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ABSTRACT

Deep neural networks (DNNs) had great success on NLP tasks such as language
modeling, machine translation and certain question answering (QA) tasks. However,
the success is limited at more knowledge intensive tasks such as QA from a big
corpus. Existing end-to-end deep QA models (Miller et al., 2016; Weston et al.,
2014) need to read the entire text after observing the question, and therefore their
complexity in responding a question is linear in the text size. This is prohibitive
for practical tasks such as QA from Wikipedia, a novel, or the Web. We propose
to solve this scalability issue by using symbolic meaning representations, which
can be indexed and retrieved efficiently with complexity that is independent of
the text size. More specifically, we use sequence-to-sequence models to encode
knowledge symbolically and generate programs to answer questions from the
encoded knowledge. We apply our approach, called the N-Gram Machine (NGM),
to the bAbI tasks (Weston et al., 2015) and a special version of them (“life-long
bAbI”) which has stories of up to 10 million sentences. Our experiments show
that NGM can successfully solve both of these tasks accurately and efficiently.
Unlike fully differentiable memory models, NGM’s time complexity and answering
quality are not affected by the story length. The whole system of NGM is trained
end-to-end with REINFORCE (Williams, 1992). To avoid high variance in gradient
estimation, which is typical in discrete latent variable models, we use beam search
instead of sampling. To tackle the exponentially large search space, we use a
stabilized auto-encoding objective and a structure tweak procedure to iteratively
reduce and refine the search space.

1 INTRODUCTION

Although there is a great deal of recent research on extracting structured knowledge from text (Dong
et al., 2014; Mitchell et al., 2015) and answering questions from structured knowledge stores (Dong
& Lapata, 2016; Jia & Liang, 2016; Liang et al., 2017), much less progress has been made on either
the problem of unifying these approaches in an end-to-end model or the problem of removing the
bottleneck of relying on human experts to design the schema and annotate examples for informa-
tion extraction. In particular, traditional natural language processing and information extraction
approaches are too labor-intensive and brittle for answering open domain questions from large cor-
pus, and existing end-to-end deep QA models (e.g., (Miller et al., 2016; Weston et al., 2014)) lack
scalability and the ability to integrate domain knowledge.

This paper presents a new QA system that treats both the schema and the content of a structured
storage as discrete hidden variables, and infers these structures automatically from weak supervisions
(such as QA pair examples). The structured storage we consider is simply a set of “n-grams”, which
we show can represent a wide range of semantics, and can be indexed for efficient computations at
∗ Work done while the author was interning at Google
† Work done while the author was working at Google
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scale. We present an end-to-end trainable system which combines an text auto-encoding component
for encoding knowledge, and a memory enhanced sequence to sequence component for answering
questions from the encoded knowledge. We show that the method scales well on artificially generated
stories of up to 10 million lines long (Figure 4). The system we present here illustrates how end-to-end
learning and scalability can be made possible through a symbolic knowledge storage.

1.1 QUESTION ANSWERING AS A TESTBED FOR TEXT UNDERSTANDING

We first define question answering as producing the answer a given sentences s = (s1, . . . , s|s|) and
question q. Each sentence si is represented as a sequence of words, i.e. si = (wi1, . . . , w

i
n). And the

question q is also represented as a sequence of words, i.e. q = (wq1, . . . , w
q
m). We focus on extractive

question answering, where the answer a is always a word in one of the sentences.

Despite its simple form, question answering can be incredibly challenging. Consider answering the
question “Who was Adam Smith’s wife?’ from the Web. There exists the following snippet from
a reputable website “Smith was born in Kirkcaldy, ... (skipped 35 words) ... In 1720, he married
Margaret Douglas”. An ideal system needs to identify that “Smith” in this text is equivalent to “Adam
Smith” in the question; “he” is referencing “Smith”; and text expressions of the form “X married Y”
answer questions of the form “Who was X’s wife?”. There are three main challenges in this process:

Scalability A typical QA system, such as Watson (Ferrucci et al., 2010) or any of the commercial
search engines, processes millions or even billions of documents for answering a question. Yet the
response time is restricted to a few seconds or even fraction of seconds. Answering any possible
question that is answerable from a large corpus with limited time means that the information need to
be organized and indexed for fast access and reasoning.

Representation A fundamental building block for text understanding is paraphrasing, e.g., know-
ing that “X married Y” leads to “X’s wife is Y”. By observing users’ interactions with a search engine
a system may capture certain equivalence relationships among expressions in questions (Baker, 2010).
However, given these observations, there is still a wide range of choices for how the meaning of ex-
pressions can be represented. Open information extraction approaches (Angeli et al., 2015) represent
expressions by themselves, and rely on corpus statistics to calculate their similarities. This approach
leads to data sparsity, and brittleness on out-of-domain text. Vector space approaches (Mikolov et al.,
2013; Weston et al., 2014; Neelakantan et al., 2015; Miller et al., 2016) embeds text expressions into
latent continuous spaces. They allow soft matching of semantics for arbitrary expressions, but are
hard to scale to knowledge intensive tasks, which require inference with large amount of data.

