.40
HM-LSTM3 (Chung et al., 2016) 1.40
Surprisal Feedback LSTM4 (Rocki, 2016b) 1.37

LSTM, 1800 units, no recurrent dropout2 1.470 14.81 M
LSTM, 2000 units, no recurrent dropout2 1.461 18.06 M
Layer Norm LSTM, 1800 units2 1.402 14.82 M
HyperLSTM (ours), 1800 units 1.391 18.71 M
Layer Norm HyperLSTM, 1800 units (ours) 1.353 18.78 M
Layer Norm HyperLSTM, 2048 units (ours) 1.340 26.54 M

Table 2: Bits-per-character on the enwik8 test set.
The results are summarized in Table 2. As can be seen from the table, HyperLSTM is once again
competitive to Layer Norm LSTM, and if we combine both techniques, the Layer Norm HyperL-
STM achieves respectable results. The large version of HyperLSTM with normalization that uses
2048 hidden units achieve near state-of-the-art performance for this task. In addition, HyperLSTM
converges more quickly compared to LSTM and Layer Norm LSTM (see Figure 2).

We perform additional analysis to understand the behavior of HyperLSTM by visualizing how the
weight scaling vectors of the main LSTM change during the character sampling process. In Figure 3,
we examine a sample text passage generated by HyperLSTM after training on enwik8 along with
the weight differences below the text. We see that in regions of low intensity, where the weights
of the main LSTM are relatively static, the types of phrases generated seem more deterministic.
For example, the weights do not change much during the words Europeans, possessions and
reservation. The regions of high intensity is when the HyperLSTM cell is making relatively
large changes to the weights of the main LSTM.

1We do not compare against methods that use dynamic evaluation.
2Our implementation.
3Based on results of version 2 at the time of writing. http://arxiv.org/abs/1609.01704v2
4This method uses information about test errors during inference for predicting the next characters, hence

it is not directly comparable to other methods that do not use this information.
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Figure 2: Loss graph for enwik8 (left). Loss graph for Handwriting Generation (right)

 In 1955-37 most American and Europeans signed into the sea. An absence of [[Japan (Korea city)|Japan]], the Mayotte like Constantino In 1955-37 most American and Europeans signed into the sea. An absence of [[Japan (Korea city)|Japan]], the Mayotte like Constantino

 ple (in its first week, in [[880]]) that served as the mother of emperors, as the Corinthians, Bernard on his continued sequel toget ple (in its first week, in [[880]]) that served as the mother of emperors, as the Corinthians, Bernard on his continued sequel toget

 her ordered [[Operation Moabili]]. The Gallup churches in the army promulgated the possessions sitting at the reservation, and [[Mel her ordered [[Operation Moabili]]. The Gallup churches in the army promulgated the possessions sitting at the reservation, and [[Mel

 ito de la Vegeta Provine|Felix]] had broken Diocletian desperate from the full victory of Augustus, cited by Stephen I. Alexander Se ito de la Vegeta Provine|Felix]] had broken Diocletian desperate from the full victory of Augustus, cited by Stephen I. Alexander Se

 nate became Princess Cartara, an annual ruler of war (777-184) and founded numerous extremiti of justice practitioners. nate became Princess Cartara, an annual ruler of war (777-184) and founded numerous extremiti of justice practitioners.

Figure 3: Example text generated from HyperLSTM model. We visualize how four of the main
RNN’s weight matrices (W i

h, W g
h , W f

h , W o
h ) effectively change over time by plotting the norm of

the changes below each generated character. High intensity represent large changes being made to
weights of main RNN.

4.3 HANDWRITING SEQUENCE GENERATION

In addition to modelling discrete sequential data, we want to see how the model performs when
modelling sequences of real valued data. We will train our model on the IAM online handwrit-
ing database (Liwicki & Bunke, 2005) and have our model predict pen strokes as per Section 4.2
of (Graves, 2013). The dataset has contains 12179 handwritten lines from 221 writers, digitally
recorded from a tablet. We will model the (x, y) coordinate of the pen location at each recorded
time step, along with a binary indicator of pen-up/pen-down. The average sequence length is around
700 steps and the longest around 1900 steps, making the training task particularly challenging as the
network needs to retain information about both the stroke history and also the handwriting style in
order to predict plausible future handwriting strokes.

