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ABSTRACT

This paper explores the use of self-ensembling for visual domain adaptation prob-
lems. Our technique is derived from the mean teacher variant (Tarvainen &
Valpola (2017)) of temporal ensembling (Laine & Aila (2017)), a technique that
achieved state of the art results in the area of semi-supervised learning. We intro-
duce a number of modifications to their approach for challenging domain adapta-
tion scenarios and evaluate its effectiveness. Our approach achieves state of the
art results in a variety of benchmarks, including our winning entry in the VISDA-
2017 visual domain adaptation challenge. In small image benchmarks, our algo-
rithm not only outperforms prior art, but can also achieve accuracy that is close to
that of a classifier trained in a supervised fashion.

1 INTRODUCTION

The strong performance of deep learning in computer vision tasks comes at the cost of requiring
large datasets with corresponding ground truth labels for training. Such datasets are often expensive
to produce, owing to the cost of the human labour required to produce the ground truth labels.

Semi-supervised learning is an active area of research that aims to reduce the quantity of ground
truth labels required for training. It is aimed at common practical scenarios in which only a small
subset of a large dataset has corresponding ground truth labels. Unsupervised domain adaptation
is a closely related problem in which one attempts to transfer knowledge gained from a labeled
source dataset to a distinct unlabeled target dataset, within the constraint that the objective (e.g.digit
classification) must remain the same. Domain adaptation offers the potential to train a model using
labeled synthetic data – that is often abundantly available – and unlabeled real data. The scale of the
problem can be seen in the VisDA-17 domain adaptation challenge images shown in Figure 1. We
will present our winning solution in Section 4.2.

Recent work (Tarvainen & Valpola (2017)) has demonstrated the effectiveness of self-ensembling
with random image augmentations to achieve state of the art performance in semi-supervised learn-
ing benchmarks.

We have developed the approach proposed by Tarvainen & Valpola (2017) to work in a domain
adaptation scenario. We will show that this can achieve excellent results in specific small image
domain adaptation benchmarks. More challenging scenarios, notably MNIST → SVHN and the
VisDA-17 domain adaptation challenge required further modifications. To this end, we developed
confidence thresholding and class balancing that allowed us to achieve state of the art results in
a variety of benchmarks, with some of our results coming close to those achieved by traditional
supervised learning. Our approach is sufficiently flexble to be applicable to a variety of network
architectures, both randomly initialized and pre-trained.

Our paper is organised as follows; in Section 2 we will discuss related work that provides context
and forms the basis of our technique; our approach is described in Section 3 with our experiments
and results in Section 4; and finally we present our conclusions in Section 5.
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(a) VisDa-17 training set images; the labeled source domain

(b) VisDa-17 validation set images; the unlabeled target domain

Figure 1: Images from the VisDA-17 domain adaptation challenge

2 RELATED WORK

In this section we will cover self-ensembling based semi-supervised methods that form the basis of
our approach and domain adaptation techniques to which our work can be compared.

2.1 SELF-ENSEMBLING FOR SEMI-SUPERVISED LEARNING

Recent work based on methods related to self-ensembling have achieved excellent results in semi-
supervised learning scenarious. A neural network is trained to make consistent predictions for un-
supervised samples under different augmentation Sajjadi et al. (2016), dropout and noise conditions
or through the use of adversarial training Miyato et al. (2017). We will focus in particular on the
self-ensembling based approaches of Laine & Aila (2017) and Tarvainen & Valpola (2017) as they
form the basis of our approach.

Laine & Aila (2017) present two models; their Π-model and their temporal model. The Π-model
passes each unlabeled sample through a classifier twice, each time with different dropout, noise
and image translation parameters. Their unsupervised loss is the mean of the squared difference in
class probability predictions resulting from the two presentations of each sample. Their temporal
model maintains a per-sample moving average of the historical network predictions and encourages
subsequent predictions to be consistent with the average. Their approach achieved state of the art
results in the SVHN and CIFAR-10 semi-supervised classification benchmarks.

Tarvainen & Valpola (2017) further improved on the temporal model of Laine & Aila (2017) by
using an exponential moving average of the network weights rather than of the class predictions.
Their approach uses two networks; a student network and a teacher network, where the student is
trained using gradient descent and the weigthts of the teacher are the exponential moving average of
those of the student. The unsupervised loss used to train the student is the mean square difference
between the predictions of the student and the teacher, under different dropout, noise and image
translation parameters.

2.2 DOMAIN ADAPTATION

There is a rich body of literature tackling the problem of domain adaptation. We focus on deep
learning based methods as these are most relevant to our work.

Auto-encoders are unsupervised neural network models that reconstruct their input samples by first
encoding them into a latent space and then decoding and reconstructing them. Ghifary et al. (2016)
describe an auto-encoder model that is trained to reconstruct samples from both the source and target
domains, while a classifier is trained to predict labels from domain invariant features present in the
latent representation using source domain labels. Bousmalis et al. (2016) reckognised that samples
from disparate domains have distinct domain specific characteristics that must be represented in the
latent representation to support effective reconstruction. They developed a split model that separates
the latent representation into shared domain invariant features and private features specific to the
source and target domains. Their classifier operates on the domain invariant features only.