Inference The most basic form of reasoning is to combine pieces of information and form a
new piece, for example, from co-reference(“He”, “Adam Smith”) and has_spouse(“He”, “Margaret
Douglas”) to has_spouse(“Adam Smith”, “Margaret Douglas”). As the number of pieces that need to
be put together grows the search space grows exponentially – making it a hard search problem (Lao
et al., 2011). Good representations dramatically reduce the search space.

Among these challenges, scalability is the main blocker to a practical end-to-end solution. Now we
present our new framework, which meets all three challenges described above.

1.2 N-GRAM MACHINES: A SCALABLE END-TO-END APPROACH

We propose to solve the scalability issue of DNN text understanding models by learning to represent
the meaning of text as a symbolic knowledge storage. Because the storage can be indexed before being
used for question answering, the inference step can be done very efficiently with complexity that is
independent of the original text size. More specifically the structured storage we consider is simply a
set of “n-grams”, which we show can represent complex semantics presented in bAbI tasks (Weston
et al., 2015) and can be indexed for efficient computations at scale. Each n-gram consists of a
sequence of tokens, and each token can be a word, or any predefined special symbol. Different from
conventional n-grams, which are contiguous chunks of text, the “n-grams” considered here can be
any combination of arbitrary words and symbols. The whole system (Figure 1) consists of learnable
components which convert text into symbolic knowledge storage and questions into programs (details
in Section 2.1). A deterministic executor executes the programs against the knowledge storage and
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Figure 1: End-to-end QA system with a symbolic knowledge store.

produces answers. The whole system is trained end-to-end with no human annotation other than the
expected answers to a set of question-text pairs.

Training highly expressive discrete latent variable models on large datasets is a challenging problem
due to the difficulties posed by inference (Hinton et al., 2006; Mnih & Gregor, 2014) – specifically
the huge variance in the gradient estimation. Mnih & Gregor (2014) applies REINFORCE (Williams,
1992) to optimize a variational lower-bound of the data log-likelihood, but relies on complex schemes
to reduce variance in the gradient estimation. We use a different set of techniques to learn N-Gram
Machines, which are simpler and with less model assumptions. Instead of Monte Carlo integration,
which is known for high variance and low data efficiency, we apply beam search. Beam search is very
effective for deterministic environments with sparse reward (Liang et al., 2017; Guu et al., 2017),
but it leads to a search problem. At inference time, since only a few top hypotheses are kept in the
beam, search could get stuck and not receive any reward, preventing learning. We solve this hard
search problem by having 1) a stabilized auto-encoding objective to bias the knowledge encoder to
more interesting hypotheses; and 2) a structural tweak procedure which retrospectively corrects the
inconsistency among multiple hypotheses so that reward can be achieved (See Section 2.2).

2 N-GRAM MACHINES

In this section we first describe the N-Gram Machine (NGM) model structure, which contains three
sequence to sequence modules, and an executor that executes programs against knowledge storage.
Then we describe how this model can be trained end-to-end with reinforcement learning. We use the
bAbI dataset (Weston et al., 2015) as running examples.

2.1 MODEL STRUCTURE

Knowledge storage Given a sequence of sentences s = {s1, . . . , sT }, our knowledge storage is a
collection of knowledge tuples Γ = {Γ1, . . . ,ΓT }. The tuple Γi has two parts: a time stamp i and a
sequence of symbols (γ1, . . . , γN ), where each symbol γj is either a word from the sentence si or a
special symbol from a pre-defined set. The time stamps in the tuple are useful for reasoning about
time and are just sentence indices for the bAbI task. The knowledge storage is probabilistic – each
tuple Γi also has a probability, and the probability of the knowledge storage is the product of the
probabilities of all its tuples (Equation 1). An example of a knowledge storage is shown in Table 1.

Programs Programs in the N-Gram Machine are similar to those introduced in Neural Symbolic
Machine (Liang et al., 2017), except that our functions operate on n-grams (i.e. knowledge tuples)1

instead of Freebase triples. In general, functions specify how symbols can be retrieved from a
knowledge storage. Specifically, a function in NGM use a prefix (or suffix) to retrieve symbols from
tuples – i.e. if a prefix “matches” a tuple, the immediate next symbol in the tuple is returned. For
the bAbI tasks, we define four functions, which are illustrated in Table 2: Function Hop and HopFR
return symbols from all the matched tuples while function Argmax and ArgmaxFR return symbols
from the latest matches (i.e. the tuples with the latest the time stamp in all the matches)

1We will use “n-gram” and “knowledge tuple” interchangeably.
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Table 1: Example of probabilistic knowledge storage. Each sentence may be converted to a distribution
over multiple tuples, but only the one with the highest probability is shown here.

Sentences Knowledge tuples

Time stamp Symbols Probability

Mary went to the kitchen. 1 mary to kitchen 0.9
Mary picked up the milk. 2 mary the milk 0.4
John went to the bedroom. 3 john to bedroom 0.7
Mary journeyed to the garden. 4 mary to garden 0.8

Table 2: Functions in N-Gram Machines. The knowledge storage on which the programs can execute
is Γ, and a knowledge tuple Γi is represented as (i, (γ1, . . . , γN )). “FR” means from right.