We will use the same model architecture described in (Graves, 2013) and use a Mixture Density
Network layer (Bishop, 1994) to generate a mixture of bi-variate Gaussian distributions to model at
each time step to model the pen location. We normalize the data and use the same train/validation
split as per (Graves, 2013) in this experiment. We remove samples less than length 300 as we found
these samples contain a lot of recording errors and noise. After the pre-processing, as the dataset is
small, we introduce data augmentation of chosen uniformly from +/- 10% and apply a this random
scaling a the samples used for training.

For model training, will apply recurrent dropout and also dropout to the output layer with a keep
probability of 0.95. The model is trained on mini-batches of size 32 containing sequences of variable
length. We trained the model using Adam (Kingma & Ba, 2015) with a learning rate of 0.0001 and
gradient clipping of 5.0. Our HyperLSTM cell consists of 128 units and a signal size of 4. For
baseline models, orthogonal initialization (Henaff et al., 2016) is performed for all weights.

1Our implementation, to replicate setup of (Graves, 2013).
2Our implementation, with data augmentation, dropout and recurrent dropout.
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Model Log-Loss Param Count

LSTM, 900 units (Graves, 2013) -1,026
3-Layer LSTM, 400 units (Graves, 2013) -1,041
3-Layer LSTM, 400 units, adaptive weight noise (Graves, 2013) -1,058

LSTM, 900 units, no dropout, no data augmentation.1 -1,026 3.36 M
3-Layer LSTM, 400 units, no dropout, no data augmentation.1 -1,039 3.26 M

LSTM, 900 units2 -1,055 3.36 M
LSTM, 1000 units2 -1,048 4.14 M
3-Layer LSTM, 400 units2 -1,068 3.26 M
2-Layer LSTM, 650 units2 -1,135 5.16 M
Layer Norm LSTM, 900 units2 -1,096 3.37 M
Layer Norm LSTM, 1000 units2 -1,106 4.14 M
Layer Norm HyperLSTM, 900 units (ours) -1,067 3.95 M
HyperLSTM (ours), 900 units -1,162 3.94 M

Table 3: Log-Loss of IAM Online DB validation set.

The results are summarized in Table 3. Our main result is that HyperLSTM with 900 units, without
Layer Norm, achieves best log loss on the validation set across all models in published work and in
our experiment. HyperLSTM also converges more quickly compared to other models (see Figure 2).

Similar to the earlier character generation experiment, we show a generated handwriting sample
from the HyperLSTM model in Figure 4, along with a plot of how the weight scaling vectors of the
main RNN is changing over time below the sample. For a more detailed interactive demonstration of
handwriting generation using HyperLSTM, visit http://blog.otoro.net/2016/09/28/
hyper-networks/.

Figure 4: Handwriting sample generated from HyperLSTM model. We visualize how four of the
main RNN’s weight matrices (W i

h, W g
h , W f

h , W o
h ) effectively change over time, by plotting norm

of changes made to them over time.

We observe that the regions of high intensity is concentrated at many discrete instances, rather than
slowly varying over time. This implies that the weights experience regime changes rather than
gradual slow adjustments. We can see that many of these weight changes occur at the boundaries
between words, and between characters. While the LSTM model alone already does a decent job
of generating time-varying parameters of a Mixture Gaussian distribution used to generate realistic
handwriting samples, the ability to go one level deeper, and to dynamically generate the generative
model is one of the key advantages of HyperLSTM over a normal LSTM.