Ganin & Lempitsky (2015) propose a bifurcated classifier that splits into label classification and
domain classification branches after common feature extraction layers. A gradient reversal layer is
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placed between the common feature extraction layers and the domain classification branch; while
the domain classification layers attempt to determine which domain a sample came from the gradi-
ent reversal operation encourages the feature extraction layers to confuse the domain classifier by
extracting domain invariant features. An alternative and simpler implementation described in their
appendix minimises the label cross-entropy loss in the feature and label classification layers, min-
imises the domain cross-entropy in the domain classification layers but maximises it in the feature
layers. The model of Tzeng et al. (2017) runs along similar lines but uses separate feature extraction
sub-networks for source and domain samples and train the model in two distinct stages.

Saito et al. (2017a) use tri-training (Zhou & Li (2005)); feature extraction layers are used to drive
three classifier sub-networks. The first two are trained on samples from the source domain, while
a weight similarity penalty encourages them to learn different weights. Pseudo-labels generated
for target domain samples by these source domain classifiers are used to train the final classifier to
operate on the target domain.

Generative Adversarial Networks (GANs; Goodfellow et al. (2014)) are unsupervised models that
consist of a generator network that is trained to generate samples that match the distribution of a
dataset by fooling a discriminator network that is simultaneously trained to distinguish real samples
from generates samples. Some GAN based models – such as that of Sankaranarayanan et al. (2017)
– use a GAN to help learn a domain invariant embedding for samples. Many GAN based domain
adaptation approaches use a generator that transforms samples from one domain to another.

Bousmalis et al. (2017) propose a GAN that adapts synthetic images to better match the characteris-
tics of real images. Their generator takes a synthetic image and noise vector as input and produces
an adapted image. They train a classifier to predict annotations for source and adapted samples
alonside the GAN, while encouraing the generator to preserve aspects of the image important for
annotation. The model of Shrivastava et al. (2017) consists of a refiner network (in the place of
a generator) and discriminator that have a limited receptive field, limiting their model to making
local changes while preserving ground truth annotations. The use of refined simulated images with
corresponding ground truths resulted in improved performance in gaze and hand pose estimation.

Russo et al. (2017) present a bi-directional GAN composed of two generators that transform samples
from the source to the target domain and vice versa. They transform labelled source samples to the
target domain using one generator and back to the source domain with the other and encourage the
network to learn label class consistency. This work bears similarities to CycleGAN, by Zhu et al.
(2017).

A number of domain adaptation models maximise domain confusion by minimising the difference
between the distributions of features extracted from source and target domains. Deep CORAL Sun
& Saenko (2016) minimises the difference between the feature covariance matrices for a mini-batch
of samples from the source and target domains. Tzeng et al. (2014) and Long et al. (2015) minimise
the Maximum Mean Discrepancy metric Gretton et al. (2012). Li et al. (2016) described adaptive
batch normalization, a variant of batch normalization (Ioffe & Szegedy (2015)) that learns separate
batch normalization statistics for the source and target domains in a two-pass process, establishing
new state-of-the-art results. In the first pass standard supervised learning is used to train a classifier
for samples from the source domain. In the second pass, normalization statistics for target do-
main samples are computed for each batch normalization layer in the network, leaving the network
weights as they are.

3 METHOD

Our model builds upon the mean teacher semi-supervised learning model of Tarvainen & Valpola
(2017), which we will describe. Subsequently we will present our modifications that enable domain
adaptation.

The structure of the mean teacher model of Tarvainen & Valpola (2017) – also discussed in sec-
tion 2.1 – is shown in Figure 2a. The student network is trained using gradient descent, while the
weights of the teacher network are an exponential moving average of those of the student. During
training each input sample xi is passed through both the student and teacher networks, generating
predicted class probability vectors zi (student) and z̃i (teacher). Different dropout, noise and image
translation parameters are used for the student and teacher pathways.
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Figure 2: The network structures of the original mean teacher model and our model. Dashed lines in
the mean teacher model indicate that ground truth labels – and therefore cross-entropy classification
loss – are only available for labeled samples.

During each training iteration a mini-batch of samples is drawn from the dataset, consisting of both
labeled and unlabeled samples. The training loss is the sum of a supervised and an unsupervised
component. The supervised loss is cross-entropy loss computed using zi (student prediction). It is
masked to 0 for unlabeled samples for which no ground truth is available. The unsupervised com-
ponent is the self-ensembling loss. It penalises the difference in class predictions between student
(zi) and teacher (z̃i) networks for the same input sample. It is computed using the mean squared
difference between the class probability predictions zi and z̃i.

Laine & Aila (2017) and Tarvainen & Valpola (2017) found that it was necessary to apply a time-
dependent weighting to the unsupervised loss during training in order to prevent the network from
getting stuck in a degenerate solution that gives poor classification performance. They used a func-
tion that follows a Gaussian curve from 0 to 1 during the first 80 epochs.

In the following subsections we will describe our contributions in detail along with the motivations
for introducing them.

3.1 ADAPTING TO DOMAIN ADAPTATION

We minimise the same loss as in Tarvainen & Valpola (2017); we apply cross-entropy loss to labeled
source samples and unsupervised self-ensembling loss to target samples. As in Tarvainen & Valpola
(2017), self-ensembling loss is computed as the mean-squared difference between predictions pro-
duced by the student (zTi) and teacher (z̃Ti) networks with different augmentation, dropout and
noise parameters.