Name Inputs Return

Hop v1 . . . vL {γL+1 | if (γ1 . . . γL) == (v1, . . . , vL), ∀Γ ∈ Γ}
HopFR v1 . . . vL {γN−L | if (γN−L+1 . . . γN ) == (vL, . . . , v1), ∀Γ ∈ Γ}
Argmax v1 . . . vL argmaxi{(γL+1, i) | if (γ1 . . . γL) == (v1, . . . , vL), ∀Γi ∈ Γ}
ArgmaxFR v1 . . . vL argmaxi{(γN−L, i) | if (γN−L+1 . . . γN ) == (vL, . . . , v1), ∀Γi ∈ Γ}

More formally a programC is a list of expressions c1...cN , where each ci is either a special expression
Return indicating the end of the program, or is of the form of (F,A1...AL) where F is a function in
Table 2 and A1...AL are L input arguments of F . When an expression is executed, it returns a set of
symbols by matching its arguments in Γ, and stores the result in a new variable symbol (e.g., V1) to
reference the result. Consider executing the expression (Hop V1 to) against the knowledge storage
in Table 1, assuming that V1 is a variable that stores {mary} from previous executions. The execution
returns a set of two symbols {kitchen, garden}. Similarly, executing (Argmax V1 to) would
instead produces {garden}. Though executing a program on a knowledge storage as described
above is deterministic, probabilities are assigned to the execution results, which are the products of
probabilities of the corresponding program and knowledge storage. Since the knowledge storage can
be indexed using data structures such as hash tables, the program execution time is independent of
the size of the knowledge storage.

Seq2Seq components Our N-Gram Machine uses three sequence-to-sequence (Sutskever et al.,
2014) neural network models to define probability distributions over knowledge tuples and programs.
As illustrated in Figure 2, these models are:

• A knowledge encoder that converts sentences to knowledge tuples and defines a distribution
P (Γi|si, si−1; θenc). It is conditioned on the previous sentence si−1 to handle cross sentence
linguistic phenomenons such as co-references2. The probability of a knowledge storage
Γ = {Γ1 . . .Γn} is defined as the product of its knowledge tuples’ probabilities:

P (Γ|s; θenc) = ΠΓi∈ΓP (Γi|si, si−1; θenc) (1)

• A knowledge decoder that converts tuples back to sentences and defines a distribution
P (si|Γi, si−1; θdec). It enables auto-encoding training, which is crucial for finding good
knowledge representations (See Section 2.3).

• A programmer that converts questions to programs and defines a distribution
P (C|q,Γ; θprog). It is conditioned on the knowledge storage Γ for code assistance (Liang
et al., 2017) – before generating each token the programmer can query Γ about the valid
next tokens given a tuple prefix, and therefore avoid writing invalid programs.

For all of these neural networks we use the CopyNet (Gu et al., 2016) architecture, which has
copy (Vinyals et al., 2015) and attention (Bahdanau et al., 2014) mechanisms. The programmer is
also enhanced with a key-variable memory (Liang et al., 2017) for compositing semantics.

2Ideally it should condition on the partially constructed Γ at time t− 1, but that makes it hard to do batch
training of the DNN models, and is beyond the scope of this work.

4



Workshop track - ICLR 2018

can be followed by      or   

Can you change                 to                 ? 

Generate ( learning)

Knowledge Storage

Variable
Function
Word

Program

Answer

Reward

Expected 
Answer

Execute (no learning)

Structure Tweak:

Story

Question

Code assist:

Reconstruction loss

Reconstruction

Messages

Executor

Knowledge 
Decoder

Knowledge 
Encoder

Programmer

Figure 2: N-Gram Machine. The model contains two discrete hidden structures, the knowledge
storage and the program, which are generated from the story and the question respectively. The
executor executes programs against the knowledge storage to produce answers. The three learnable
components, knowledge encoder, knowledge decoder, and programmer, are trained to maximize the
answer accuracy as well as minimize the reconstruction loss of the story. Code assist and structure
tweak help the knowledge encoder and programmer to communicate and cooperate with each other.

2.2 INFERENCE

Given an example (s, q, a) from our training set, we would like to maximize the expected reward

OQA(θenc, θprog) =
∑
Γ

∑
C

P (Γ|s; θenc)P (C|q,Γ; θprog)R(Γ, C, a), (2)

where the reward function R(·) returns 1 if executing C on Γ produces a, and 0 otherwise. We
approximate the expectation with beam searches – the summation over all programs is replaced by
summing over programs found by beam search based on the programmer model P (C|q,Γ; θprog).
For the summation over knowledge storages Γ, we first run beam search for each sentence based
on the knowledge encoder model P (Γi|si, si−1; θenc), and then sample a set of knowledge storages
by independently sampling from the knowledge tuples of each sentence. However, since the beam
searches explore exponentially large spaces, it is very challenging to optimize OQA. We introduce
two special techniques to iteratively reduce and improve the search space:

Stabilized Auto-Encoding (AE) We add an auto-encoding objective to our framework, similar to
the text summarization model proposed by Miao & Blunsom (2016). The training of this objective
can be done by variational inference (Kingma & Welling, 2014; Mnih & Gregor, 2014):