4.4 NEURAL MACHINE TRANSLATION

Finally, we experiment with the Neural Machine Translation task using the same experimental setup
outlined in (Wu et al., 2016). Our model is the same wordpiece model architecture with a vocabulary
size of 32k, but we replace the LSTM cells with HyperLSTM cells. We benchmark both models on
WMT’14 En→Fr using the same test/validation set split described in the GNMT paper (Wu et al.,
2016). The GNMT network has 8 layers in the encoder, 8 layers in the decoder. The first layer of
the encoder has bidirectional connections. The attention module is a neural network with 1 hidden
layer. When a LSTM cell is used, the number of hidden units in each layer is 1024. The model is
trained in a distributed setting with a parameter sever and 12 workers. Additionally, each worker
uses 8 GPUs and a minibatch of 128.
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Our experimental setup is similar to that in the GNMT paper (Wu et al., 2016), with two simpli-
fications. First, we use only Adam without SGD at the end. Adam was used with the same same
hyperparameters described in the GNMT paper: learning rate of 0.0002 for 1M training steps.

We apply the HyperLSTM cell with Layer Norm to the GNMT architecture that uses a vocabulary
of 32K wordpieces. We keep the same number of hidden units, which means that our model will
have 16% more parameters.

Model Test BLEU Log Perplexity Param Count

Deep-Att + PosUnk (Zhou et al., 2016) 39.2
GNMT WPM-32K, LSTM (Wu et al., 2016) 38.95 1.027 280.7 M
GNMT WPM-32K, ensemble of 8 LSTMs (Wu et al., 2016) 40.35 2,246.1 M

GNMT WPM-32K, HyperLSTM (ours) 40.03 0.993 325.5 M

Table 4: Single model results on WMT En→Fr (newstest2014)

The results are reported in Table 4, which shows that the HyperLSTM cell improves the performance
of the existing GNMT model, achieving state-of-the-art single model results for this dataset. In ad-
dition, we demonstrate the applicability of hypernetworks to large-scale models used in production
systems.

5 CONCLUSION

In this paper, we presented a method to use one network to generate weights for another neural
network. Our hypernetworks are trained end-to-end with backpropagation and therefore are efficient
and scalable. We focused on applying hypernetworks to generate weights for recurrent networks.
On language modelling and handwriting generation, hypernetworks are competitive to or sometimes
better than state-of-the-art models. On machine translation, hypernetworks achieve a significant gain
on top of a state-of-the-art production-level model.
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A APPENDIX

A.1 EXAMPLES OF GENERATED WIKIPEDIA TEXT

The eastern half of Russia varies from Modern to Central Europe. Due to
similar lighting and the extent of the combination of long
tributaries to the [[Gulf of Boston]], it is more of a private
warehouse than the [[Austro-Hungarian Orthodox Christian and Soviet
Union]].

==Demographic data base==

[[Image:Auschwitz controversial map.png|frame|The ’’Austrian Spelling’’]]
[[Image:Czech Middle East SSR chief state 103.JPG|thumb|Serbian Russia

movement]] [[1593]]&amp;ndash;[[1719]], and set up a law of [[
parliamentary sovereignty]] and unity in Eastern churches.

In medieval Roman Catholicism Tuba and Spanish controlled it until the
reign of Burgundian kings and resulted in many changes in
multiculturalism, though the [[Crusades]], usually started following
the [[Treaty of Portugal]], shored the title of three major powers,
only a strong part.

[[French Marines]] (prompting a huge change in [[President of the Council
of the Empire]], only after about [[1793]], the Protestant church,

fled to the perspective of his heroic declaration of government and,
in the next fifty years, [[Christianity|Christian]] and [[Jutland]].
Books combined into a well-published work by a single R. (Sch. M.
ellipse poem) tradition in St Peter also included 7:1, he dwell upon
the apostle, scripture and the latter of Luke; totally unknown, a
distinct class of religious congregations that describes in number of
[[remor]]an traditions such as the [[Germanic tribes]] (Fridericus

or Lichteusen and the Wales). Be introduced back to the [[14th
century]], as related in the [[New Testament]] and in its elegant [[
Anglo-Saxon Chronicle]], although they branch off the characteristic
traditions which Saint [[Philip of Macedon]] asserted.

Ae also in his native countries.

In [[1692]], Seymour was barged at poverty of young English children,
which cost almost the preparation of the marriage to him.

Burke’s work was a good step for his writing, which was stopped by clergy
in the Pacific, where he had both refused and received a position of
successor to the throne. Like the other councillors in his will, the
elder Reinhold was not in the Duke, and he was virtually non-father

of Edward I, in order to recognize [[Henry II of England|Queen Enrie
]] of Parliament.