The models of Tarvainen & Valpola (2017) and of Laine & Aila (2017) were designed for semi-
supervised learning problems in which a subset of the samples in a single dataset have ground
truth labels. During training both models mix labeled and unlabeled samples together in a mini-
batch. In contrast, unsupervised domain adaptation problems use two distinct datasets with different
underlying distributions; labeled source and unlabeled target. Our variant of the mean teacher model
– shown in Figure 2b – has separate source (XSi) and target (XTi) paths. Inspired by the work of Li
et al. (2016), we process mini-batches from the source and target datasets separately (per iteration)
so that batch normalization uses different normalization statistics for each domain during training.1.
We do not use the approach of Li et al. (2016) as-is, as they handle the source and target datasets
separtely in two distinct training phases, where our approach must train using both simultaneously.
We also do not maintain separate exponential moving averages of the means and variances for each
dataset for use at test time.

1This is simple to implement using most neural network toolkits; evaluate the network once for source
samples and a second time for target samples, compute the supervised and unsupervised losses respectively and
combine.
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As seen in the ‘MT+TF’ row of Table 1, the model described thus far achieves state of the art results
in 5 out of 8 small image benchmarks. The MNIST→ SVHN, STL→ CIFAR-10 and Syn-digits→
SVHN benchmarks however require additional modifications to achieve good performance.

3.2 CONFIDENCE THRESHOLDING

We found that replacing the Gaussian ramp-up factor that scales the unsupervised loss with confi-
dence thresholding stabilized training in more challenging domain adaptation scenarios. For each
unlabeled sample xTi the teacher network produces the predicted class probabilty vector z̃Tij –
where j is the class index drawn from the set of classes C – from which we compute the confidence
f̃Ti = maxj∈C(z̃Tij); the predicted probability of the predicted class of the sample. If f̃Ti is below
the confidence threshold (a parameter search found 0.968 to be an effective value for small image
benchmarks), the self-ensembling loss for the sample xi is masked to 0.

Our working hypothesis is that confidence thresholding acts as a filter, shifting the balance in favour
of the student learning correct labels from the teacher. While high network prediction confidence
does not guarantee correctness there is a positive correlation. Given the tolerance to incorrect la-
bels reported by Laine & Aila (2017), we believe that the higher signal-to-noise ratio underlies the
success of this component of our approach.

The use of confidence thresholding achieves a state of the art results in the STL→ CIFAR-10 and
Syn-digits → SVHN benchmarks, as seen in the ‘MT+CT+TF’ row of Table 1. While confidence
thresholding can result in very slight reductions in performance (see the MNIST↔USPS and SVHN
→MNIST results), its ability to stabilise training in challenging scenarios leads us to recommend it
as a replacement for the time-dependent Gaussian ramp-up used in Laine & Aila (2017).

3.3 DATA AUGMENTATION

We explored the effect of three data augmentation schemes in our small image benchmarks (sec-
tion 4.1). Our minimal scheme (that should be applicable in non-visual domains) consists of Gaus-
sian noise (with σ = 0.1) added to the pixel values. The standard scheme (indicated by ‘TF’ in
Table 1) was used by Laine & Aila (2017) and adds translations in the interval [−2, 2] and hori-
zontal flips for the CIFAR-10 ↔ STL experiments. The affine scheme (indicated by ‘TFA’) adds
random affine transformations defined by the matrix in (1), where N (0, 0.1) denotes a real value
drawn from a normal distribution with mean 0 and standard deviation 0.1.[

1 +N (0, 0.1) N (0, 0.1)
N (0, 0.1) 1 +N (0, 0.1)

]
(1)

The use of translations and horizontal flips has a significant impact in a number of our benchmarks. It
is necessary in order to outpace prior art in the MNIST↔ USPS and SVHN→MNIST benchmarks
and improves performance in the CIFAR-10 ↔ STL benchmarks. The use of affine augmentation
can improve performance in experiments involving digit and traffic sign recognition datasets, as seen
in the ‘MT+CT+TFA’ row of Table 1. In contrast it can impair performance when used with photo-
graphic datasets, as seen in the the STL→ CIFAR-10 experiment. It also impaired performance in
the VisDA-17 experiment (section 4.2).

3.4 CLASS BALANCE LOSS

With the adaptations made so far the challenging MNIST→ SVHN benchmark remains undefeated
due to training instabilities. During training we noticed that the error rate on the SVHN test set
decreases at first, then rises and reaches high values before training completes. We diagnosed the
problem by recording the predictions for the SVHN target domain samples after each epoch. The rise
in error rate correlated with the predictions evolving toward a condition in which most samples are
predicted as belonging to the ‘1’ class; the most populous class in the SVHN dataset. We hypothesize
that the class imbalance in the SVHN dataset caused the unsupervised loss to reinforce the ‘1’ class
more often than the others, resulting in the network settling in a degenerate local minimum. Rather
than distinguish between digit classes as intended it seperated MNIST from SVHN samples and
assigned the latter to the ‘1’ class.
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(a) MNIST↔ USPS (b) CIFAR-10↔ STL