OVAE(θenc, θdec) = Ep(z|x;θenc)[log p(x|z; θdec) + log p(z)− log p(z|x; θenc)], (3)

where x is text, and z is the hidden discrete structure. However, it suffers from instability due to the
strong coupling between encoder and decoder – the training of the decoder θdec relies solely on a
distribution parameterized by the encoder θenc, which changes throughout the course of training. To
improve the auto-encoding training stability, we propose to augment the decoder training with a more
stable objective – predict the data x back from noisy partial observations of x, which are independent
of θenc. More specifically, for NGM we force the knowledge decoder to decode from a fixed set of
hidden sequences z ∈ ZN (x), which includes all knowledge tuples of length N that consist only
words from the text x:

OAE(θenc, θdec) = Ep(z|x;θenc)[log p(x|z; θdec)] +
∑

z∈ZN (x)

log p(x|z; θdec), (4)
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The knowledge decoder θdec converts knowledge tuples back to sentences and the reconstruction
log-likelihoods approximate how informative the tuples are, which can be used as reward for the
knowledge encoder. We also drop the KL divergence (last two terms in Equation 3) between language
model p(z) and the encoder, since the z’s are produced for NGM computations instead of human
reading, and do not need to be in fluent natural language.

Structure Tweaking (ST) Even with AE training, the knowledge encoder is encoding tuples with-
out the understanding of how they are going to be used, and may encode them inconsistently across
sentences. At the later QA stage, such inconsistency can lead to no reward when the programmer tries
to reason with multiple knowledge tuples. To retrospectively correct the inconsistency in tuples, we
apply structure tweak, a procedure which is similar to code assist (Chen et al., 2017), but works in an
opposite direction While code assist uses the knowledge storage to inform the programmer, structure
tweak adjusts the knowledge encoder to cooperate with an uninformed programmer. Together they
allow the decisions in one part of the model to be influence by the decisions from other parts – similar
in spirit to the Markov chain Monte Carlo (MCMC) methods.

More specifically, at training the programmer always performs an extra beam search with code assist
turned off. If such programs lead to execution failure, they can be used to propose tweaked knowledge
tuples (Algorithm 1). For example, when executing an expression (Hop mary journeyed) – gen-
erated without code assist – on a knowledge storage with tuples (john the milk), (mary went
bathroom) and (mary picked milk), matching the prefix (mary journeyed) fails at token
journeyed and returns empty result. At this point, the programmer uses journeyed to replace
inconsistent symbols in partially matched tuples (i.e. tuples that start with mary), and produces tuples
(mary journeyed bathroom) and (mary journeyed milk). These tweaked tuples are
then added into the experience replay buffer for the knowledge encoder (Section 2.3). In this way, the
search space of the knowledge storage is refined, and the knowledge encoder can learn to generate
tuples in a consistent fashion in the future.

Algorithm 1 Structure tweak procedure. Here we assume that the function f is one of Hop or
Argmax. The procedure for HopFR and ArgmaxFR can be defined similarly.

Input: Knowledge storage Γ. Expression (fa1 . . . aL) from an uninformed programmer.
Output: Tweaked knowledge tuples T .
if (a1 . . . aL) can be matched in Γ, or (a1) can not be matched in Γ then

return
Let p = (a1, . . . , am) be the longest prefix matched in Γ, and Γp be the set of matched tuples.
for Γ = (γ1, . . . , γN ) ∈ Γp do

Add (a1, . . . , am, am+1, γm+2 . . . , γN ) to T

2.3 OPTIMIZATION

Now the whole model has parameters θ = [θenc, θdec, θprog], and the training objective function is

O(θ) =OAE(θenc, θdec) +OQA(θenc, θprog) (5)

=
∑
si∈s

∑
Γi

P (Γi|si, si−1; θenc)[β(Γi) + logP (si|Γi, si−1; θdec)] (6)

+
∑
Γ

∑
C

P (Γ|s; θenc)P (C|q,Γ; θprog)R(Γ, C, a) (7)

where β(Γi) is 1 if Γi only contains tokens from si and 0 otherwise.

For training stability and to overcome search failures, we augment this objective with experience
replay (Schaul et al., 2016), and the gradients with respect to each set of parameters are:

∇θdecO
′(θ) =

∑
si∈s

∑
Γi

[β(Γi) + P (Γi|si, si−1; θenc)]∇θdec logP (si|Γ, si−1; θdec), (8)

∇θencO
′(θ) =

∑
si∈s

∑
Γi

[P (Γi|si, si−1; θenc) logP (si|Γi, si−1; θdec) (9)

+R(G′(Γi)) +R(G(Γi))]∇θenc logP (Γi|si, si−1; θenc), (10)
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where R(G) =
∑

Γ∈G
∑
C P (Γ|s; θenc)P (C|q,Γ; θprog)R(Γ, C, a) is the total expected reward for

a set of valid knowledge stores G, G(Γi) is the set of knowledge stores which contains the tuple Γi,
and G′(Γi) is the set of knowledge stores which contains the tuple Γi through tweaking.