The Melchizedek Minister Qut]] signed the [[Soviet Union]], and forced
Hoover to provide [[Hoover (disambiguation)|hoover]]s in [[1844]],
[[1841]].

His work on social linguistic relations is divided to the several times
of polity for educatinnisley is 760 Li Italians. After Zaiti’s death
, and he was captured August 3, he witnessed a choice better by
public, character, repetitious, punt, and future.

Figure 5: enwik8 sample generated from 2048-unit Layer Norm HyperLSTM

12



Published as a conference paper at ICLR 2017

== Quatitis==
:’’Main article: [[sexagesimal]]’’

Sexual intimacy was traditionally performed by a male race of the [[
mitochondria]] of living things. The next geneme is used by ’’
Clitoron’’ into short forms of [[sexual reproduction]]. When a
maternal suffeach-Lashe]] to the myriad of a &quot;master’s character
&quot;. He recognizes the associated reflection of [[force call|
carriers]], the [[Battle of Pois except fragile house and by
historians who have at first incorporated his father.

==Geography==
The island and county top of Guernsey consistently has about a third of

its land, centred on the coast subtained by mountain peels with
mountains, squares, and lakes that cease to be links with the size
and depth of sea level and weave in so close to lowlands.
Strategically to the border of the country also at the southeast
corner of the province of Denmark do not apply, but sometimes west of
dense climates of coastal Austria and west Canada, the Flemish area

of the continent actually inhabits [[tropical geographical transition
]] and transitions from [[soil]] to [[snow]] residents.]]

==Definition==
The symbols are ’’quotational’’ and ’’’distinct’’’ or advanced. {{ref|

no_1}} Older readings are used for [[phrase]]s, especially, [[ancient
Greek]], and [[Latin]] in their development process. Several

varieties of permanent systems typically refer to [[primordial
pleasure]] (for example, [[Pleistocene]], [[Classical antenni|Ctrum
]]), but its claim is that it holds the size of the coci, but is
historically important both for import: brewing and commercial use.

A majority of cuisine specifically refers to this period, where the
southern countries developed in the 19th century. Scotland had a
cultural identity of or now a key church who worked between the 8th
and 60th through 6 (so that there are small single authors of
detailed recommendations for them and at first) rather than appearing
, [[Adoptionism|adoptionists]] often started inscribed with the words
distinct from two types. On the group definition the adjective ’’

fighting’’ is until Crown Violence Association]], in which the higher
education [[motto]] (despite the resulting attack on [[medical

treatment]]) peaked on [[15 December]], [[2005]]. At 30 percent, up
to 50% of the electric music from the period was created by Voltaire,
but Newton promoted the history of his life.

Publications in the Greek movie ’’[[The Great Theory of Bertrand Russell
]]’’, also kept an important part into the inclusion of ’’[[The Beast
for the Passage of Study]]’’, began in [[1869]], opposite the

existence of racial matters. Many of Mary’s religious faiths (
including the [[Mary Sue Literature]] in the United States)
incorporated much of Christianity within Hispanic [[Sacred text]]s.

But controversial belief must be traced back to the 1950s stated that
their anticolonial forces required the challenge of even lingering
wars tossing nomon before leaves the bomb in paint on the South
Island, known as [[Quay]], facing [[Britain]], though he still holds
to his ancestors a strong ancestor of Orthodoxy. Others explain that
the process of reverence occurred from [[Common Hermitage]], when the
[[Crusade|Speakers]] laid his lifespan in [[Islam]] into the north

of Israel. At the end of the [[14th century BCE]], the citadel of [[
Israel]] set Eisenace itself in the [[Abyssinia]]n islands, which was
Faroe’s Dominican Republic claimed by the King.