(c) Syn-digits→ SVHN (d) Syn-signs→ GTSRB

(e) SVHN→MNIST (f) MNIST (specific augmentation)→ SVHN

Figure 3: Small image domain adaptation example images

We addressed this problem by introducing a class balance loss term that penalises the network for
making predictions that exhibit large class imbalance. For each target domain mini-batch we com-
pute the mean of the predicted sample class probabilities over the sample dimension, resulting in the
mini-batch mean per-class probability. The loss is computed as the binary cross entropy between the
mean class probability vector and a uniform probability vector. We balance the strength of the class
balance loss with that of the self-ensembling loss by multiplying the class balance loss by the aver-
age of the confidence threshold mask (e.g. if 75% of samples in a mini-batch pass the confidence
threshold, then the class balance loss is multiplied by 0.75).2

We would like to note the similarity between our class balance loss and the entropy maximisation
loss in the IMSAT clustering model of Hu et al. (2017); IMSAT employs entropy maximisation
to encourage uniform cluster sizes and entropy minimisation to encourage unambiguous cluster
assignments.

4 EXPERIMENTS

Our implementation was developed using PyTorch (Chintala et al.) and is publically available at
http://github.com/Britefury/self-ensemble-visual-domain-adapt.

4.1 SMALL IMAGE DATASETS

Our results can be seen in Table 1. The ‘train on source’ and ‘train on target’ results report the target
domain performance of supervised training on the source and target domains. They represent the ex-
epected baseline and best achievable result. The ‘Specific aug.‘ experiments used data augmentation
specific to the MNIST→ SVHN adaptation path that is discussed further down.

The small datasets and data preparation procedures are described in Appendix A. Our training pro-
cedure is described in Appendix B and our network architectures are described in Appendix D. The
same network architectures and augmentation parameters were used for domain adaptation experi-
ments and the supervised baselines discussed above. It is worth noting that only the training sets of
the small image datasets were used during training; the test sets used for reporting scores only.

MNIST↔ USPS (see Figure 3a). MNIST and USPS are both greyscale hand-written digit datasets.
In both adaptation directions our approach not only demonstrates a significant improvement over
prior art but nearly achieves the performance of supervised learning using the target domain ground
truths. The strong performance of the base mean teacher model can be attributed to the similarity
of the datasets to one another. It is worth noting that data augmentation allows our ‘train on source’
baseline to outpace prior domain adaptation methods.

CIFAR-10↔ STL (see Figure 3b). CIFAR-10 and STL are both 10-class image datasets, although
we removed one class from each (see Appendix A.2). We obtained strong performance in the STL→
CIFAR-10 path, but only by using confidence thresholding. The CIFAR-10→ STL results are more
interesting; the ‘train on source’ baseline performance outperforms that of a network trained on the
STL target domain, most likely due to the small size of the STL training set. Our self-ensembling
results outpace both the baseline performance and the ‘theoretical maximum’ of a network trained

2We expect that class balance loss is likely to adversely affect performance on target datasets with large
class imbalance.
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USPS MNIST SVHN MNIST CIFAR STL Syn Syn
Digits Signs

– – – – – – – –
MNIST USPS MNIST SVHN STL CIFAR SVHN GTSRB

TRAIN ON SOURCE
SupSrc* 77.55 82.03 66.5 25.44 72.84 51.88 86.86 96.95

±0.8 ±1.16 ±1.93 ±2.8 ±0.61 ±1.44 ±0.86 ±0.36
SupSrc+TF 77.53 95.39 68.65 24.86 75.2 59.06 87.45 97.3

±4.63 ±0.93 ±1.5 ±3.29 ±0.28 ±1.02 ±0.65 ±0.16
SupSrc+TFA 91.97 96.25 71.73 28.69 75.18 59.38 87.16 98.02

±2.15 ±0.54 ±5.73 ±1.59 ±0.76 ±0.58 ±0.85 ±0.20
Specific aug.b – – – 61.99 – – – –

±3.9
RevGrada [1] 74.01 91.11 73.91 35.67 66.12 56.91 91.09 88.65
DCRN [2] 73.67 91.8 81.97 40.05 66.37 58.65 – –
G2A [3] 90.8 92.5 84.70 36.4 – – – –
ADDA [4] 90.1 89.4 76.00 – – – – –
ATT [5] – – 86.20 52.8 – – 93.1 96.2
SBADA-GAN [6] 97.60 95.04 76.14 61.08 – – – –
ADA [7] – – 97.6 – – – 91.86 97.66
OUR RESULTS
MT+TF 98.07 98.26 99.18 13.96c 80.08 18.3 15.94 98.63

±2.82 ±0.11 ±0.12 ±4.41 ±0.25 ±9.03 ±0.0 ±0.09
MT+CT* 92.35 88.14 93.33 33.87c 77.53 71.65 96.01 98.53

±8.61 ±0.34 ±5.88 ±4.02 ±0.11 ±0.67 ±0.08 ±0.15
MT+CT+TF 97.28 98.13 98.64 34.15c 79.73 74.24 96.51 98.66

±2.74 ±0.17 ±0.42 ±3.56 ±0.45 ±0.46 ±0.08 ±0.12
MT+CT+TFA 99.54 98.23 99.26 37.49c 80.09 69.86 97.11 99.37

±0.04 ±0.13 ±0.05 ±2.44 ±0.31 ±1.97 ±0.04 ±0.09
Specific aug.b – – – 97.0c – – – –