∇θprogO
′(θ) =

∑
Γ

∑
C

[αI [C ∈ C∗(s, q)] + P (C|q,Γ; θprog)] (11)

· P (Γ|s; θenc)R(Γ, C, a)∇θprog logP (C|q,Γ; θprog), (12)

where C∗(s, q) is the experience replay buffer for (s, q). α = 0.1 is a constant. During training, the
program with the highest weighted reward (i.e. P (Γ|s; θenc)R(Γ, C, a)) is added to the replay buffer.

Because the knowledge storage and the program are non-differentiable discrete structures, we optimize
our objective by a coordinate ascent approach – optimizing the three components in alternation with
REINFORCE (Williams, 1992).

3 RESULTS

We apply the N-Gram Machine (NGM) to solve a set of text reasoning tasks in the bAbI dataset (We-
ston et al., 2015). In Section 3.1, we demonstrate that the model can learn to build knowledge storage
and generate programs that accurately answer the questions. In Section 3.2, we show the scalability
advantage of NGMs by applying it to longer stories up to 10 million sentences.

The Seq2Seq components are implemented as one-layer recurrent neural networks with Gated
Recurrent Unit (Chung et al., 2014). The hidden dimension and the vocabulary embedding dimension
are both 8. During decoding, the per sentence knowledge tuple beam size is 2, the knowledge
store sample size is 5, and the program beam size is 30. The neural networks are implemented in
TensorFlow (Abadi et al., 2016) and optimized using Adam (Kingma & Ba, 2014).

3.1 BABI

The bAbI dataset contains twenty tasks in total. We consider the subset of them that are extractive
question answering tasks (as defined in Section1.1). Each task is learned separately. For all tasks,
we set the knowledge tuple length to three. In Table 3, we report results on the test sets. NGM
outperforms MemN2N (Sukhbaatar et al., 2015) on all tasks listed. The results show that auto-
encoding is essential to bootstrapping the learning. Without auto-encoding, the expected rewards are
near zero; but auto-encoding alone is not sufficient to achieve high rewards (See Section 2.2). Since
multiple discrete latent structures (i.e. knowledge tuples and programs) need to agree with each other
over the choice of their representations for QA to succeed, the search becomes combinatorially hard.
Structure tweaking is an effective way to refine the search space – improving the performance of
more than half of the tasks.

Table 3: Test accuracy on bAbI tasks with auto-encoding (AE) and structure tweak (ST)

Task 1 Task 2 Task 11 Task 15 Task 16

MemN2N 1.000 0.830 0.840 1.000 0.440
QA 0.007 0.027 0.000 0.000 0.098
QA + AE 0.709 0.551 1.000 0.246 1.000
QA + AE + ST 1.000 0.853 1.000 1.000 1.000

To illustrate the effect of auto-encoding, we show in Figure 3 how informative the knowledge tuples
are by computing the reconstruction log-likelihood using the knowledge decoder for the sentence
"john went back to the garden". As expected, the tuple (john went garden) is the most
informative. Other informative tuples include (john the garden) and (john to garden).
Therefore, with auto-encoding training, useful hypotheses have large chance to be found by a small
knowledge encoder beam size (2 in our case).

Table 4 lists sampled knowledge storages learned with different objectives and procedures. Knowledge
storages learned with auto-encoding are much more informative compared to the ones without. After
structure tweaking, the knowledge tuples converge to use more consistent symbols – e.g., using
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Figure 3: Visualization of the knowledge decoder’s assessment of how informative the knowledge
tuples are. Yellow means high and red means low.

went instead of back or travelled. Our experiment results show the tweaking procedure can
help NGM to deal with various linguistic phenomenons such as singular/plural (“cats” vs “cat”) and
synonyms (“grabbed” vs “got”). More examples are included in the supplementary material A.1.

Table 4: Sampled knowledge storage with question answering (QA) objective, auto-encoding (AE)
objective, and structure tweak (ST) procedure. Using AE alone produces similar tuples to QA+AE.
The differences between the second and the third column are underlined.

QA QA + AE QA + AE + ST

went went went daniel went office daniel went office
mary mary mary mary back garden mary went garden
john john john john back kitchen john went kitchen
mary mary mary mary grabbed football mary got football
there there there sandra got apple sandra got apple

cats cats cats cats afraid wolves cat afraid wolves
mice mice mice mice afraid wolves mouse afraid wolves
is is cat gertrude is cat gertrude is cat

3.2 LIFE-LONG BABI

To demonstrate the scalability advantage of the N-Gram Machine, we conduct experiments on
question answering data where the number of sentences may increase up to 10 million. More
specifically we generated longer bAbI stories using the open-source script from Facebook3. We
measure the answering time and answer quality of MemN2N (Sukhbaatar et al., 2015)4 and NGM at
different scales. The answering time is measured by the amount of time used to produce an answer
when a question is given. For MemN2N, this is the neural network inference time. For NGM, because
the knowledge storage can be built and indexed in advance, this is the programmer decoding time.