Figure 6: enwik8 sample generated from 2048-unit Layer Norm HyperLSTM
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A.2 EXAMPLES OF RANDOMLY CHOSEN GENERATED HANDWRITING SAMPLES

Figure 7: Handwriting samples generated from LSTM
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Figure 8: Handwriting samples generated from Layer Norm LSTM
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Figure 9: Handwriting samples generated from HyperLSTM
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A.3 EXAMPLES OF RANDOMLY CHOSEN MACHINE TRANSLATION SAMPLES

We randomly selected translation samples generated from both LSTM baseline and HyperLSTM
models from the WMT’14 En→Fr Test Set. Given an English phrase, we can compare between the
correct French translation, the LSTM translation, and the HyperLSTM translation.

English Input

I was expecting to see gnashing of teeth and a fight breaking
out at the gate .

French (Ground Truth)

Je m’ attendais à voir des grincements de dents et une
bagarre éclater à la porte .

LSTM Translation

Je m’ attendais à voir des larmes de dents et un combat à la
porte .

HyperLSTM Translation

Je m’ attendais à voir des dents grincer des dents et une
bataille éclater à la porte .

English Input

Prosecuting , Anne Whyte said : " If anyone should know not
to the break the law , it is a criminal solicitor . "

French (Ground Truth)

Le procureur Anne Whyte a déclaré : « Si quelqu’ un doit
savoir qu’ il ne faut pas violer la loi , c’ est bien un
avocat pénaliste . »

LSTM Translation

Prosecuting , Anne Whyte a dit : « Si quelqu’ un doit savoir
qu’ il ne faut pas enfreindre la loi , c’ est un solicitor
criminel .

HyperLSTM Translation

En poursuivant , Anne Whyte a dit : « Si quelqu’ un doit
savoir ne pas enfreindre la loi , c’ est un avocat criminel .

English Input

According to her , the CSRS was invited to a mediation and she
asked for an additional period for consideration .

French (Ground Truth)

Selon elle , la CSRS a été invitée à une médiation et elle a
demandé un délai supplémentaire pour y réfléchir .

LSTM Translation

Selon elle , le SCRS a été invité à une médiation et elle a demandé
un délai supplémentaire .

HyperLSTM Translation

Selon elle , le SCRS a été invité à une médiation et elle a demandé
une période de réflexion supplémentaire .
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English Input

Relations between the US and Germany have come under strain
following claims that the NSA bugged Chancellor Angela ’s
Merkel ’s phone .

French (Ground Truth)

Les relations entre les États-Unis et l’ Allemagne ont été
mises à rude épreuve à la suite de plaintes selon lesquelles
la NSA avait mis sur écoute le téléphone portable de la
chancelière allemande Angela Merkel .

LSTM Translation

Les relations entre les Etats-Unis et l’ Allemagne ont été
mises à rude épreuve suite aux affirmations selon lesquelles
la NSA aurait pris le téléphone de Merkel de la chancelière
Angela .

HyperLSTM Translation

Les relations entre les États-Unis et l’ Allemagne ont été
mises à rude épreuve après que la NSA a attaqué le téléphone
de la chancelière Angela Angela .

English Input

Germany ’s BfV advises executives to consider using simple prepaid
mobiles when on foreign trips because of the risk that smart phones
are compromised .

French (Ground Truth)

Le BfV d’ Allemagne conseille à ses dirigeants d’ envisager
d’ utiliser de simples téléphones portables prépayés lors de leurs
voyages à l’ étranger en raison du risque d’ atteinte à
l’ intégrité des smartphones .

LSTM Translation

Le BfV allemand conseille aux dirigeants d’ envisager
l’ utilisation de mobiles prépayés simples lors de voyages à
l’ étranger en raison du risque de compromission des téléphones
intelligents .

HyperLSTM Translation

Le BfV allemand conseille aux dirigeants d’ envisager
l’ utilisation de téléphones mobiles prépayés simples lors de
voyages à l’ étranger en raison du risque que les téléphones
intelligents soient compromis .

English Input

I was on the mid-evening news that same evening , and on TV the
following day as well .

French (Ground Truth)

Le soir-même , je suis au 20h , le lendemain aussi je suis à la
télé .

LSTM Translation

J’ étais au milieu de l’ actualité le soir même , et à la
télévision le lendemain également .

HyperLSTM Translation

J’ étais au milieu de la soirée ce soir-là et à la télévision le
lendemain .
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