±0.06
TRAIN ON TARGET
SupTgt* 99.53 97.29 99.59 95.7 67.75 88.86 95.62 98.49

±0.02 ±0.2 ±0.08 ±0.13 ±2.23 ±0.38 ±0.2 ±0.32
SupTgt+TF 99.62 97.65 99.61 96.19 70.98 89.83 96.18 98.64

±0.04 ±0.17 ±0.04 ±0.1 ±0.79 ±0.39 ±0.09 ±0.09
SupTgt+TFA 99.62 97.83 99.59 96.65 70.03 90.44 96.59 99.22

±0.03 ±0.17 ±0.06 ±0.11 ±1.13 ±0.38 ±0.09 ±0.22
Specific aug.b – – – 97.16 – – – –

±0.05

[1] Ganin & Lempitsky (2015), [2] Ghifary et al. (2016), [3] Sankaranarayanan et al. (2017), [4] Tzeng
et al. (2017), [5] Saito et al. (2017a), [6] Russo et al. (2017), [7] Haeusser et al. (2017)
a RevGrad results were available in both Ganin & Lempitsky (2015) and Ghifary et al. (2016); we drew
results from both papers to obtain results for all of the experiments shown.
b MNIST→ SVHN specific intensity augmentation as described in Section 4.1.
c MNIST→ SVHN experiments used class balance loss.

Table 1: Small image benchmark classification accuracy; each result is presented as mean ±
standard deviation, computed from 5 independent runs. The abbreviations for components of
our models are as follows: MT = mean teacher, CT = confidence thresholding, TF = translation
and horizontal flip augmentation, TFA = translation, horizontal flip and affine augmentation, *
indicates minimal augmentation.

on the target domain, lending further evidence to the view of Sajjadi et al. (2016) and Laine & Aila
(2017) that self-ensembling acts as an effective regulariser.

Syn-Digits → SVHN (see Figure 3c). The Syn-Digits dataset is a synthetic dataset designed by
Ganin & Lempitsky (2015) to be used as a source dataset in domain adaptation experiments with
SVHN as the target dataset. Other approaches have achieved good scores on this benchmark, beating
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the baseline by a significant margin. Our result improves on them, reducing the error rate from 6.9%
to 2.9%; even slightly outpacing the ‘train on target’ 3.4% error rate achieved using supervised
learning.

Syn-Signs → GTSRB (see Figure 3d). Syn-Signs is another synthetic dataset designed by Ganin
& Lempitsky (2015) to target the 43-class GTSRB (German Traffic Signs Recognition Benchmark;
Stallkamp et al. (2011)) dataset. Our approach halved the best error rate of competing approaches.
Once again, our approaches slightly outpaces the ‘train on target’ supervised learning upper bound.

SVHN→MNIST (see Figure 3e). Google’s SVHN (Street View House Numbers) is a colour digits
dataset of house number plates. Our approach significantly outpaces other techniques and achieves
an accuracy close to that of supervised learning.

MNIST→ SVHN (see Figure 3f). This adaptation path is somewhat more challenging as MNIST
digits are greyscale and uniform in terms of size, aspect ratio and intensity range, in contrast to the
variably sized colour digits present in SVHN. As a consequence, adapting from MNIST to SVHN
required additional work. Class balancing loss was necessary to ensure training stability and ad-
ditional experiment specific data augmentation was required to achieve good accuracy. The use of
translations and affine augmentation (see section 3.3) results in an accuracy score of 37%. Sig-
nificant improvements resulted from additional augmentation in the form of random intensity flips
(negative image), and random intensity scales and offsets drawn from the intervals [0.25, 1.5] and
[−0.5, 0.5] respectively. These hyper-parameters were selected in order to augment MNIST samples
to match the intensity variations present in SVHN, as illustrated in Figure 3f. With these additional
modifications, we achieve a result that significantly outperforms prior art and nearly achieves the
accuracy of a supervised classifier trained on the target dataset. We found that applying these addi-
tional augmentations to the source MNIST dataset only yielded good results; applying them to the
target SVHN dataset as well yielded a small improvement but was not essential. It should also be
noted that this augmentation scheme raises the performance of the ‘train on source’ baseline to just
above that of much of the prior art.

4.2 VISDA-2017 VISUAL DOMAIN ADAPTATION CHALLENGE

The VisDA-2017 image classification challenge is a 12-class domain adaptation problem consisting
of three datasets: a training set consisting of 3D renderings of sketchup models, and validation
and test sets consisting of real images (see Figure 1) drawn from the COCO Lin et al. (2014) and
YouTube BoundingBoxes Real et al. (2017) datasets respectively. The objective is to learn from
labeled computer generated images and correctly predict the class of real images. Ground truth
labels were made available for the training and validation sets only; test set scores were computed
by a server operated by the competition organisers.