Figure 4 compares MemN2N and NGM. In terms of answering time, MemN2N scales poorly – the
inference time increases linearly as the story length increases. While for NGM, the answering time
is not affected by story length. The crossover of the two lines is when the story length is around
1000, which is due to the difference in neural network architectures – NGM uses recurrent networks
while MemN2N uses feed-forward networks. To compare the answer quality at scale, we apply
MemN2N and NGM to solve three life-long bAbI tasks (Task 1, 2, and 11). For each life-long task,
MemN2N is run for 10 trials and the test accuracy of the trial with the best validation accuracy is
used. For NGM, we use the same models trained on regular bAbI tasks. We compute the average
and standard deviation of test accuracy from these three tasks. MemN2N performance is competitive
with NGM when story length is no greater than 400, but decreases drastically when story length
further increases. On the other hand, NGM answering quality is the same for all story lengths. These
scalability advantages of NGM are due to its “machine” nature – the symbolic knowledge storage
can be computed and indexed in advance, and the program execution is robust on stories of various
lengths.

3https://github.com/facebook/bAbI-tasks
4https://github.com/domluna/memn2n
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Figure 4: Scalability comparison of MemN2N and NGM. Left: Answering time. Right: Answer
quality. Story length is the number of sentences in each QA pair.

4 RELATED WORK

The auto-encoding part of our model (Figure 2) is similar to the auto-encoding text summarization
model proposed by Miao & Blunsom (2016). Miao & Blunsom (2016) solved the large search space
problem (when generating hidden sequences) by 1) restricting hidden sequences to only consist
of tokens in the source sequences (through a PointerNet (Vinyals et al., 2015)), and 2) a language
model pre-trained on a separate corpus. We adopt a different approach, which does not require a
separate corpus, or a restricted hidden sequence space: 1) use a less restricted hidden space (through
a CopyNet (Gu et al., 2016)) by allowing both copied tokens and generated tokens; 2) stabilize the
decoder by forcing it (through experience replay) to train from randomly generated hidden sequences;
and 3) use the log-likelihood of the pre-trained decoder to guide the training of the encoder.

The question answering part of our model (Figure 2) is similar to the Neural Symbolic Machine
(NSM) (Liang et al., 2017), which is a memory enhanced sequence-to-sequence model that translates
questions into programs in λ-calculus (Liang et al., 2011). The programs, when executed on a
knowledge graph, can produce answers to the questions. Our work extends NSM by removing
the assumption of a given knowledge bases or schema, and instead learns to generate storage by
end-to-end training to answer questions.

The reminder of this section analyzes why existing text understanding technologies are fundamentally
limited and draws connections of our proposed solution to psychology and neuroscience.

4.1 TEXT UNDERSTANDING: CURRENT PRACTICE

In recent years, several large-scale knowledge bases (KBs) have been constructed, such as
YAGO (Suchanek et al., 2007), Freebase (Bollacker et al., 2008), NELL (Mitchell et al., 2015),
Google Knowledge Graph (Singhal, 2012), Microsoft Satori (Qian, 2013), and others. However, all
of them suffer from a completeness problem (Dong et al., 2014) relative to large text corpora, which
which stems from an inability to convert arbitrary text to graph structures, and accurately answering
questions from these structures. There are two core issues in this difficulty:

The schema (or representation) problem Traditional text extraction approaches need some fixed
and finite target schema (Riedel et al., 2013). For example, the definition of marriage5 is very complex
and includes a whole spectrum of concepts, such as common-law marriage, civil union, putative
marriage, handfasting, nikah mut’ah, and so on. It is prohibitively expensive to have experts to clearly
define all these differences in advance, and annotate enough utterances from which they are expressed.
However, given a particular context, many of this distinctions might be irrelevant. For example when

5https://en.wikipedia.org/wiki/Marriage
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a person say “I just married Lisa.” and then ask “Who is my wife?”, a system should be able to
respond correctly, without first learning about all types of marriage. A desirable solution should
induce schema automatically from the corpus such that knowledge encoded with this schema can
help downstream tasks such as QA.

The end-to-end training (or inference) problem The state-of-the-art approaches break down
QA solutions into independent components, such as schema definition and manually annotating
examples (Mitchell et al., 2015; Bollacker et al., 2008), relation extraction (Mintz et al., 2009), entity
resolution (Singla & Domingos, 2006), and semantic parsing of questions (Berant et al., 2013; Liang
et al., 2017). However, these components need to work together and depend on each other. For
example, the meaning of text expressions (e.g., “father of IBM”, “father of Adam Smith”, “father of
electricity”) depend on entity types. The type information, however, depends on the entity resolution
decisions, and the content of the knowledge base (KB). The content of the KBs, if populated from
text, will in return depend on the meaning of text expressions. Existing systems (Dong et al., 2014;
Berant et al., 2013) leverage human annotation and supervised training for each component separately,
which create consistency issues, and preclude directly optimizing the performance of the QA task. A
desirable solution should use few human annotations of intermediate steps, and rely on end-to-end
training to directly optimize the QA quality.

4.2 TEXT UNDERSTANDING: DEEP NEURAL NETS

More recently there has been a lot of progress in applying deep neural networks (DNNs) to text
understanding (Mikolov et al., 2013; Weston et al., 2014; Neelakantan et al., 2015; Graves et al.,
2016; Miller et al., 2016). The key ingredient to these solutions is embedding text expressions into a
latent continuous space. This removes the need to manually define a schema, while the vectors still
allow complex inference and reasoning. Continuous representations greatly simplified the system
design of QA systems, and enabled end-to-end training, which directly optimizes the QA quality.