While the algorithm is that presented above, we base our network on the pretrained ResNet-152 (He
et al. (2016)) network provided by PyTorch (Chintala et al.), rather than using a randomly initialised
network as before. The final 1000-class classification layer is removed and replaced with two fully-
connected layers; the first has 512 units with a ReLU non-linearity while the final layer has 12 units
with a softmax non-linearity. Results from our original competition submissions and newer results
using two data augmentation schemes are presented in Table 2. Our reduced augmentation scheme
consists of random crops, random horizontal flips and random uniform scaling. It is very similar
to scheme used for ImageNet image classification in He et al. (2016). Our competition configura-
tion includes additional augmentation that was specifically designed for the VisDA dataset, although
we subsequently found that it makes little difference. Our hyper-parameters and competition data
augmentation scheme are described in Appendix C.1. It is worth noting that we applied test time
augmentation (we averaged predictions form 16 differently augmented images) to achieve our com-
petition results. We present resuts with and without test time augmentation in Table 2. Our VisDA
competition test set score is also the result of ensembling the predictions of 5 different networks.

5 CONCLUSIONS

We have presented an effective domain adaptation algorithm that has achieved state of the art results
in a number of benchmarks and has achieved accuracies that are almost on par with traditional su-
pervised learning on digit recognition benchmarks targeting the MNIST and SVHN datasets. The
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VALIDATION PHASE TEST PHASE
Team / model Mean class acc. Team / model Mean class acc.
OTHER TEAMS
bchidlovski [1] 83.1 NLE-DA [1] 87.7
BUPT OVERFIT 77.8 BUPT OVERFIT 85.4
Uni. Tokyo MIL [2] 75.4 Uni. Tokyo MIL [2] 82.4
OUR COMPETITION RESULTS
ResNet-50 model 82.8a ResNet-152 model 92.8ab

OUR NEWER RESULTS (all using ResNet-152)
Minimal aug.* 74.2 ±0.86 Minimal aug.* 77.52 ±0.78
Reduced aug. 85.4 ±0.2 Reduced aug. 91.17 ±0.17
+ test time aug. 86.6 ±0.18a + test time aug. 92.25 ±0.21a

Competition config. 84.29 ±0.24 Competition config. 91.14 ±0.14
+ test time aug. 85.52 ±0.29a + test time aug. 92.41 ±0.15a

[1] Csurka et al. (2017), [2] Saito et al. (2017b)
a Used test-time augmentation; averaged predictions of 16 differently augmentations versions of each image
b Our competition submission ensembled predictions from 5 independently trained networks

Table 2: VisDA-17 performance, presented as mean ± std-dev of 5 independent runs. Full results
are presented in Tables 4 and 5 in Appendix C.

resulting networks will exhibit strong performance on samples from both the source and target do-
mains. Our approach is sufficiently flexible to be usable for a variety of network architectures,
including those based on randomly initialised and pre-trained networks.

Miyato et al. (2017) stated that the self-ensembling methods presented by Laine & Aila (2017) – on
which our algorithm is based – operate by label propagation. This view is supported by our results,
in particular our MNIST→ SVHN experiment. The latter requires additional intensity augmentation
in order to sufficiently align the dataset distributions, after which good quality label predictions are
propagated throughout the target dataset. In cases where data augmentation is insufficient to align
the dataset distributions, a pre-trained network may be used to bridge the gap, as in our solution to
the VisDA-17 challenge. This leads us to conclude that effective domain adaptation can be achieved
by first aligning the distributions of the source and target datasets – the focus of much prior art in
the field – and then refining their correspondance; a task to which self-ensembling is well suited.
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A DATASETS AND DATA PREPARATION

A.1 SMALL IMAGE DATASETS

The datasets used in this paper are described in Table 3.

# train # test # classes Target Resolution Channels
USPSa 7,291 2,007 10 Digits 16× 16 Mono
MNIST 60,000 10,000 10 Digits 28× 28 Mono
SVHN 73,257 26,032 10 Digits 32× 32 RGB
CIFAR-10 50,000 10,000 10 Object ID 32× 32 RGB
STLb 5,000 8,000 10 Object ID 96× 96 RGB
Syn-Digitsc 479,400 9,553 10 Digits 32× 32 RGB
Syn-Signs 100,000 – 43 Traffic signs 40× 40 RGB
GTSRB 32,209 12,630 43 Traffic signs varies RGB

a Available from http://statweb.stanford.edu/˜tibs/ElemStatLearn/
datasets/zip.train.gz and http://statweb.stanford.edu/˜tibs/
ElemStatLearn/datasets/zip.test.gz
b Available from http://ai.stanford.edu/˜acoates/stl10/
c Available from Ganin’s website at http://yaroslav.ganin.net/

Table 3: datasets

A.2 DATA PREPARATION

Some of the experiments that involved datasets described in Table 3 required additional data prepa-
ration in order to match the resolution and format of the input samples and match the classification
target. These additional steps will now be described.

MNIST ↔ USPS The USPS images were up-scaled using bilinear interpolation from 16 × 16 to
28× 28 resolution to match that of MNIST.

CIFAR-10 ↔ STL CIFAR-10 and STL are both 10-class image datasets. The STL images were
down-scaled to 32 × 32 resolution to match that of CIFAR-10. The ‘frog’ class in CIFAR-10 and
the ‘monkey’ class in STL were removed as they have no equivalent in the other dataset, resulting
in a 9-class problem with 10% less samples in each dataset.

Syn-Signs→ GTSRB GTSRB is composed of images that vary in size and come with annotations
that provide region of interest (bounding box around the sign) and ground truth classification. We
extracted the region of interest from each image and scaled them to a resolution of 40× 40 to match
those of Syn-Signs.

MNIST↔ SVHN The MNIST images were padded to 32 × 32 resolution and converted to RGB
by replicating the greyscale channel into the three RGB channels to match the format of SVHN.
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B SMALL IMAGE EXPERIMENT TRAINING

B.1 TRAINING PROCEDURE

Our networks were trained for 300 epochs. We used the Adam Kingma & Ba (2015) gradient descent
algorithm with a learning rate of 0.001. We trained using mini-batches composed of 256 samples,
except in the Syn-digits → SVHN and Syn-signs → GTSRB experiments where we used 128 in
order to reduce memory usage. The self-ensembling loss was weighted by a factor of 3 and the class
balancing loss was weighted by 0.005. Our teacher network weights ti were updated so as to be an
exponential moving average of those of the student si using the formula ti = αti−1 + (1 − α)si,
with a value of 0.99 for α. A complete pass over the target dataset was considered to be one epoch
in all experiments except the MNIST→ USPS and CIFAR-10→ STL experiments due to the small
size of the target datasets, in which case one epoch was considered to be a pass over the larger soure
dataset.

We found that using the proportion of samples that passed the confidence threshold can be used to
drive early stopping (Prechelt (1998)). The final score was the target test set performance at the
epoch at which the highest confidence threshold pass rate was obtained.

C VISDA-17

C.1 HYPER-PARAMETERS

Our training procedure was the same as that used in the small image experiments, except that we
used 160 × 160 images, a batch size of 56 (reduced from 64 to fit within the memory of an nVidia
1080-Ti), a self-ensembling weight of 10 (instead of 3), a confidence threshold of 0.9 (instead of
0.968) and a class balancing weight of 0.01. We used the Adam Kingma & Ba (2015) gradient
descent algorithm with a learning rate of 10−5 for the final two randomly initialized layers and 10−6

for the pre-trained layers. The first convolutional layer and the first group of convolutional layers
(with 64 feature channels) of the pre-trained ResNet were left unmodified during training.

Reduced data augmentation:

• scale image so that its smallest dimension is 176 pixels, then randomly crop a 160 × 160
section from the scaled image

• No random affine transformations as they increase confusion between the car and truck
classes in the validation set

• random uniform scaling in the range [0.75, 1.333]

• horizontal flipping

Competition data augmentation adds the following in addition to the above:

• random intensity/brightness scaling in the range [0.75, 1.333]

• random rotations, normally distributed with a standard deviation of 0.2π

• random desaturation in which the colours in an image are randomly desaturated to greyscale
by a factor between 0% and 100%

• rotations in colour space, around a randomly chosen axes with a standard deviation of 0.05π

• random offset in colour space, after standardisation using parameters specified by PyTorch
implementation of ResNet-152

D NETWORK ARCHITECTURES

Our network architectures are shown in Tables 6 - 8.
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Plane Bicycle Bus Car Horse Knife
COMPETITION RESULTS
ResNet-50 96.3 87.9 84.7 55.7 95.9 95.2
NEWER RESULTS (ResNet-152)
Minimal aug 92.94 84.88 71.56 41.24 88.85 92.40

±0.52 ±0.73 ±3.08 ±1.01 ±1.31 ±1.14
Reduced aug 96.19 87.83 84.38 66.47 96.07 96.06

±0.17 ±1.62 ±0.92 ±4.53 ±0.28 ±0.62
+ test time aug 97.13 89.28 84.93 67.67 96.54 97.48

±0.18 ±1.45 ±1.09 ±4.66 ±0.36 ±0.43
Competition config. 95.93 87.36 85.22 58.56 96.23 95.65

±0.29 ±1.19 ±0.86 ±1.81 ±0.18 ±0.60
+ test time aug 96.89 89.06 85.51 59.73 96.59 97.55

±0.32 ±1.24 ±0.83 ±1.96 ±0.13 ±0.48
M.cycle Person Plant Sk.brd Train Truck Mean Class Acc.

COMPETITION RESULTS
ResNet-50 88.6 77.4 93.3 92.8 87.5 38.2 82.8
NEWER RESULTS (ResNet-152)
Minimal aug 67.51 63.46 84.47 71.84 83.22 48.09 74.20

±1.79 ±1.72 ±1.22 ±5.40 ±0.73 ±1.41 ±0.86
Reduced aug 90.49 81.45 95.27 91.48 87.54 51.60 85.40

±0.27 ±0.90 ±0.36 ±0.76 ±1.16 ±2.35 ±0.20
+ test time aug 90.99 83.33 96.12 94.69 88.53 52.54 86.60

±0.37 ±0.91 ±0.32 ±0.71 ±1.20 ±2.82 ±0.24
Competition config. 90.60 80.03 94.79 90.77 88.42 47.90 84.29

±1.08 ±1.23 ±0.35 ±0.65 ±0.87 ±2.16 ±0.24
+ test time aug 91.00 81.59 95.58 94.29 89.28 49.21 85.52