However, a key issue that prevents these models from being applied to many applications is scalability.
After receiving a question, all text in a corpus need to be analyzed by the model. Therefore it leads to
at least O(n) complexity, where n is the text size. Approaches which rely on a search subroutine
(e.g., DrQA (Chen et al., 2017)) lose the benefit of end-to-end training, and are limited by the quality
of the retrieval stage, which itself is difficult.

4.3 RELATIONSHIP TO NEUROSCIENCE

Previous studies (Wickman, 2012; Bartol et al., 2015) of hippocampus suggests that human memory
capacity may be somewhere between 10 terabytes and 100 terabytes. This huge capacity is very
advantageous for humans’ survival, yet puts human brain in the same situation of a commercial
search engine (Brin & Page, 1998) – facing the task of organizing vast amounts of information in a
form which support fast retrieval and inference. Good representations can only be learned gradually
with a lot of computations, and the aggregated statistics of a lot of experiences.

Our model (Figure 2) resembles the complementary learning theory (McClelland et al., 1995; O’Reilly
et al., 2014; Kumaran et al., 2016), which hypothesizes that intelligent agents possess two learning
systems, instantiated in mammals in the hippocampus and neocortex. The first quickly learns the
specifics of individual experiences, which is essential for rapid adaptations (Garcia & Koelling,
1966), while the second gradually acquires good knowledge representations for scalable and effective
inference. The stories in training examples (episodic memories) and knowledge store (keys to episodic
memories) represents the fast learning neurons, while the sequence to sequence (seq2seq) DNN
models represent the slow learning neurons (semantic memory). The DNN training procedure, which
goes over the past experience (stories) over and over again, resembles the “replay” of hippocampal
memories that allows goal-dependent weighting of experience statistics (Kumaran et al., 2016).

The auto-encoder (Section 2.2) is related to autoassociative memory, such as the CA3 recurrent
collateral system in the hipposcampus (Rolls, 2016). Similar to autoassociative networks, such as the
Hopfield network (Hopfield, 1982), that can recall the memory when provided with a fragment of
it, the knowledge decoder in our framework learns to recover the full sentence given noisy partial
observations of it, i.e. all knowledge tuples of length N that consist of only words from the text. It
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also embodies Tulving (1983)’s hypothesis that the episodic memory is not just stored as engrams
(n-grams), but also in the procedure (seq2seq), which reconstructs experience from the engrams.

The structure tweak procedure (Section 2.2) in our model is critical for its success, and resemblances
the reconstructive (or generative) memory theory (Piaget, 1977; Block, 1982), which hypothesizes
that by employing reconstructive processes, individuals supplement other aspects of available personal
knowledge into the gaps found in episodic memory in order to provide a fuller and more coherent
version. Our analysis of the QA task showed that at knowledge encoding stage information is
often encoded without understanding how it is going to be used. So it might be encoded in an
inconsistent way. At the later QA stage an inference procedure tries to derive the expected answer by
putting together several pieces of information, and fails due to inconsistency. Only at that time can
a hypothesis be formed to retrospectively correct the inconsistency in memory. These “tweaks” in
memory later participate in training the knowledge encoder in the form of experience replay.

Our choice of using n-grams as the unit of knowledge storage is partially motivated by the Adaptive
Resonance Theory (ART) (Carpenter, 1997; Carpenter & Grossberg, 2003; Wang et al., 2012), which
models each piece of human episodic memory as a set of symbols, each representing one aspect of
the experience such as location, color, object etc.

5 DISCUSSION

Though the performance on bAbI tasks is satisfactory, it does not provide a realistic evaluation of
how effective NGM is on natural languages – bAbI was originally created from a small set of rules
and primitives. However, we have presented a novel framework, and points to a new direction of how
a long lasting problem in search might be solved. A logical next step is to apply NGM to tasks with
more natural languages.

For NGM to be effective, it depends on 1) whether the representation is expressive enough for
useful natural language, and 2) whether the optimization can find an optimal representation with
good sample complexity. The expressiveness is determined by both the knowledge storage and
programs. When n equals three, the n-grams have the same expressive power as the RDF triples used
in Freebase (Bollacker et al., 2008). The Hop and related functions are equivalent to traversal on the
graph specified by the tri-grams. Although we focus on extractive QA in this work, it will be easy to
support broader semantics by adding more functions such as count and summation. In NGM, there
is no predefined distinction between entities and predicates – e.g., the symbol “father” can perform
either like a predicate or an entity, which removes the need to make such hard decisions manually.

A very expressive formalism might introduce a too big search space, therefore trade offs need to be
made between expressiveness and learnability. For example, though the most basic semantic units in
NGM (i.e. symbols) can be any discrete objects, currently we restrict them to pre-tokenized words.
This choice is reasonable for the bAbI tasks, but might be too restricted in future applications.

6 CONCLUSION

We present an end-to-end trainable system for answering questions from large corpus of text. The
system combines an text auto-encoding component for encoding the meaning of text in symbolic
representations, and a memory enhanced sequence-to-sequence component that translates questions
into programs. We show that the method achieves good scaling properties and robust inference on
artificially generated stories of up to 10 million sentences long. The system we present here illustrates
how end-to-end learning and scalability can be made possible through a symbolic knowledge storage.

ACKNOWLEDGEMENTS

We thank for discussions and help from Jonathan Berant, Yishu Miao, Bishan Yang, Gene Kim, Chen
Liang, and Quoc Le.

11



Workshop track - ICLR 2018

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning. Leveraging linguistic
structure for open domain information extraction. In ACL (1), pp. 344–354. The Association for
Computer Linguistics, 2015.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Steven Baker. Helping computers understand language. Official Google Blog, 2010.

Thomas M Bartol, Cailey Bromer, Justin Kinney, Michael A Chirillo, Jennifer N Bourne, Kristen M
Harris, Terrence J Sejnowski, and Sacha B Nelson. Nanoconnectomic upper bound on the
variability of synaptic plasticity. In eLife, 2015.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from
question-answer pairs. In EMNLP, volume 2, pp. 6, 2013.

Jack Block. Assimilation, accommodation, and the dynamics of personality development. Child
Development, 53(2):281–295, 1982.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collabora-
tively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pp. 1247–1250. ACM, 2008.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst., 30(1-7):107–117, April 1998. ISSN 0169-7552.

G.A. Carpenter and S. Grossberg. Adaptive resonance theory. In The Handbook of Brain Theory and
Neural Networks, pp. 87–90. MIT Press, 2003.

Gail A. Carpenter. Distributed learning, recognition, and prediction by art and artmap neural networks.
Neural Netw., 10(9):1473–1494, November 1997. ISSN 0893-6080.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer
open-domain questions. In Association for Computational Linguistics (ACL), 2017.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Li Dong and Mirella Lapata. Language to logical form with neural attention. In Association for
Computational Linguistics (ACL), 2016.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas
Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, pp. 601–610, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2956-9.

David A. Ferrucci, Eric W. Brown, Jennifer Chu-Carroll, James Fan, David Gondek, Aditya Kalyan-
pur, Adam Lally, J. William Murdock, Eric Nyberg, John M. Prager, Nico Schlaefer, and Christo-
pher A. Welty. Building watson: An overview of the deepqa project. AI Magazine, 31(3):59–79,
2010.

John Garcia and Robert A. Koelling. Relation of cue to consequence in avoidance learning. Psycho-
nomic Science, 4:123–124, 1966.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
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A SUPPLEMENTARY MATERIAL

A.1 MODEL GENERATED KNOWLEDGE STORAGES AND PROGRAMS FOR BABI TASKS

The following tables show one example solution for each type of task. Only the tuple with the highest
probability is shown for each sentence.

Table 5: Task 1 Single Supporting Fact

Story Knowledge Storage
Daniel travelled to the office. Daniel went office
John moved to the bedroom. John went bedroom
Sandra journeyed to the hallway. Sandra went hallway
Mary travelled to the garden. Mary went garden
John went back to the kitchen. John went kitchen
Daniel went back to the hallway. Daniel went hallway

Question Program
Where is Daniel? Argmax Daniel went

Table 6: Task 2 Two Supporting Facts

Story Knowledge Storage
Sandra journeyed to the hallway. Sandra journeyed hallway
John journeyed to the bathroom. John journeyed bathroom
Sandra grabbed the football. Sandra got football
Daniel travelled to the bedroom. Daniel journeyed bedroom
John got the milk. John got milk
John dropped the milk. John got milk

Question Program
Where is the milk? ArgmaxFR milk got

Argmax V1 journeyed

Table 7: Task 11 Basic Coreference

Story Knowledge Storage
John went to the bathroom. John went bathroom
After that he went back to the hallway. John he hallway
Sandra journeyed to the bedroom Sandra Sandra bedroom
After that she moved to the garden Sandra she garden

Question Program
Where is Sandra? Argmax Sandra she
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Table 8: Task 15 Basic Deduction

Story Knowledge Storage
Sheep are afraid of cats. Sheep afraid cats
Cats are afraid of wolves. Cat afraid wolves
Jessica is a sheep. Jessica is sheep
Mice are afraid of sheep. Mouse afraid sheep
Wolves are afraid of mice. Wolf afraid mice
Emily is a sheep. Emily is sheep
Winona is a wolf. Winona is wolf
Gertrude is a mouse. Gertrude is mouse

Question Program
What is Emily afraid of? Hop Emily is

Hop V1 afraid

Table 9: Task 16 Basic Induction

Story Knowledge Storage
Berhard is a rhino. Bernhard a rhino
Lily is a swan. Lily a swan
Julius is a swan. Julius a swan
Lily is white. Lily is white
Greg is a rhino. Greg a rhino
Julius is white. Julius is white
Brian is a lion. Brian a lion
Bernhard is gray. Bernhard is gray
Brian is yellow. Brian is yellow

Question Program
What color is Greg? Hop Greg a

HopFR V1 a
Hop V2 is
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