±1.17 ±1.20 ±0.38 ±0.63 ±0.85 ±2.26 ±0.29

Table 4: Full VisDA-17 validation set results
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Plane Bicycle Bus Car Horse Knife
COMPETITION RESULTS (ensemble of 5 models)
ResNet-152 96.9 92.4 92.0 97.2 95.2 98.8
NEWER RESULTS (ResNet-152)
Minimal aug 88.44 84.80 75.08 84.08 79.95 72.62

±1.37 ±1.81 ±1.63 ±2.28 ±1.93 ±7.98
Reduced aug 95.63 89.90 91.44 96.18 94.17 96.51

±0.61 ±0.64 ±0.34 ±0.63 ±0.25 ±0.41
+ test time aug 96.72 91.67 92.21 96.41 94.72 98.03

±0.59 ±0.73 ±0.45 ±0.65 ±0.21 ±0.40
Competition config. 95.13 90.09 91.21 96.94 94.39 96.87

±0.39 ±0.37 ±0.82 ±0.34 ±0.48 ±0.33
+ test time aug 96.48 91.96 91.92 97.22 95.12 98.44

±0.31 ±0.38 ±0.65 ±0.36 ±0.52 ±0.13
M.cycle Person Plant Sk.brd Train Truck Mean Class Acc.

COMPETITION RESULTS (ensemble of 5 models)
ResNet-152 86.3 75.3 97.7 93.3 94.5 93.3 92.8
NEWER RESULTS (ResNet-152)
Minimal aug 63.60 56.59 95.40 73.79 77.57 78.33 77.52

±1.55 ±1.73 ±0.52 ±5.43 ±1.76 ±3.12 ±0.78
Reduced aug 85.02 71.31 97.35 91.11 92.42 93.03 91.17

±0.83 ±0.97 ±0.49 ±1.05 ±0.46 ±0.36 ±0.17
+ test time aug 85.40 73.19 97.84 93.53 93.31 93.91 92.25

±1.08 ±0.86 ±0.45 ±0.71 ±0.35 ±0.39 ±0.21
Competition config. 85.12 70.78 97.22 90.39 93.18 92.38 91.14

±1.30 ±1.53 ±0.19 ±0.64 ±0.49 ±0.52 ±0.14
+ test time aug 85.75 74.06 97.77 92.91 94.21 93.09 92.41

±1.20 ±1.69 ±0.16 ±0.45 ±0.52 ±0.44 ±0.15

Table 5: Full VisDA-17 test set results

Description Shape
28× 28 Mono image 28× 28× 1
Conv 5× 5× 32, batch norm 24× 24× 32
Max-pool, 2x2 12× 12× 32
Conv 3× 3× 64, batch norm 10× 10× 64
Conv 3× 3× 64, batch norm 8× 8× 64
Max-pool, 2x2 4× 4× 64
Dropout, 50% 4× 4× 64
Fully connected, 256 units 256
Fully connected, 10 units, softmax 10

Table 6: MNIST↔ USPS architecture
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Description Shape
32× 32 RGB image 32× 32× 3
Conv 3× 3× 128, pad 1, batch norm 32× 32× 128
Conv 3× 3× 128, pad 1, batch norm 32× 32× 128
Conv 3× 3× 128, pad 1, batch norm 32× 32× 128
Max-pool, 2x2 16× 16× 128
Dropout, 50% 16× 16× 128
Conv 3× 3× 256, pad 1, batch norm 16× 16× 256
Conv 3× 3× 256, pad 1, batch norm 16× 16× 256
Conv 3× 3× 256, pad 1, batch norm 16× 16× 256
Max-pool, 2x2 8× 8× 256
Dropout, 50% 8× 8× 256
Conv 3× 3× 512, pad 0, batch norm 6× 6× 512
Conv 1× 1× 256, batch norm 6× 6× 256
Conv 1× 1× 128, batch norm 6× 6× 128
Global pooling layer 1× 1× 128
Fully connected, 10 units, softmax 10

Table 7: MNIST↔ SVHN, CIFAR-10↔ STL and Syn-Digits→ SVHN architecture

Description Shape
40× 40 RGB image 40× 40× 3
Conv 3× 3× 96, pad 1, batch norm 40× 40× 96
Conv 3× 3× 96, pad 1, batch norm 40× 40× 96
Conv 3× 3× 96, pad 1, batch norm 40× 40× 96
Max-pool, 2x2 20× 20× 96
Dropout, 50% 20× 20× 96
Conv 3× 3× 192, pad 1, batch norm 20× 20× 192
Conv 3× 3× 192, pad 1, batch norm 20× 20× 192
Conv 3× 3× 192, pad 1, batch norm 20× 20× 192
Max-pool, 2x2 10× 10× 192
Dropout, 50% 10× 10× 192
Conv 3× 3× 384, pad 1, batch norm 10× 10× 384
Conv 3× 3× 384, pad 1, batch norm 10× 10× 384
Conv 3× 3× 384, pad 1, batch norm 10× 10× 384
Max-pool, 2x2 5× 5× 384
Dropout, 50% 5× 5× 384
Global pooling layer 1× 1× 384
Fully connected, 43 units, softmax 43

Table 8: Syn-signs→ GTSRB architecture
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